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Abstract

We present a lightweight compiler autotuning approach that combines concepts from configuration space learning
with recommender techniques. Our approach uses code embeddings generated by different large language models
for data representation and calculation of similarity scores. The best-performing code embedding approach
shows, on average, 4.11% faster binaries than the best-performing code metric-based alternative.
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1. Introduction

Compilers are powerful and highly configurable tools. The C compiler GCC! has about 200 optimization
options that can be activated or deactivated independently. Each option may positively or negatively
impact different properties, such as the generated binary’s runtime, size, or energy consumption. If
these options are correctly utilized, the generated program binaries can be faster, smaller, or more
energy-efficient without further investing resources into code refinement. However, choosing the
correct options requires expertise in compiler optimization and the program to be optimized. Compiler
autotuning addresses this issue by recommending optimization options for a program without any expert
involvement. Most approaches for compiler autotuning are computationally expensive and take days to
continuously refine the recommended options [1, 2, 3, 4, 5, 6]. Alternative lightweight approaches for
compiler autotuning proposed by Burgstaller et al. [7] and Garber et al. [8], can reduce the time needed
for recommendation to milliseconds allowing an interactive user experience. This lightweight approach
is called Optimisation Space Learning (OSL) [7] and relies on training data collected in advance that
is then used for recommendation utilizing nearest-neighbor-based collaborative filtering [9] based
on extracted code metrics. The major contributions of this paper are as follows: (1) We extend OSL
by incorporating and comparing different code embeddings. (2) We show that the new embeddings
significantly outperform the standard compiler optimization options in terms of the runtime performance
of the generated program.

The remainder of this paper is structured as follows. Related work is presented in Section 2. In
Section 3, our recommendation approach is discussed in detail. We discuss our experimental setup
and the evaluation in Section 4, while discussing possible future extensions in Section 5. The paper is
concluded with Section 6.

2. Related Work

Compiler autotuning is the automated selection of advantageous compiler optimization options for a
program. It can be divided into the phase selection problem and the phase ordering problem [10]. Phase
ordering tries to find an optimal sequence to apply the options, while phase selection, the focus of this
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work, tries to identify which optimizations should be applied. The optimality of options can be defined
with different properties, the most common of which is runtime. However, space, energy, or similar
measurable properties could also be employed.

The state-of-the-art in compiler autotuning is primarily dominated by iterative approaches [1, 2, 3,
4,5, 6]. Bodin et al. [11] propose one of the first compiler autotuning approaches. They generate an
initial set of optimization options to be activated, compile the program using these options, measure its
performance, and refine the configuration in a loop until achieving satisfactory results. Most newer
approaches build on this concept, like COBAYN [12], which uses Bayesian Networks to narrow the
search space. The current state-of-the-art method, BOCA [13], employs Bayesian Optimization to
identify key optimizations and streamline the search process. CompTuner [14] builds a prediction model
for the runtime of different optimization options and uses a particle swarm optimization algorithm [15]
to improve the search performance. Cole [4] can perform multi-target optimization by iteratively
creating a Pareto front.

Performance is a key challenge for the computationally intensive, iterative, state-of-the-art ap-
proaches, as they require numerous compilations. As project sizes grow, this becomes a significant
issue. For instance, Cole must construct a Pareto front, which takes 50 days on a single machine [4]. To
address these limitations, newer lightweight approaches like Optimization Space Learning (OSL) [7]
adopt alternative strategies to provide faster optimization recommendations, trading off a small degree
of recommendation quality for improved responsiveness.

OSL achieves this by combining configuration space learning [16, 17] techniques like the t-wise
feature coverage heuristic [16, 17, 18] with collaborative filtering [9]. In this context, collaborative
filtering relies on code metrics (e.g., McCabe, Halstead, or counts of keywords) extracted from the
optimized programs. This paper presents an alternative collaborative filtering approach based on code
embeddings [19].

3. Recommendation Approach

Optimization Space Learning (OSL) is a compiler autotuning approach introduced initially by Burgstaller
etal. [7]. The approach combines concepts from configuration space learning [16, 17] for data generation
and collaborative filtering [9] for configuration recommendation. The key contribution of OSL is its
recommendation speed, which is achieved after a one-time collection of training data within tens of
milliseconds. Meanwhile, the iterative state-of-the-art compiler autotuning approaches [1, 2, 3, 4, 5, 6],
report computation times of several days. These differences are due to the iterative approaches requiring
a continuous refinement process of recommendation result testing, adaptation, and restarting.

3.1. Data Collection

OSL needs to collect initial training data to provide recommendations for a new hardware environment.
Two decisions have to be made to generate the training data. The first is which programs to use for
training. The second is the heuristic used for generating the sample configurations.

The training approach is based on configuration space learning [16, 20, 17], motivated by the infeasi-
bility of exhaustively exploring configuration spaces due to their exponential size [21]. For example,
GCC includes around 200 options, yielding a configuration space of roughly 22°° configurations. Even
assuming 1ms per compilation and measurement, full exploration would take 5 * 10*° years. Therefore,
following Pereira et al. [16], collecting a small, representative configuration subset is necessary.

In order to collect such a small representative set of configurations, we use sampling approaches
discussed by Pereira et al. [16] and Garber et al. [17]. Burgstaller et al. [7] considered initially two
sampling approaches: Uniform Random Sampling (URS) and t-wise Feature Coverage Heuristics (FCH).
URS is well-established [16, 17, 22, 23, 24], but has drawbacks with scalability. The main drawback of
FCH, on the other hand, is its expensive computation, which is mitigated by the unconstrained nature
of the problem (options are independent of each other) and the fact that this needs to be performed
only once. Therefore, OSL ultimately relies on the t-wise FCH [16, 17] to generate the samples for the



Table 1
Example user-based collaborative filtering recommendation setting in compiler autotunning. The values show
programs’ runtime [s] when compiled with the referenced compiler configuration c;.

Programs ¢ c 3 Cy Cs Co
2 1.21 1.70 1.27 1.19 1.76 1.32
P2 25.01 18.69 16.32 17.06 1645 16.47
P3 0.50 0.56 0.48 0.54 0.74 0.73
D4 ? ? ? ? ? ?

training data. The samples generated by t-wise FCH are guaranteed to contain all possible tuples of
size t that can be present in the system at least once in the generated configurations. Burgstaller et
al. [7] report FCH with t = 3 to perform best for this task, which is confirmed by Garber et al. [8] and
our work presented in this paper. Next, we need a set of programs to synthesize the needed data. We
use the same benchmark used in the original work by Burgstaller et al. [7] and in the improved OSL by
Garber et al. [8]. The PolyBench benchmarks [25] provide 30 programs written in C and are widely
used in related literature [7, 13, 14, 8].

We construct the training data by compiling an executable for each configuration provided by
the sampling approach and each program in the benchmark. The performance properties of these
executables are then measured using perf-stat.”

OSL extracts at this point a vector of 111 source code metrics, such as McCabe’s Cyclomatic Com-
plexity [26], Halstead Complexity [27], or simple counts like the number of times a particular keyword
occurs, using the CQMetrics tool by [28]. OSL uses the first 66 of those source code metrics to calculate
program similarities during the recommendation process since the latter metrics primarily are related
to coding style, i.e., indentation space counts. A complete list of the metrics extracted is provided in the
CQMetrics documentation.> We compare the performance of this code metric-based similarity with our
approach of using code embeddings-based similarity. A description of the code embeddings used is
provided in Section 4.

3.2. Recommendation

Essentially, we apply nearest neighbor-based collaborative filtering [9] on synthesized data [29, 22],
which has been obtained using heuristics known from configuration space learning [16, 17].

Our variant of user-based collaborative filtering differs slightly from the standard setting (see Table 1).
Here, programs act as users, configurations as items, and runtime serves as the rating (a lower runtime
is analogous to a higher rating). Unlike typical scenarios, we have complete performance data for all
program-configuration pairs generated by the data collection process, except for the target program.
Thus, we require an external metric to estimate program similarity. The version of OSL used by
Burgstaller et al. [7] and Garber et al. [8] computes similarity using source code metrics and the
Euclidean distance [30, 7] (see Formula 1 and Formula 2). In this context, x and y are n-dimensional
vectors with components x; to x, and y; to y,, representing programs x and y. In OSL, these vectors
consist of n = 66 code metrics, while in our approach, they are the extracted fixed-size (n) embedding
vectors.

dis(x,y) = Y ly; — x* (1)
i=1
. _ 1
sim(x, y) = 1+ dis(x, y) @

Table 2 shows a simplified example of the code metric vectors used, and Table 3 shows an example of
how the distances and similarities, as defined in Formula 1 and Formula 2 respectively, would look like

*https://perf.wikikernel.org/index.php/Main_Page
*https://github.com/dspinellis/cqmetrics/blob/master/metrics.md
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Table 2
Simplified example of code metric vector, limited to McCabe [26], Halstead [27], and occurrences of const.

Program Halstead McCabe Keywordcount: const

) 110 10 4
P, 111 7 6
Ps 108 9 4
Py 104 13 2

Table 3
Example distance and similarity calculations based on metrics shown in Table 2.

x y dis(x,y) sim(x,y) sim(x,y)[%]

P 14 0.067 6.7 %
) 5 0.167 16.7 %
PP 49 0.020 2.0%
Table 4
Code embeddings tested for recommendation.
Name Description
BGE A BAAI general embedding model that trans-
forms any given English text into a compact
vector
RoBERTa A DistilRoBERTa-base model trained for code
search

Table 5
Example aggregation of three well-performing compiler parameter configurations using a parameter-wise
majority voting for final recommendation.

‘opl‘1 opt, opt; opty opts

conf 1 1 0 1 0
conf, 0 1 0 0 1
confs 1 0 1 0 0
recommendation ‘ 1 1 0 0 0

for these values. In the example, the highest similarity is 16.7 % between p; and p3. Thus, ps is the most
similar program to p;. We propose the use of code embeddings extracted from the programs instead. To
this end, we test the performance of two embeddings, shown in Table 4. After testing several common
ways of calculating the similarities of two embedding vectors, such as the cosine similarity, we use the
same Euclidian distance-based approach described earlier.

The remaining process is identical to the typical user-based collaborative filtering procedure. The
best-rated (fastest runtime) configuration of the most similar program recommends a configuration for
Pa-

The final recommendation step aggregates the results. Since the FCH-collected configurations cover
only a small subset of all compiler settings, we generate multiple recommendations from the nearest
neighbors and combine them via majority vote (Table 5). Following Burgstaller et al. [7], we set the
number of top configurations and nearest neighbors to 5, a choice we confirmed and applied to all
experiments. Thus, the final recommendation aggregates the 5 best configurations from the 5 nearest
neighbors.



Table 6
The runtime performance (RT) of recommended optimization options and their speedup (SU) compared
to O3. The runtime is given in seconds, and the best performers for each program are bold.

Program 03 OSL OSL N&E BGE RoBERTa

RT| RT  sU RT  sSU RT  SU| RT sU
correlation 1.841 1.781 1.034 1.868  0.985 1.804  1.021 1.840  1.001
covariance 1.817 2471 0.735 2502 0.726 1.903  0.955 1.857 0.979
2mm 2.163 2181  0.992 3.149  0.687 2.187  0.989 2.099 1.031
3mm 3.795 3.684 1.030 3.885  0.977 3.664 1.036 3.783  1.003
atax 0.016 0.014 1.137 0.013 1.177 0.015 1.074 0.014  1.161
bicg 0.017 0.017 0.968 0.020  0.847 0.019 0.894 0.018  0.929
doitgen 0.521 0.503 1.034 0.505 1.031 0.498 1.045 0.499 1.044
mvt 0.018 0.018 1.027 0.020 0.928 0.019  0.972 0.019  0.965
gemm 1.153 1.149  1.003 0.644 1.790 1.158  0.995 0.554 2.080
gemver 0.026 0.024  1.087 0.026  0.988 0.024  1.063 0.023 1.129
gesummyv 0.012 0.012 0.985 0.013  0.899 0.014  0.837 0.017  0.722
symm 1.625 1.619  1.003 1.615  1.006 1.614 1.007 1.646  0.987
syr2k 1.789 1.776  1.007 1.742 1.027 1.864  0.960 1.739 1.029
syrk 0.613 0.531  1.154 0.453  1.354 0.489  1.253 0.418 1.466
trmm 1.336 0.721  1.853 0.724  1.844 0.727  1.839 0.709 1.884
cholesky 12.856 | 12.015 1.070 | 12.727 1.010 | 12.495 1.029 | 10.741 1.197
durbin 0.004 0.003 1.288 0.003  1.260 0.002  1.898 0.002 1.952
gramschmidt 1.950 1.958  0.996 2.022  0.965 1.893 1.030 1923 1.014
lu 16.486 | 13.676 1.205 | 14.898 1.107 | 14915 1.105 | 14963 1.102
ludemp 13993 | 12799 1.093 | 16.469 0.850 | 14.546 0.962 | 14.384 0.973
trisolv 0.007 0.009 0.784 0.006 1.134 0.006 1.204 0.007  1.120
deriche 0.149 0.140  1.066 0.146  1.023 0.139 1.073 0.143  1.042
floyd-warshall | 17.773 | 17.656  1.007 | 17.790  0.999 | 13.671 1.300 | 14.022  1.267
nussinov 3.418 2.751 1.242 3129  1.093 2,665 1.283 2.721 1.256
adi 9.659 9.347 1.033 9.876  0.978 9.709  0.995 9.783  0.987
fdtd-2d 1.908 1.702 1.121 1.671  1.142 1.697 1.125 1.667 1.145
heat-3d 3.479 2172 1.602 1.949 1.784 2.096  1.660 2.064 1.685
jacobi-1d 0.002 0.001  1.424 0.001  1.515 0.002  1.169 0.002 1.138
jacobi-2d 2.143 1.445 1.483 1.487  1.441 1.479  1.449 1.487  1.441
seidel-2d 20.167 | 15.467 1.304 | 11.566 1.744 | 20.075 1.005 | 20.084 1.004

Table 7

We present different aggregations (mean, median, TOP 1, and TOP 2) of the results shown in Table 6.

Function | OSL  OSLN&E BGE RoBERTa

MEAN 1.126 1.144 1.141 1.191
MEDIAN | 1.050 1.025 1.040 1.073
TOP 1 8/30 4/30 8/30 10/30
TOP 2 16/30 11/30 14/30 19/30

4. Evaluation

In this section, we evaluate the use of code embeddings to recommend compiler optimization options
and whether they outperform code metric-based approaches like OSL [7] or its enhanced version of OSL
Normalized and Equalized (OSL N&E) [8]. Code embeddings represent code as fixed-sized numerical
vectors containing semantic and structural information [19]. They are usually employed by machine
learning or large language models when working with code. We test two embeddings BGE *, a general

*https://huggingface.co/BAAIl/bge-base-en-v1.5
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text embedding, and RoBERTa °, a specialized code embedding (described in Table 4).

4.1. Experimental Setup

Our evaluation uses GCC version 14.2.1 on a Lenovo ThinkPad P53s machine with an Intel i7-8665U
processor and 32GB memory running Linux 6.1.119-1-MANJARO. We use the PolyBench/C Bench-
mark [25] for training and testing, which contains 30 programs written in C and is commonly used in
compiler autotuning evaluation settings [7, 13, 14, 8]. Due to the relatively small sample size, we apply
leave-one-out cross-validation [31]. Thus, each benchmark program in PolyBench was tested using a
model trained with the remaining 29. In order to visualize the performance more efficiently, we define
a speedup factor compared to GCC’s set of default optimizations O3 in Equation 3.

I
speedup = 03 (3)
tREC
tos and tgpe represent the program’s runtime compiled using O3 and the recommended parameter
settings respectively. A speedup of 1.1 indicates a 1.1 times faster runtime.

4.2. Results

Table 6 presents the performance of the tested approaches, with aggregated results in Table 7. Both
code embeddings outperformed the baseline OSL method, which achieved an average speedup of 1.126.
BGE reached 1.141, slightly below the enhanced OSL N&E at 1.144. RoBERTa achieved the highest
average speedup of 1.191. Regarding frequency as a top performer, RoBERTa leads (Top 1 in 10/30 cases,
Top 2 in 19/30), followed by BGE narrowly outperforming OSL, while OSL N&E comes last. These
results indicate that embeddings are effective for recommending compiler optimizations, especially
when using models like RoBERTa, which are specifically trained on code.

5. Future Work

The first results of using code embeddings in the context of lightweight compiler autotuning show
promise. However, in future work, we would like to expand the number of evaluated code embeddings,
especially further towards models specialized in coding or code manipulations, such as CodeBERT or
GraphCodeBERT, potentially improving our results further.

6. Conclusion

In summary, we evaluated using code embeddings to recommend compiler optimizations. Our results
show that embeddings perform comparably to code metric-based approaches and surpass them in the
case of embeddings from models trained on code. The best-performing method leverages embeddings
from a RoBERTa model trained for code search, achieving an average runtime speedup factor of 1.191,
4.11% faster than the enhanced code metrics baseline. Major tasks of future work include the extension
of the dataset as well as the testing of additional embeddings.
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