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Abstract

Optimization has always been a central focus in computer science. There are various approaches to achieving
this, from finding better algorithms to optimizing compiled code. One such approach is compiler optimization,
where we can customize the compiler’s configuration to optimize for runtime, energy consumption, or binary
size, among other factors. However, these optimizations must be carefully selected for each program and typically
require expert knowledge. We utilize compiler autotuning to address this, which automatically selects a program’s
optimization options. Most current solutions for this task require a significant amount of time. Driven by the
growing popularity of Al-assisted coding, we have investigated the potential of Large Language Models (LLMs) as
a tool for solving the task of compiler autotuning. We show that LLMs can produce well-performing optimization
configurations within a reasonable timeframe acceptable for interactive settings.
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1. Introduction

Optimizing code can be achieved through various methods, with compiler optimization being one of
the most straightforward approaches. Compilers like the GNU Compiler Collection (GCC)' offer over
200 optimization options that can be enabled or disabled. The selection of appropriate optimization
options often requires an expert-level understanding. In order to allow non-expert users to use
compiler optimization, GCC provides sets of recommended default optimizations depending on the
optimization goal. For example, the -0s flag contains the recommended set of optimization options to
minimize the binary size of the compiled executable. In the following, the most important of the default
optimization sets is the -03 flag, which optimizes the runtime of the compiled executable. However,
these default options may lead to suboptimal results [1]. Compiler autotuning solves this problem by
selecting optimization options individually for a given program. The state-of-the-art modern compiler
autotuning consists primarily of iterative approaches that consume a significant amount of time due to
the need for repeated compilations to generate compiler optimizations, making them not scalable for
larger projects. This paper investigates the applicability of using Large Language Models (LLMs) for
compiler autotuning. To this end, we use ChatGPT-40” to generate optimized GCC commands and
compare their performance with state-of-the-art compiler autotuning approaches.

The remainder of this paper is organized as follows. Section 2 discusses related works on compiler
autotuning and LLMs. Section 3 outlines the experimental setup, and Section 4 presents the findings.
We address potential threats to validity in Section 5 and explore potential extensions of this work in
Section 6. Finally, we present our conclusions in Section 7.
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2. Related Work

The field of compiler autotuning addresses two key challenges: the phase selection problem and the
phase ordering problem, both aimed at optimizing program performance [2]. The phase selection prob-
lem identifies which optimizations to apply, while the phase ordering problem determines the sequence
of these optimizations. This work focuses solely on phase selection. In the modern state-of-the-art,
iterative solutions have become the standard approach [3, 4, 5, 6, 7]. Bodin et al. [8] propose one of
the earliest iterative approaches. Their approach starts with an initial set of optimization options
activated, compiles the program, evaluates its performance, and refines the configuration in a loop
until satisfactory results are achieved. Newer approaches focus primarily on increasing the efficiency
of iterative approaches. For example, COBAYN [9] uses Bayesian Networks to narrow the search
space to the most promising configurations. The current state-of-the-art method, BOCA [10], employs
Bayesian Optimization to identify key optimizations and streamline the search process. CompTuner
[11] builds a prediction model for the runtime of different optimization options and uses a particle
swarm optimization algorithm [12] to improve the search performance. Cole [5] can perform multi-
target optimization (for example, runtime and energy consumption) by iteratively creating a Pareto front.

However, performance is the central problem for the computationally intensive iterative state-of-
the-art approaches, requiring several compilations, which, with increasing project size, becomes a
substantial problem. Cole, for example, needs to create a Pareto front, which takes 50 days on a single
machine [5]. New lightweight approaches such as Optimization Space Learning (OSL) [13] try different
strategies to achieve a responsive tool that provides optimization options faster, with the trade-off of
lower prediction quality. OSL combines configuration space learning and collaborative filtering to
achieve this. First, OSL generates a set of synthesized optimization configurations using a t-wise feature
coverage heuristic and measures their performance for multiple benchmarks. OSL then recommends
optimization configurations for new programs using collaborative filtering [14].

In this work, we explore the applicability of LLMs in the context of compiler autotuning. LLMs have
already been used successfully in similar situations. For example, [15] uses a purpose-trained model to
minimize the size of the compiled binary, achieving a 3% improvement over the default optimizations
and outperforming several state-of-the-art iterative approaches. Another example is [16], which uses
LLMs to generate hardware-optimized code, or [17], which proposes the Meta Large Language Model
Compiler based on the CodeLLama model.

3. Experimental Setup

We used the following setup to evaluate the applicability of using LLMs in the context of compiler
autotuning. We conducted all experiments on a machine running GCC version 11.4.0 on a Xubuntu-22.04
machine with an Intel i7 processor. No multithreading or multiprocessing was applied. We used the
most recent release of OpenAI’s ChatGPT-40 to generate the GCC command that would minimize
the execution time of the resulting binary. To this end, we used the prompt visualized in Figure 1.
We considered prompting techniques other than the zero-shot approach, such as few-shot or chain of
thought, but they were ultimately disregarded. The few-shot approach is disregarded due to the lack of
a dataset containing code and its optimal compiler optimization settings. At the same time, the chain of
thought goes directly against the idea of automatization, without expert input, inherent to the concept
of compiler autotuning.

We evaluate our results using the PolyBench® benchmarks, commonly employed in compiler auto-
tuning evaluation. We run the prompt shown in Figure 1 for each of the 30 benchmarks, exchanging
the *{Code}” with the full content of the respective C file for each benchmark. We use the framework
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Write the GCC command to optimize the following Code
for execution time:
{Code}

To optimize the provided code for execution time using
GCC, you can use the following command:

{GCC command}

Explanation of flags:

{Explanation of Flags}

Figure 1: The prompt used to generate GCC commands and its result.

used by OSL*, another compiler autotuning approach, to evaluate the performance of the generated
GCC command [13]. The conversion to the OSL framework means that some optimization options,
for example, hardware architecture-specific optimizations such as -march=native, are intentionally
discarded. Discarding these options minimizes the influence of system-specific behavior and thus leads
to more general results [13]. These results are then compared to the performance of the GCC command
using -03 for the same program similarly converted to the OSL framework. The execution time of
the binaries generated by both commands is measured using perf stat’ and the speedup of the LLM
generated GCC command (t; 1 5) against the -03 GCC command (fp3) is calculated using (1).

I
speedup = —2> (1)

tLLm

4. Results

First, we investigate the LLM-generated optimization results on its own, and in the second step, we
compare the results with other state-of-the-art alternatives.

We measured an average speedup of 1.020 when using the LLM-generated GCC command compared to
the default optimization settings of the -03 GCC command over the 30 benchmarks tested. The median
is marginally higher, with a speedup of 1.021 and a standard deviation of 0.046. We provide a histogram
in Figure 2 to further visualize these results.
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Figure 2: Histogram showing the performance speedups achieved by the LLM optimizations compared to -03.

The time needed to generate the GCC commands is, on average, 8.96s. These results show the
potential of an LLM-supported compiler autotuning approach, as it outperforms the default GCC
optimization in 21 out of 30 tested benchmarks while needing a reasonable time.
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We now compare our LLM-based approach with other state-of-the-art compiler autotuning ap-
proaches, more precisely eight other approaches, which are shown in Table 1.

Table 1
List of approaches used for comparison and their references

Approach Reference
OSL [13]
CompTuner [11]
BOCA [10]
TPE [10]
Random lIterative Compilation (RIO) [4]
Genetic Algorithms (GA) [6]
OpenTuner [18]
COBAYN [9]

To allow for a direct comparison with the other approaches, we only visualize 10 of the 30
benchmarks provided by Polybench, as was done by [13, 10, 11]. The ten programs selected are listed
in Table 2. We adapted Table 2 from a table provided by [13]. We compare the speedup of our results in
Table 3 and the time to generate these results in Table 4 with the alternatives. The other results were
taken from a table provided by [13] and extended with our results. We discuss the use of external data
in Section 5.

We will first discuss the time needed to generate the results shown in Table 4. We can split the
results into three categories. OSL provides the first and fastest in the single-digit millisecond range. Our
approach provides the second fastest results in the single-digit second range. The remaining approaches
operate in a range of several thousand seconds. Thus, we can conclude that OSL outperforms all other
approaches in speed by an order of magnitude. However, while outperformed by OSL, our approach is
still an order of magnitude faster than the other state-of-the-art approaches. It allows for a reasonably
fast response for direct user interaction.

Regarding the speedup of the compiled code, we outperform the state of the art for the programs P4
and P8. We can only compare individual results for most alternatives since they usually calculate overall
results using additional programs on top of the benchmark set used here or only use parts of it. BOCA
[10], for example, calculates its overall performance using only 10 of the 30 programs from PolyBench, in
addition to 10 programs from another benchmark, claiming that no significant speedup can be achieved
for the remaining 20 programs. In our case, the average speedup increases from 1.020 to 1.026 when
using only the 10 programs compared to the entire benchmark. The only directly comparable approach
is OSL, which reports an average speedup of 0.994 over the entire benchmark. Our results outperform
these results significantly, averaging a speedup of 1.020.

5. Threats to Validity

This work represents a proof of concept, exploring the potential use of LLMs in compiler autotuning.
We demonstrated that the optimizations generated by LLMs could outperform default optimizations on
average.

Several factors could have influenced the results of this work, but they were not within the scope of
this study. Firstly, we utilized an externally hosted LLM, which could have affected result generation
speed. We anticipate that using a locally hosted model would yield faster results. Secondly, we



Table 2
The list of programs from PolyBench used for the comparison with other approaches

ID | Program | #SLOC | Description

P1 correlation 248 | Correlation computation
P2 | covariance 218 | Covariance computation
P3 | symm 231 | Symmetric matrix-multiply
P4 | 2mm 252 | 2 matrix multiplications

P5 | 3mm 267 | 3 matrix multiplications

P6 | cholesky 212 | Cholesky decomposition
P7 | lu 210 | LU decomposition

P8 | nussinov 569 | DP for sequence alignment
P9 | heat-3d 211 | Heat equation (3D data dom.)
P10 | jacobi-2d 200 | 2-D Jacobi stencil comp.

Table 3
The speedup of the programs in Table 2 compared to -03 as defined in (1). The best speedup is marked
in bold font, while “-” denotes no speedup (...) denotes external data.

Technique | ID | Speedup | ID | Speedup | ID | Speedup | ID | Speedup | ID | Speedup
LLM 1.019 - - 1.109 1.021
OSL 1.000 1.043 - - -

CompTuner 1.077 () 1.080 (...) 1.042 (...) 1.071 (...) 1.041 (...)

BOCA - - 1.075(...) 1.071 (...) 1.046 (...)
TPE P1 - P2 - P3 | 1.046(.) | P4 | 1.072(.) | P5 -
RIO - - 1.042 (...) - -

GA - - - - 1.041 (..

OpenTuner - - - 1.075 (...) -

COBAYN - 1.080 (...) 1.068 (...) 1.079 (...) -
LLM 1.025 1.046 1.057 - 1.050
OSL 1.010 1.016 - 1.109 -

CompTuner 1.013 (.. 1.073 (..) 1.029 (...) 1.025 (...) 1.055 (...)

BOCA 1.014 (.. - 1.030 (...) 1.028 (...) 1.055 (...
TPE P6 - P7 - P8 - P9 | 1.027(.) | P10 -
RIO 1.016 (...) - 1.029 (...) - -

GA 1.013 (...) - - 1.025 (...) -
OpenTuner - 1.075 (...) 1.033 (...) - -
COBAYN 1.064 (...) - - 1.028 (...) -

employed ChatGPT-4o, a general model. We expect a model trained explicitly for this purpose to yield
superior results.

Furthermore, we only calculated the non-iterative approaches and sourced the results for the iterative
approaches externally, recognizing that this may introduce distortions. This step was necessary because
only around half of the approaches made their code publicly available, and the calculation of results
would have taken several days per program per approach. The distortion is mitigated by comparing the
relative speedup of two optimizations tested on the same machine rather than directly comparing the
runtime of the selected benchmarks. Although comparing the time to calculate an optimization directly
can lead to issues, in our case, the time differences are so significant that we consider any distortions
negligible for the comparisons.

6. Future Work

We see future extensions of this work go in three principal directions. The first is increasing the
prediction performance of the used LLM by creating a purpose-trained model dedicated to compiler



Table 4

The time needed to generate the GCC command of the programs in Table 2. The best speedup is marked
in bold font, while “-” denotes no speedup and is thus disregarded (...) denotes external data.

Technique | ID | Time [s] ID | Time [s] ID Time [s] ID | Time [s] ID Time [s]
LLM 7.35 - - 7.78 7.96
OSL 0.0043 0.0039 - - -

CompTuner 3107.00 (...) 4067.00 (...) 2573.00 (...) 3720.00 (...) 2976.00 (...)

BOCA - - 1923.00 (...) 3726.00 (...) 3639.00 (...)
TPE P1 - P2 - P3 | 3775.00(.) | P4 | 3112.00(.) | P5 -
RIO - - 4172.00 (...) - -
GA - - - - 3160.00 (...)

OpenTuner - - - 4691.00 (...) -

COBAYN - 4727.00 (...) 1092.00 (...) 3102.00 (...) -
LLM 11.76 5.64 10.04 - 10.61
OSL 0.0039 0.0048 - 0.0040 -

CompTuner 4726.00 (...) 5549.00 (...) 3661.00 (...) 2976.00 (...) 2192.00 (...)

BOCA 4971.00 (...) - 4082.00 (...) 3420.00 (...) 3026.00 (...)
TPE P6 - P7 - P8 - P9 | 2637.00(..) | P10 -
RIO 3018.00 (...) - 3264.00 (...) - -
GA 3862.00 (...) - - 3684.00 (...) -
OpenTuner - 6792.00 (...) 4970.00 (...) - -
COBAYN 3109.00 (...) - - 4116.00 (...) -

optimization. While cost-intensive in data and processing power, we expect such an endeavor to show
significantly improved results, allowing a fast solution while still providing high-quality results. How-
ever, extending this approach to other models such as Gemini 2.5 Pro®, Claude 4.0 Opus’, or Codestral® is
likely more cost-effective than training a completely new model and is very likely to yield improvements.

Another research direction would be to integrate this with the fast-emerging Al coding tools like
GitHub’s Copilot’, JetBrains’ Al Assistant'’, or CodeCompanion'!. These tools are directly embedded
into the Integrated Development Environment (IDE) and are already fully aware of the complete code
base. Thus, they would be in a perfect environment to predict compiler optimizations. Additionally,
this leads to the possible applicability of our approach to more extensive projects, for which most of the
state-of-the-art is not suited.

Lastly, this work could be extended by including compiler optimization experts, both for creating
datasets and prompts that could be used to enhance the approach directly, or to compare their rec-
ommended optimization options with the results produced by this and other compiler autotuning
approaches.

7. Conclusion

This paper shows the applicability of using LLMs in compiler autotuning. The compiler optimizations
generated using ChatGPT-4o for the GCC compiler improved the tested benchmark’s runtime on average
by a factor of 1.020 while taking an average of 8.96s to generate the optimizations. We outperform the
state-of-the-art approaches in 2 out of 10 benchmarks while performing an order of magnitude faster.
These results suggest that this approach is scalable also for large projects, a significant shortcoming of
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the existing iterative state-of-the-art approaches.
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