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Abstract

The task assignment problem is well-known and of great practical importance. In a previous work, we presented
a corresponding answer set programming model and provided an initial experimental evaluation, demonstrating
its practical applicability. However, this model falls short in several aspects, making it less than entirely suit-
able for safety-critical networks. In this paper, we extend the model providing means for representing critical
tasks and communication. In particular, we introduce predicates for capturing communication among tasks and
their limitations caused by networks, i.e., the available bandwidth. We also provide a preliminary experimental
evaluation of the new model, demonstrating its feasibility for minor problem instances.
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1. Introduction

Knowledge-based configuration, i.e., the composition of elements and parts to fulfill customers’ needs,
has garnered considerable attention. There has been a lot of research and applications reported in
scientific literature, ranging from service configuration [1], governance systems [2], product configura-
tion [3], considering hardware and software in the automotive domain [4], to green configuration in
scheduling [5], only to give the most recent examples. Modelling for configuration is often based on
logic, see, e.g., [6], and most recently, answer set programming (ASP) for representing models used for
configuration and reasoning to obtain valid configuration has gained more attention, e.g., see [7, 3, 8, 9].

In this short paper, we continue work on system configuration, focusing on configuring networks
comprising nodes for executing pre-defined tasks. As already mentioned in our previous paper [10],
the underlying problem is related to scheduling and shift designs [11] and has also been considered
in previous work, e.g., [12]. Furthermore, the underlying problem can be seen as a variant of the
well-known knapsack problem [13, 14]. In contrast to our previous paper, we extend the underlying
model to bring it closer to the intended application area, which are highly reliable networks for hard
real-time systems, where faults occurring during operation need to be mitigated within a pre-defined
time see e.g., [15]. Mitigation depends on the type of fault, e.g., a fault in a network node, where tasks
need to be reallocated. Such a (re-) configuration needs to be fast, such that no computational real-time
requirements are violated. It is worth noting that machine learning has already been suggested [16] to
solve re-configuration during operation.

In particular, we introduce concepts for handling communication among nodes and their limitations.
We simplify communication by considering only one bus where all nodes are connected to enable
allocated tasks to communicate with each other. The formal representation allows us to state which task
is communicating with another and also the costs of communication in terms of required bandwidth. In
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addition, we also capture the challenge of critical tasks. A task is considered critical if its non-execution
would cause a safety-relevant effect. Such a task is replicated in a safety-critical network, and voting
mechanisms are applied to ensure that it is always executed. Examples of safety-critical tasks include a
brake controller that must always enable braking when requested by a driver of a vehicle.

In addition to the extended model, we conduct a first limited experimental evaluation based on several
instances of task assignment problems. The evaluation utilizes the answer set programming solver
clingo [17] and answers the question whether the extended model is appropriate for being used in
the context of safety-critical networks, i.e., whether it is fast enough to assign tasks whenever required.

We structure this paper as follows. First, we introduce the underlying configuration problem. Af-
terward, we discuss the extensions of the model and present an answer set programming solution,
followed by the experimental evaluation. Finally, we conclude this short paper.

2. Problem description

In this section, we define the task-to-node assignment problem, or short task assignment problem. We
start summarizing the problem and its related constraints from our previous paper [10]. We assume &
computing nodes ny, ..., n; and n tasks t1, . . ., ;. For each node n;, we know the maximum number
of tasks c¢(n;) it can hold and the available memory m(n;). For each task ¢;, we know its memory
consumption m(¢;). In the following, we use this knowledge to formulate several constraints that need
to be considered when assigning tasks to nodes. For the constraints, we assume a function assigned(n;)
that returns a set of tasks that is assigned to a node n;.

1. Memory limitations: The required memory by the task shall never exceed the available memory
of the node.

Vie{l,...,k}: Z m(t;) < m(n;) (1)

t;€assigned(n;)

2. Task limitations: The number of tasks assigned to a node shall never exceed its capabilities.
Vie{l,...,k}: (Jassigned(n;)| < c(n;)) (2)

3. Global memory limitations: The required memory of all tasks shall never exceed the memory
provided by all nodes.

n k

> mlty) <Y m(n) (3)

7j=1 i=1

4. Global task limitations: The number of available tasks shall never exceed the sum of the number
of tasks of all nodes.

k
n < Z c(n;) (4)

=1

A solution to the tasks assignment problem is an assignment of all tasks to nodes such that Vj €
{1,...,k}: i e {1,...,n} : tj € assigned(n;), there is no tasks assigned to two different nodes, i.e.,
Vi,j€{1,...,k},i# j: assigned(n;) N assigned(n;) = 0, and all constraints are fulfilled. Such an
assignment is a valid one and may not exist due to limitations regarding available memory or the total
node capacity. We may also consider optimality criteria such as minimizing the number of nodes where
we assign tasks.

In addition to this original task assignment problem, we now add further information and
constraints to represent the safety-critical network more appropriately. In particular, networks are for
communication. Communication channels impose further constraints due to resource limitations. For
example, there is only a maximum bandwidth available. If too many tasks are communicating at the
same time, the bandwidth might not be sufficient. To simplify communication, we now only consider



Table 1
Predicates used to specify nodes, tasks, and their corresponding knowledge from [10].

Predicate

node(n) specifies that n represents a
node

tcapacity(n,c) maximum number of tasks c that

a node n can hold
mcapacity(n,m) | maximum memory m provided

by node n
task(t) specifies that ¢ is a task
memory (t,m) memory m required by task ¢

a bus, where all messages have to pass through. Hence, there is a limitation of the bus in terms of
bandwidth BW. We now need to specify the communication needs of each task. We assume that not
necessarily each tasks need to communicate with each other. Hence, we introduce a function com that
maps a potentially empty set of tasks to a given task, and a function bw that maps a task ¢ and any tasks
from com(t) to a necessary bandwidth. However, this bandwidth is only required if the two tasks are
not assigned to the same node. If two tasks are in the same node, there is no need to use the bus for
communication. Obviously, the required total bandwidth needed for communication shall never exceed
the bandwidth of the bus BW.

> > bu(tj,t) < BW (5)
Je{ln} ¢ com(t;)A
Aie{l,... k}:
t € assigned(n;)A\
tj € assigned(n;)

In addition to communication, we may also want to state that several tasks should never be allocated
to the same node. Critical tasks are examples. Such tasks may replicate each other in behavior and are
used to add fault tolerance. For simplification purposes, we only introduce a predicate distinct for any
two tasks stating that both are not allowed to be assigned to the same node:

Vie{l,...,n} V5 e {1,...,n},j #j : distinct(tj, t;;) —

Aie{1,....k}: (t; € assigned(n;) Aty € assigned(n;)) (©)

The task assignment problem comprising the additional constraints 5 and 6 is the extended task
assignment problem.

3. Implementation

After outlining the task assignment problem in the last section, we present a solution using answer set
programming where we rely on the syntax of the clingo solver [17], which is similar to the Prolog
language. For more information regarding answer set programming (ASP), we refer to introductory
literature, e.g., [18]. Note also that we do not discuss the ASP model in detail, except for the new
addition. The details are described in our previous paper [10]. In Table 1, we summarize the predicates
necessary to specify the original task assignment problem.

To find solutions for this problem, we further introduced a predicate select that takes a task T
as the first parameter and a node N as the second. The ASP solver selects tasks for nodes such that
no constraint is violated. To be self-contained, we summarize the clingo source code comprising
additional predicates for handling memory and task requirements:

% Generate a selection of a node for each task
{ select(T,N) : node(N) } =1 :- task(T).



% Constraints
% No 1: Do not exceed the max. number of tasks
noTasksAssigned(M,N) :-
M = #count { T : select(T,N)}, node(N).
:- noTasksAssigned(M,N), tcapacity(N,C), M>C.

% No 2: Do not exceed the max. memory of a node
memRequired(M,N) :-
M = #sum { NM,T :select(T,N), memory(T,NM)},
node(N) .
:- memRequired(M,N), mcapacity(N,C), M > C.

% Global constraints

totalCapacity(C) :- C=#sum {T,N :tcapacity(N,T)}.
totalNrTasks(C) :- C=#count {T :task(T) }.
totalMemReq(C) :- C=#sum {M,T :memory(T,M)}.
totalMem(C) :- C=#sum {N,CN :mcapacity(CN,N)}.

:- totalCapacity(C), totalNrTasks(TC), C < TC.
:- totalMemReq(Ctask), totalMem(Cnode),
Ctask > Cnode.

It is worth noting that this implementation corrects two shortcomings of the original one, which
may have led to some results that should not have been consistent solutions to the task assignment
problem. In the following, we now discuss the extension to this model to allow computing solutions for
the extended task assignment problem.

Let us handle the communication between nodes first. For stating communication needs between
tasks, we introduce a predicate comReq\ 3 that states communication needs between two tasks and the
required bandwidth. Hence, this predicate more or less captures the functions com and bw. For example,
comReq(t1,t2,10) states that there is a message transfer from task t1 to t2 requiring a bandwidth
of 10. What we need to formalize is the communication need and a constraint stating bandwidth
violation. For the former, we introduce a predicate comNeed\3 that summarizes communication needs
between two tasks depending on their assignment to nodes. If they are at the same node, there is no
communication bandwidth required. Otherwise, it is stated as defined in comReq. The following rules
capture this behavior:

comNeed(T1,T2,0) :- select(T1,N), select(T2,N).
comNeed(T1,T2,B) :-

select(T1,N1), select(T2,N2),

N1!=N2, comReq(T1,T2,B).

Based on comNeed, we can now specify the sum of the communication bandwidth required, which
we define as follows, utilizing the predicate comRequired for the whole bus:

comRequired(M) :-
M=#sum {B,T1,T2 :comNeed(T1,T2,B),
task(T1), task(T2)}.

Finally, we state the communication constraint that the communication required is not allowed to
exceed the total bandwidth provided by the bus (which is 50 in this particular case):

comChannel (50) .
:- comChannel(B), comRequired(M), M>B.
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Figure 1: Solving runtime of satisfiable and unsatisfiable instances

For handling information about critical nodes, we introduce the distinct\2 predicate to state that
two tasks should never be assigned to the same node, e.g., distinct (t1, t2) states that tasks t1 and
t2 has to be assigned at different node. Stating this constraint is straightforward:

:- select(T1,N), select(T2,N), distinct(T1,T2).

It is worth noting that this model is still a simplified representation of the task assignment for
safety-critical networks. But it covers certain important aspects, which have not been considered before.

4. Experimental evaluation

Similar to the experimental evaluation in our previous paper [10], we want to investigate the runtime
behavior of the ASP solver clingo when using systems comprising a different number of tasks and
nodes. In particular, it is interesting to know how many nodes can be handled within a fixed time span
of, e.g., 0.01 or 0.1 seconds. In addition, we are interested in the effects of the additional constraints on
the runtime.

Experimental setup: We used a Java program for generating model instances automatically, where
we ranged the number of nodes from 5, 10, 20 to 100 and the number of tasks randomly between the
number of nodes and its double. The capacity of each node was randomly set from 1 to 10. The memory
provided by each node was randomly chosen from 20, 40, 60...., 200. The memory required by every
task was randomly set to 10, 20, or 30. Moreover, we randomly selected whether a task communicates



Nodesn | SAT + UNSAT | SAT
5 0.003 0.003
10 0.041 0.041
20 0.982 0.752
30 0.779 0.361
40 2.973 2.298

Table 2
Average runtime in seconds of satisfiable and unsatisfiable instances in comparison with satisfiable instances
only.

with another and also whether two tasks are distinct. We obtained two different test sets, each of size
110, considering two different probability settings. We conducted the experiments using an Apple
MacBook Pro, with an Apple M1 CPU comprising 8 cores and 16 GB of main memory, running under
macOS Sequoia Version 15.5. For computing solutions, we relied on clingo version 5.7.1 and applied
the standard setup. Note that this setup (with the exception of the underlying operating system) is the
same as used in our previous paper [10] to allow for a comparison.

Experimental results: After generating the problem instances, we ran clingo to compute one
solution, i.e., we ran clingo using the prompt clingo -time-1imit=10 -outf=2 where we set
a time limit of 10 seconds and obtained all results in JSON format. What we observed is that the
underlying new constraints impact the runtime. For the first test set, we exceeded the time limit 76
times. From the remaining instances, 29 were satisfiable and 5 were unsatisfiable. For the second test,
the number of instances where we could not establish a solution drops to 67. The number of satisfiable
instances increases to 43, and no unsatisfiable instance was obtained.

Figure 1 depicts the minimum, maximum, and average runtime for all satisfiable and unsatisfiable
runs for each category where data was available. In comparison with the results from our previous
paper [10], we see a big difference. Only smaller instances comprising less than 10 nodes can now
be configured in less than 0.1 seconds, which was 20 in our other publication. Hence, the additional
constraints have a substantial impact, which is also visible by the high number of instances that cannot
be analyzed within the 10-second boundary.

We further compared the average runtime of all satisfiable and unsatisfiable instances with the one
obained considering only satisfiable instances. Table 2 summarizes the results where we only consider
nodes where enough instances for a comparison remain. We see that when considering unsatisfiable
instances the runtime increases on average, which is in line with results obtained in our previous paper.

Threats to validity: The presented results are from an initial experimental evaluation. The exper-
imental setup is limited, not considering the entire range of potential parameters. Due to the time
boundary set, there are many instances where satisfiability or unsatisfiability cannot be assigned. The
setup also does not allow for answering several interesting questions, like the responsibility of certain
constraints for the increased runtime.

5. Conclusions

In this paper, we extend an existing model for the task assignment problem, considering constraints for
communication and also for tasks that should not run on the same computing node. We further present
the results of an initial experimental evaluation, which show that there is an impact on the overall
runtime, potentially limiting its practical use to minor instances. However, the current evaluation is
limited, and further experimental evaluations and a more in-depth analysis are necessary. In future
work, we aim to address the questions regarding the influence of specific constraints on the overall
runtime and develop a more sophisticated test set that considers a wider variety of parameters.
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