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Abstract
Generative design techniques such as topology optimisation can produce lightweight structures that significantly

reduce emissions in aerospace and automotive applications. However, a gap exists between computationally

generated designs and manufacturable parts: while topology optimisation produces optimal shapes for 3D printing

or single-piece machining, industrial manufacturing relies on assemblies of standard components using processes

like welding, stamping, and cutting. This paper formalises the problem of approximating topology-optimised

designs using off-the-shelf parts and conventional manufacturing processes as a configuration problem. We define

this problem as finding high-performing configurations of parts from industrial catalogues, modified by available

processes, that minimise cost and weight while maximising geometric similarity to the target design. The key

challenges include managing discrete part catalogues, representing complex 3D geometries, navigating solution

spaces that grow exponentially, and handling mixed discrete-continuous optimisation variables. By framing

generative design approximation as a configuration problem, we aim to bridge the gap between computational

design tools and the reality of industrial manufacturing.
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1. Introduction

The aerospace and automotive industries are both significant contributors to climate change. Aerospace

contributes 2.5% [1] of global carbon-dioxide emissions, and road passenger transport 10.8% [2]. In

both industries, lightweighting is a key means for reducing emissions. A study by the International

Transport Forum concluded that if the mass of cars could be reduced back to 1970s levels (a 40% reduc-

tion), then 𝐶𝑂2 emissions could be reduced by an additional 90Mt (18%) [3]. Topology optimisation

techniques such as Solid Isotropic Material with Penalization (SIMP) [4] can search for the lightest part

that meets a loading condition. Topology optimisation (and more broadly, generative design) tools

are available in commercial software such as Autodesk Fusion [5] and COMSOL [6]. However, parts

designed using these methods are not commonly used in these industries or other commercial projects

due to the following limitations. Firstly, the geometry of the parts generally requires 3D printing, casting

or machining the part in a single piece. Aerospace and automotive are safety-critical applications,

inhibiting the adoption of 3D printing for structural parts. The 3D printing process can introduce

microscopic cracks, leading to unacceptable part strength variations. Secondly, both industries need to

manufacture parts at scale, and 3D printing costs do not scale with production volume. Machining and

casting are practical at high volumes, but are not practical for every part. The generatively-designed

bracket shown in Figure 1 would be economically infeasible to machine due to its complexity and the

proportion of the blank that would be scrap.

The following industry cases illustrate the gap between the objectives of topology optimisation and

industrial use. In 2016, Airbus unveiled a prototype "bionic partition". Created using generative design,

the 3D printed design was 50% lighter [7]. The prototype exceeded the capacity of 3D printers at

the time, so the prototype was made in 122 parts and fastened together [8]. However, a later news

report revealed that the approach was abandoned (due to manufacturing cost [9]), and the first installed
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version was "a sandwich panel with a honeycomb core and carbon fibres (CFRP)" [10]. In 2017, Autodesk

collaborated with the Bandito Brothers to create a hotrod car chassis [11]. The team used Autodesk’s

project DreamCatcher [12] to design the chassis using telemetry data from a prototype. They then

manually approximated the design in such a way that it could be constructed from welded tubing

[13, 14]. The team aimed to fully 3D print the chassis but, at the time of writing, we could not find a

record of them succeeding.

The benefits of generative design cannot be realised when it is limited to a small subset of man-

ufacturing processes available. Automating the manual approximation of a generated design to use

off-the-shelf parts and processes would bridge the gap between available tools and industry use. This

would properly integrate generative design into engineers’ toolboxes as one way to lightweight parts

and reduce emissions. To this end, we present the approximation process as a configuration problem.

2. Problem Definition

In this section, we present a generalised form of the problem and provide illustrative examples.

The Manufacturing Problem

Instance:

• a target shape generated using topology optimisation

• a library of parts

• a set of processes that can modify instances of parts in the library

• one or more optimisation criteria

• a target production volume

Task:

Find the configuration of part instances, each possibly modified by a sequence of processes, that

minimises the optimisation criteria.

2.1. Configuration Definition

A configuration is a directed tree where:

• Nodes are manufacturing processes with parameters

• Leaf nodes are processes adding parts from a part library

• Edges are the flow of parts

• Root is the final assembly process, which outputs the completed product

An example configuration is shown in Figure 2.

2.2. Validity Constraints

A configuration is valid if:

• The tree is connected (single root),

• there are no intersecting parts,

• all joints/connections are physically realisable,

• each process node has compatible incoming edges,

• and the parameters of each process node are feasible.



Figure 1: A generatively designed bracket (left) and a version redesigned to be manufactured at volume using
CNC bending, sheet metal cutting and turning (right).
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Figure 2: An abridged example configuration tree for the bracket shown in Figure 1 (right). The left-hand branch
represents the main body of the bracket, the second branch the bosses at the corners, and the third branch the
plates used to connect the bosses on the right-hand side.

2.3. Evaluation Criteria

Finding valid configurations is not sufficient. Many will be manufacturable but perform poorly against

a given objective. Functional evaluations, such as Finite Element Analysis (FEA) and real-world testing

are required in safety-critical industries such as aerospace and automotive. However, they are expensive

(in terms of compute, time and resources). For searching through valid configurations, or training

a system to generate them in a data-driven approach, a proxy is required. A configuration can be

evaluated based on its geometric similarity to a target form generated using Topology Optimization.

This can be done by instantiating 3D models of the stock material and applying the modifications

of the processes in the tree. The resulting shape can be compared to the target using the Hausdorff

distance (the maximum distance between any point on one shape and its nearest point on the other

shape). Generally, this approach can be thought of as using a continuous representation and gradient

descent to find a design, then approxmating that design with discrete operations. Using a shape-based

metric also offers flexibility. A user of a configuration generator could provide the output of available

generative design and topology optimisation tools, or model a freeform shape by hand. A drawback to

this approach is that small changes in geometry can lead to large changes in deflection or peak stress.

As such, if such a system were being used in the aerospace or automotive industries, configurations

suggested by the tool of interest to a designer would be evaluated using functional evaluations such as

FEA.

Many valid configurations will approximate the target shape, but may not be optimal in terms of

cost or production volume. As such, a cost objective must also be applied. This can be achieved by

assigning a cost to each part in the library and summing the costs of the parts used in the configuration.



Each process can be costed by assigning a set-up cost and an operation cost. The set-up cost is incurred

once if the process is used in a configuration, and the operation cost is incurred for every instance of a

process node in a configuration.

2.4. Data

The SELTO dataset [15] contains 9848 example parts generated using SIMP [4]. Each example is

comprised of a voxel representation of the generated part, as well as the forces and boundary conditions

used to generate it.

3. Challenges

The manufacturing problem presents three key challenges.

First, the number of possible configurations grows exponentially with the size of the component

library, the process library, the number of nodes added to a configuration, and the number of design

variables. Industrial part catalogues contain thousands of components. This is often referred to as the

curse of dimensionality.

Second, the challenge of representing a configuration. The parts and processes can be represented as

trees as described in Section 2.1. However, the configuration also represents a 3D shape. It is necessary

to generate and check the 3D shape for self-intersection. A configuration that appears valid based

on the tree structure may still be invalid due to a self-intersection. Consider a bar that has been bent

270 degrees. Potential 3D representations include Signed Distance Functions (SDFs) or Boundary

Representations (B-reps).

Finally, the problem combines discrete and continuous variables, for example, tubing comes in fixed

diameters but can be cut to any length, and sheet materials have standard thicknesses but arbitrary

cut shapes. The number of variables also varies depending on the configuration. A bend will have a

different number of parameters than a cut.

4. Related Work

In this section, we describe related problems and the ongoing research into them. We aim to differentiate

this problem, as well as explain the inspiration for the research avenues detailed in the next section.

4.1. Configuration Design

Mittal and Frayman [16] defined a general framework for configuration design. The problem presented

in this article adds the complication that components can be modified using a library of operations

before being combined. As highlighted in [17], representing engineering components in a reusable

manner has proven challenging. The problem presented in this article limits the component library to

stock materials that can be represented as a set of parametric shapes.

4.2. Manufacturing Constraints for Topology Optimisation

Researchers have modified density-based methods (such as SIMP [4]) to respect minimum feature

size and overhang constraints of 3D printing [18, 19, 20] and to impose constraints for 2.5 and 5
axis machining, using projections to penalize areas inaccessible to the tool during optimisation [21].

Greminger [22] adopted a data-driven approach, training a Generative Adversarial Network (GAN) on

examples of machinable parts. These processes make progress towards manufacturability. However, the

assumption of a solid isotropic material is intrinsic, so separate parts that may have been pre-processed

cannot be represented.



4.3. Analog Circuit Synthesis

Circuit topology synthesis shares the goal of configuring a library of parts. Typically, the circuit is

represented as a graph, with parts as nodes and connections as edges (e.g. [23]). Gao et al. [24] argued

that this representation is ambiguous, as parts have pins with different functionalities. They proposed

adding pins as an additional node type to the graph, allowing for explicit pin-to-pin connections. They

also demonstrated the effectiveness of converting the graph to a set of sequences using Eulerian walks

and applying a Transformer [25] in a system they dubbed AnalogGenie.

4.4. Program Synthesis

Program synthesis is the search for a program that generates a desired output. In the context of 3D

modelling, the output is commonly a target shape. Before the popularisation of Large Language Models

(LLMs), Domain Specific Languages (DSLs) were used to constrain the search space to a tractable

size. Jones et al. [26] proposed a DSL called ShapeAssembly. They trained a hierarchical Variational

Autoencoder (VAE) on ShapeAssembly programs reverse engineered from assemblies in PartNet [27].

They could then generate new programs, and thus assemblies, by sampling from the latent space of

programs. Ellis et al. [28] proposed DreamCoder, that could expand its own DSL through a process of

self-improvement.

A limitation of DSLs is that they constrain what can be expressed. We note that this may actually be

a useful property in the context of ensuring manufacturability. However, to overcome this, researchers

have recently favoured using LLMs to generate programs in Turing-complete languages, for example,

Python. Notable work related to geometry generation includes CAD-CODER, which takes an image

of a part and produces a parametric Computer-Aided Design (CAD) model [29]. The approach makes

use of a Vision Language Model (VLM) to generate Python code that generates the model. While such

approaches demonstrate the potential to convert generatively designed parts into parametric CAD

models, they do not fully address the manufacturing problem presented in this paper, as CAD models

are not necessarily manufacturable.

5. Research Avenues

We identify two broad categories of approaches for addressing the configuration problem presented in

this paper. The first involves searching for a configuration directly, which we term an output-centric

approach. The second focuses on searching for a program that generates a configuration, which we

refer to as a program-centric approach.

For output-centric approaches, several promising directions emerge. Graph generation techniques of-

fer a way to generate configurations directly. Transformer-based models show promise, as demonstrated

in AnalogGenie [24].

The configuration described in Section 2.1 can be viewed as the Abstract Syntax Tree (AST) of a

program. One program-centric approach is to use an LLM to write the program using a supplied

library of functions. Another approach is to generate a program that searches for a configuration. Both

approaches can be further enhanced by employing evolutionary algorithms on the output programs,

feeding high-performing programs back into the model for iteration.
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