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Abstract 
A hybrid model for dynamic cyber risk assessment is proposed that integrates a deep neural network and 
the Lotka–Volterra model. The model simultaneously classifies network traffic (normal/anomaly) and 
predicts coefficients (α, β, γ, ϕ) that determine the dynamics of the attack-defence interaction. Trained and 
tested on NSL-KDD data, the model achieved a classification accuracy of 0.8006, AUC of 0.9016, and MSE 
of 0.0027 for coefficient prediction. Statistically significant differences in the predicted coefficients for 
normal and anomalous sessions were found, indicating that the model successfully captures underlying 
characteristics that differentiate these two classes beyond simple pattern matching. Simulation of the 
Lotka–Volterra dynamics with predicted parameters demonstrates different patterns for different traffic 
classes, indicating the approach's potential for deeper risk assessment compared to traditional intrusion 
detection methods. This ability to forecast interaction dynamics provides a forward-looking view of 
potential threats, a significant step beyond simple, reactive threat identification. 
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1. Introduction 
Modern cyber threats’ growing complexity and dynamic nature necessitate transitioning from 
traditional, static risk assessment methods to more adaptive and predictive approaches. Classical 
Intrusion Detection Systems (IDS) and conventional risk assessment methodologies are often limited 
to real-time threat identification. However, they frequently fail to account for the long-term 
interaction between attackers and defence systems, which severely limits their ability to predict the 
evolution of an attack and its potential consequences. In an era where cyberattacks are increasingly 
automated and operate at machine speed, purely reactive defence mechanisms are fundamentally 
inadequate. 

Applying dynamic systems models has emerged as a promising avenue to address this critical 
gap, particularly the Lotka–Volterra model [6]. This model, originally formulated to describe 
predator-prey interactions, is a powerful analogy for modelling cyberspace's adversarial “attack-
defence” relationship [6]. However, a significant challenge lies in estimating the parameters of such 
dynamic models from complex, high-dimensional network data—a task for which modern machine 
learning approaches are exceptionally well-suited. 
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This research presents an innovative hybrid neural model to integrate two key tasks into a 
cohesive framework. First, it performs robust network traffic classification for intrusion detection, 
leveraging the power of modern deep learning approaches that have proven effective in traffic 
analysis [1; 2; 3]. Second, and what constitutes its key feature, the model simultaneously predicts the 
parameters for the dynamic Lotka–Volterra model. This dual-purpose approach allows the system 
to identify an anomaly and quantitatively assess the dynamic potential of the associated risk. This 
synthesis of a predictive mathematical model with a powerful deep learning engine for parameter 
estimation is the central contribution of our work. 

The primary goal of this work is to develop and thoroughly validate such a model, demonstrating 
its ability to generate qualitatively different dynamic patterns for normal and anomalous network 
activity. Thus, we aim to show that the predicted parameters carry essential, actionable information 
for a deeper, more predictive assessment of cyber risks, moving significantly beyond the capabilities 
of traditional detection methods. This paper details the model's architecture and training 
methodology and thoroughly evaluates its performance, demonstrating its prognostic capabilities 
through simulation. 

2. Materials and methods 
The empirical foundation of this study is the NSL-KDD dataset [5], which is widely recognised as a 
standard benchmark for evaluating the performance of intrusion detection systems [4]. A 
comprehensive series of preprocessing steps was meticulously applied to prepare the data for 
effective processing by the neural network model. 

The byte_ratio feature was created from existing byte counts to provide more relational context. 
Furthermore, categorical features, specifically protocol_type and flag, which are non-numeric, were 
converted into a numerical format suitable for the neural network using one-hot encoding. As a final 
preprocessing step, all numerical features were standardised using Z-score normalisation. This 
ensured that all features had a mean of 0 and a standard deviation of 1, which is critical for allowing 
all features to contribute equally to the model's learning and helping to accelerate the convergence 
of the training process. 

The theoretical core of our approach is an adapted Lotka–Volterra model [6], which 
mathematically describes the dynamic interaction between the level of attack, A(t), and the level of 
protection, Z(t) . The system is formally defined by the following pair of differential equations: 

dA

dt
 = αA - βA Z 

𝑑𝑍

𝑑𝑡
= γ𝐴𝑍 − ϕ𝑍 

Where A(t) represents the aggregate level of attack activity, and Z(t) represents the deployed level 
of defensive measures at a given time t. The terms in these equations capture the essential feedback 
loops of the adversarial relationship: 

• Attack Dynamics (
dA

dt
). Two main forces govern the change in the attack level. The term αA 

represents the intrinsic growth of the attack, such as the natural rate of malware propagation 
or scanning for new victims, assuming no defensive opposition. The term - βA Z means the 
reduction of the attack level due to successful neutralisation by the defence system; it is 
proportional to the frequency of interactions between attacks and defences. 

• Defence Dynamics (
𝑑𝑍

𝑑𝑡
). Opposing factors similarly drive the change in the defence level. The 

term γ𝐴𝑍 models the reactive growth and adaptation of the defence system in response to 



detected attacks, such as deploying new firewall rules or patching vulnerabilities. The term 
−ϕ𝑍 represents the "cost" or natural decay of the defence effort over time, which can be 
interpreted as maintenance costs, resource depreciation, or the obsolescence of security 
measures that are no longer effective. 

Within this framework, the coefficients are interpreted as follows: α represents the intrinsic 
growth rate of the attack; β signifies the effectiveness of the defense in neutralising the attack; γ 
corresponds to the rate at which the defense adapts or grows in response to an attack; and ϕ denotes 
the cost or natural decay rate of the defense system over time. 

A critical step in our methodology was operationalising these abstract coefficients to create 
trainable targets for the neural network. These coefficients were empirically calculated based on 
specific, measurable features from the NSL-KDD dataset to generate ground-truth values for training. 
For instance, metrics such as serror_rate, rerror_rate, and anomaly frequencies across different 
services were used to derive proxy values for the Lotka-Volterra coefficients. This process allowed 
us to obtain concrete target values for the neural network's regression task. 

We designed a hybrid, multi-task neural network to simultaneously perform two distinct but 
related tasks: binary classification of network traffic (normal/anomaly) and regression to predict the 
four coefficients (α, β, γ, ϕ) of the Lotka–Volterra model. The architecture's input layer accepts the 
preprocessed feature vectors and adds a layer of Gaussian noise, which acts as regularisation to 
enhance model robustness and prevent overfitting. These inputs pass through two shared, fully 
connected (dense) layers with 256 and 128 neurons, respectively. These layers utilise the Rectified 
Linear Unit (ReLU) activation function to introduce non-linearity. Batch Normalisation follows each 
step to stabilise the training process, and a Dropout layer is used for further regularisation. 

Following these shared layers, the architecture splits into two separate output heads, one for each 
task. The classification head consists of a dense layer with a Sigmoid activation function, which 
produces a probability score indicating whether the input is an anomaly. The loss for this head is 
calculated using a binary cross-entropy function, which is standard for binary classification tasks. 
The regression head employs a dense layer with a linear activation function to output four 
continuous values corresponding to the Lotka-Volterra coefficients. The loss for this head is 
measured by the mean squared error (MSE) function, which quantifies the average squared difference 
between the predicted and actual coefficients. The overall loss for the model is a weighted sum of 
these two individual losses, with weights of 1.0 for classification and 0.2 for regression, balancing 
the two tasks during training. Before being used in simulations, the predicted coefficients are clipped 
to the range [0, 1] to ensure stability. The model was trained using the AdamW optimiser, a robust 
choice that follows standard deep learning practices [2]. 

The training process was carefully managed using several control mechanisms to ensure optimal 
performance and prevent overfitting. To retain the best-performing version of the model, its weights 
were saved only when the Area Under the Curve (AUC) metric on a separate validation set showed 
improvement. Additionally, the training employed an adaptive learning rate scheduler, which 
automatically reduced the learning rate whenever the validation performance plateaued, allowing 
for finer adjustments and more stable convergence. Finally, an early stopping mechanism was 
implemented to halt the training process automatically if the validation AUC did not improve for a 
set number of consecutive epochs, thereby preventing the model from overfitting to the training data 
and enhancing its generalisation capabilities. 

3. Assessment of hybrid model results 
The model's training process was monitored to ensure stability and prevent overfitting. The learning 
curves, depicted in Figure 1, provide a detailed visualisation of the model's performance on both the 



training and validation sets across epochs for three key metrics: accuracy, Area Under the Curve 
(AUC), and the Mean Squared Error (MSE) of the Lotka-Volterra coefficients. As shown in the figure, 
the performance metrics on the validation set consistently and closely track those on the training 
set. For instance, both sets' accuracy and AUC curves rise in tandem and stabilise, while the MSE 
curves decrease sharply and remain low. This parallel progression is strong evidence of stable 
convergence and indicates that the model did not suffer from significant overfitting.   

 
Figure 1: Model learning curves 

The learning curves in Figure 1 show that the model's classification metrics (Accuracy, AUC) 
steadily improved. At the same time, the regression error (LV MSE) rapidly decreased to near-zero 
for both training and validation sets. Crucially, the validation curves closely track the training curves 
across all plots. This demonstrates stable convergence and indicates that the model generalises well 
without suffering from significant overfitting. 

Upon completion of training, the model's final performance was evaluated on the unseen NSL-
KDD test dataset (Table 1). 

Table 1  
Model performance indicators on the NSL-KDD test set  

Metrics Value 

Classification accuracy 0.8006 
Classification AUC 0.9016 
MSE for the coefficients of the Lotka–Volterra model 0.0027 

The model achieved a classification accuracy of 0.8006, demonstrating a strong capability to 
identify traffic instances correctly. The Area Under the Curve (AUC) metric reached 0.9016. This 
high AUC value is significant as it indicates excellent discrimination between the standard and 
anomalous classes across all classification thresholds, confirming the model's robustness as a 
classifier. The model demonstrated high fidelity in predicting the dynamic parameters for the 
regression task, which is central to our hybrid approach. This was evidenced by a very low Mean 
Squared Error (MSE) of 0.0027, validating the model's ability to learn and predict the Lotka-Volterra 
coefficients accurately. 

A core objective of this study was to determine if the predicted Lotka-Volterra coefficients (α, β, 
γ, ϕ) capture meaningful, underlying differences between regular and malicious network activity 
beyond simple classification. To investigate this, an analysis was conducted on the model's 
predictions for 13,592 normal and 8,952 abnormal sessions from the test set. The descriptive statistics, 
presented in Table 2, revealed statistically significant differences in the coefficient distributions 
between the two classes. 

 



Table 2  
Descriptive statistics of predicted coefficients 

Coefficient Class Median Std.Dev. Min Max 

𝛼 
Normal 0.0603 0.0325 0.0200 1.0000 
Anomaly 0.0764 0.0256 0.0276 1.0000 

𝛽 
Normal 0.2243 0.0203 0.1730 1.0000 
Anomaly 0.2514 0.0160 0.1941 0.7318 

𝛾 
Normal 0.7386 0.0224 0.2732 0.7533 
Anomaly 0.7348 0.0091 0.5205 0.7532 

𝜙 
Normal 0.8434 0.0225 0.8127 1.0000 
Anomaly 0.8563 0.0159 0.8196 1.0000 

Anomalous traffic is characterised by a higher median value for coefficient α (0.0764 vs. 0.0603 
for normal), representing the intrinsic potential for attack growth. It also shows a higher median 
value for β (0.2514 vs. 0.2243), signifying a more intense interaction with the defence system. These 
statistical differences are visualised in the box plots shown in Figure 2. In the figure, the distributions 
for the anomaly class are visibly shifted towards higher values for coefficients α and β compared to 
the regular class, providing strong graphical evidence for the statistical findings. Furthermore, 
histograms of the coefficients confirm that the very shapes of the distributions differ between the 
two classes. For instance, the distribution of the α coefficient for the anomalous class is skewed to 
the right, indicating a prevalence of higher values that correspond to greater attack potential. 

Conversely, the coefficients γ (defence adaptation rate) and ϕ (defence cost/decay) show less 
pronounced, though still informative, differences. The median γ values are nearly identical for both 
classes, suggesting that the rate of defensive adaptation captured by the model is not a primary 
distinguishing feature in this dataset. However, the slightly higher median ϕ for anomalous traffic 
(0.8563 vs. 0.8434) is noteworthy. This could imply that interactions classified as anomalous are 
associated with a higher 'cost of defence' or a faster rate of obsolescence for the responding security 
measures. 

Taken together, these results demonstrate that the model has successfully learned to assign a 
distinct 'dynamic signature'—a unique vector of (α, β, γ, ϕ) coefficients—to different classes of 
network traffic. The systematic variations in these signatures, particularly in the attack-related 
parameters, provide strong evidence that the model captures the underlying behavioural 
characteristics of network sessions, moving beyond superficial pattern matching to a more profound, 
dynamic risk assessment. 

To validate the practical utility of these predicted coefficients, we simulated the Lotka-Volterra 
dynamics using parameter sets generated by the model for both regular and anomalous sessions. The 
simulations revealed distinctly different behavioural patterns. As shown in Figure 3, parameters 
predicted for regular traffic tend to generate stable, controlled trajectories where the "attack" and 
"defence" levels remain in a bounded, cyclical balance. In stark contrast, the simulations for 
parameters typical of anomalous traffic, shown in Figure 4, more often lead to unstable scenarios 
characterised by a rapidly increasing "attacks," indicating a system state escalating out of control. 

This crucial result confirms that the predicted coefficients carry meaningful information about 
network activity’s potential risk and dynamic behaviour. By translating raw network data into 
dynamic parameters, the model offers a much deeper insight than traditional intrusion detection 
methods can provide, enabling a forward-looking assessment of threat evolution. 

 



 
Figure 2: Box plots of predicted 

 

Figure 3: Example of Lotka–Volterra dynamics simulation (normal) 

It is essential to acknowledge the study's limitations, which also highlight clear directions for 
future research. The age of the NSL-KDD dataset is a primary constraint, as it may not fully represent 
the complexity and signature of modern, sophisticated cyber threats [4; 5]. The Lotka-Volterra model 
itself, while a powerful analogy, is a simplification of the highly complex, multi-faceted nature of 
real-world attack-defence interactions, and the specific method for operationalising its coefficients 
could be further refined [6]. Additionally, while the neural network performs well, the 
interpretability of its internal decision-making process requires further investigation, which is a 
common challenge in the field of deep learning [2]. These limitations are not seen as detriments but 
valuable starting points for improving and extending the proposed approach in future work. 



 
Figure 4: Example of simulation of Lotka–Volterra dynamics (anomaly) 

Figure 4 visualises the dynamics for a typical anomalous session. It illustrates an unstable 
trajectory where the attack level, A(t), shows escalating oscillations, signifying a growing and 
uncontained threat. This simulation confirms that the model correctly associates anomalous traffic 
with high-risk, unstable system behaviours, thus validating its ability to forecast the potential 
evolution of a threat. 

4. Conclusion 
This paper successfully developed and validated a novel hybrid neural model that integrates deep 
learning for network traffic classification with predicting parameters for the Lotka-Volterra dynamic 
model. We demonstrated that the model accurately distinguishes between normal and anomalous 
traffic and, more importantly, quantifies the underlying dynamics of the "attack-defence" interaction 
through the predicted coefficients.  

The core contribution of this work lies in its departure from traditional, static intrusion detection. 
The analysis of the predicted coefficients and the subsequent system dynamics simulation confirmed 
that the model effectively captures the distinct nature of normal and anomalous activity.  By 
predicting dynamic parameters, our approach allows for an assessment that is not limited to 
identifying a threat's presence but extends to forecasting its potential development.  This provides a 
richer, more nuanced understanding of cyber risks than conventional intrusion detection methods, 
moving the paradigm from simple detection to prognostic risk assessment.  

The practical significance of this research lies in its potential to form the basis for more advanced 
and informative decision support systems in cybersecurity.  However, further development is 
essential for its practical application. Future work should focus on several key areas: validating the 
model on larger, more contemporary datasets to ensure its relevance against modern threats; 
researching alternative or more complex dynamic models beyond the classical Lotka-Volterra 
framework; enhancing the interpretability of the neural network's predictions; and working towards 
the integration of this approach into real-time monitoring systems.  In conclusion, this study 
represents a significant step towards creating more intelligent and forward-looking cybersecurity 
systems that can not only react to threats but also anticipate their evolution. 
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