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Abstract

A hybrid model for dynamic cyber risk assessment is proposed that integrates a deep neural network and
the Lotka-Volterra model. The model simultaneously classifies network traffic (normal/anomaly) and
predicts coefficients (o, f, y, ¢) that determine the dynamics of the attack-defence interaction. Trained and
tested on NSL-KDD data, the model achieved a classification accuracy of 0.8006, AUC of 0.9016, and MSE
of 0.0027 for coefficient prediction. Statistically significant differences in the predicted coefficients for
normal and anomalous sessions were found, indicating that the model successfully captures underlying
characteristics that differentiate these two classes beyond simple pattern matching. Simulation of the
Lotka-Volterra dynamics with predicted parameters demonstrates different patterns for different traffic
classes, indicating the approach's potential for deeper risk assessment compared to traditional intrusion
detection methods. This ability to forecast interaction dynamics provides a forward-looking view of
potential threats, a significant step beyond simple, reactive threat identification.
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1. Introduction

Modern cyber threats’ growing complexity and dynamic nature necessitate transitioning from
traditional, static risk assessment methods to more adaptive and predictive approaches. Classical
Intrusion Detection Systems (IDS) and conventional risk assessment methodologies are often limited
to real-time threat identification. However, they frequently fail to account for the long-term
interaction between attackers and defence systems, which severely limits their ability to predict the
evolution of an attack and its potential consequences. In an era where cyberattacks are increasingly
automated and operate at machine speed, purely reactive defence mechanisms are fundamentally
inadequate.

Applying dynamic systems models has emerged as a promising avenue to address this critical
gap, particularly the Lotka-Volterra model [6]. This model, originally formulated to describe
predator-prey interactions, is a powerful analogy for modelling cyberspace's adversarial “attack-
defence” relationship [6]. However, a significant challenge lies in estimating the parameters of such
dynamic models from complex, high-dimensional network data—a task for which modern machine
learning approaches are exceptionally well-suited.
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This research presents an innovative hybrid neural model to integrate two key tasks into a
cohesive framework. First, it performs robust network traffic classification for intrusion detection,
leveraging the power of modern deep learning approaches that have proven effective in traffic
analysis [1; 2; 3]. Second, and what constitutes its key feature, the model simultaneously predicts the
parameters for the dynamic Lotka-Volterra model. This dual-purpose approach allows the system
to identify an anomaly and quantitatively assess the dynamic potential of the associated risk. This
synthesis of a predictive mathematical model with a powerful deep learning engine for parameter
estimation is the central contribution of our work.

The primary goal of this work is to develop and thoroughly validate such a model, demonstrating
its ability to generate qualitatively different dynamic patterns for normal and anomalous network
activity. Thus, we aim to show that the predicted parameters carry essential, actionable information
for a deeper, more predictive assessment of cyber risks, moving significantly beyond the capabilities
of traditional detection methods. This paper details the model's architecture and training
methodology and thoroughly evaluates its performance, demonstrating its prognostic capabilities
through simulation.

2. Materials and methods

The empirical foundation of this study is the NSL-KDD dataset [5], which is widely recognised as a
standard benchmark for evaluating the performance of intrusion detection systems [4]. A
comprehensive series of preprocessing steps was meticulously applied to prepare the data for
effective processing by the neural network model.

The byte_ratio feature was created from existing byte counts to provide more relational context.
Furthermore, categorical features, specifically protocol_type and flag, which are non-numeric, were
converted into a numerical format suitable for the neural network using one-hot encoding. As a final
preprocessing step, all numerical features were standardised using Z-score normalisation. This
ensured that all features had a mean of 0 and a standard deviation of 1, which is critical for allowing
all features to contribute equally to the model's learning and helping to accelerate the convergence
of the training process.

The theoretical core of our approach is an adapted Lotka-Volterra model [6], which
mathematically describes the dynamic interaction between the level of attack, A(t), and the level of
protection, Z(t) . The system is formally defined by the following pair of differential equations:
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Where A(t) represents the aggregate level of attack activity, and Z(t) represents the deployed level
of defensive measures at a given time t. The terms in these equations capture the essential feedback
loops of the adversarial relationship:

e Attack Dynamics (%). Two main forces govern the change in the attack level. The term oA

represents the intrinsic growth of the attack, such as the natural rate of malware propagation
or scanning for new victims, assuming no defensive opposition. The term - BA Z means the
reduction of the attack level due to successful neutralisation by the defence system; it is
proportional to the frequency of interactions between attacks and defences.

e Defence Dynamics (%). Opposing factors similarly drive the change in the defence level. The

term YAZ models the reactive growth and adaptation of the defence system in response to



detected attacks, such as deploying new firewall rules or patching vulnerabilities. The term
—Z represents the "cost" or natural decay of the defence effort over time, which can be
interpreted as maintenance costs, resource depreciation, or the obsolescence of security
measures that are no longer effective.

Within this framework, the coefficients are interpreted as follows: o represents the intrinsic
growth rate of the attack; f signifies the effectiveness of the defense in neutralising the attack; y
corresponds to the rate at which the defense adapts or grows in response to an attack; and ¢ denotes
the cost or natural decay rate of the defense system over time.

A critical step in our methodology was operationalising these abstract coefficients to create
trainable targets for the neural network. These coefficients were empirically calculated based on
specific, measurable features from the NSL-KDD dataset to generate ground-truth values for training.
For instance, metrics such as serror_rate, rerror_rate, and anomaly frequencies across different
services were used to derive proxy values for the Lotka-Volterra coefficients. This process allowed
us to obtain concrete target values for the neural network's regression task.

We designed a hybrid, multi-task neural network to simultaneously perform two distinct but
related tasks: binary classification of network traffic (normal/anomaly) and regression to predict the
four coefficients (a, f, y, ¢) of the Lotka—Volterra model. The architecture's input layer accepts the
preprocessed feature vectors and adds a layer of Gaussian noise, which acts as regularisation to
enhance model robustness and prevent overfitting. These inputs pass through two shared, fully
connected (dense) layers with 256 and 128 neurons, respectively. These layers utilise the Rectified
Linear Unit (ReLU) activation function to introduce non-linearity. Batch Normalisation follows each
step to stabilise the training process, and a Dropout layer is used for further regularisation.

Following these shared layers, the architecture splits into two separate output heads, one for each
task. The classification head consists of a dense layer with a Sigmoid activation function, which
produces a probability score indicating whether the input is an anomaly. The loss for this head is
calculated using a binary cross-entropy function, which is standard for binary classification tasks.
The regression head employs a dense layer with a linear activation function to output four
continuous values corresponding to the Lotka-Volterra coefficients. The loss for this head is
measured by the mean squared error (MSE) function, which quantifies the average squared difference
between the predicted and actual coefficients. The overall loss for the model is a weighted sum of
these two individual losses, with weights of 1.0 for classification and 0.2 for regression, balancing
the two tasks during training. Before being used in simulations, the predicted coefficients are clipped
to the range [0, 1] to ensure stability. The model was trained using the AdamW optimiser, a robust
choice that follows standard deep learning practices [2].

The training process was carefully managed using several control mechanisms to ensure optimal
performance and prevent overfitting. To retain the best-performing version of the model, its weights
were saved only when the Area Under the Curve (AUC) metric on a separate validation set showed
improvement. Additionally, the training employed an adaptive learning rate scheduler, which
automatically reduced the learning rate whenever the validation performance plateaued, allowing
for finer adjustments and more stable convergence. Finally, an early stopping mechanism was
implemented to halt the training process automatically if the validation AUC did not improve for a
set number of consecutive epochs, thereby preventing the model from overfitting to the training data
and enhancing its generalisation capabilities.

3. Assessment of hybrid model results

The model's training process was monitored to ensure stability and prevent overfitting. The learning
curves, depicted in Figure 1, provide a detailed visualisation of the model's performance on both the



training and validation sets across epochs for three key metrics: accuracy, Area Under the Curve
(AUC), and the Mean Squared Error (MSE) of the Lotka-Volterra coefficients. As shown in the figure,
the performance metrics on the validation set consistently and closely track those on the training
set. For instance, both sets' accuracy and AUC curves rise in tandem and stabilise, while the MSE
curves decrease sharply and remain low. This parallel progression is strong evidence of stable
convergence and indicates that the model did not suffer from significant overfitting.
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Figure 1: Model learning curves

The learning curves in Figure 1 show that the model's classification metrics (Accuracy, AUC)
steadily improved. At the same time, the regression error (LV MSE) rapidly decreased to near-zero
for both training and validation sets. Crucially, the validation curves closely track the training curves
across all plots. This demonstrates stable convergence and indicates that the model generalises well
without suffering from significant overfitting.

Upon completion of training, the model's final performance was evaluated on the unseen NSL-
KDD test dataset (Table 1).

Table 1

Model performance indicators on the NSL-KDD test set
Metrics Value
Classification accuracy 0.8006
Classification AUC 0.9016

MSE for the coefficients of the Lotka—Volterra model 0.0027

The model achieved a classification accuracy of 0.8006, demonstrating a strong capability to
identify traffic instances correctly. The Area Under the Curve (AUC) metric reached 0.9016. This
high AUC value is significant as it indicates excellent discrimination between the standard and
anomalous classes across all classification thresholds, confirming the model's robustness as a
classifier. The model demonstrated high fidelity in predicting the dynamic parameters for the
regression task, which is central to our hybrid approach. This was evidenced by a very low Mean
Squared Error (MSE) of 0.0027, validating the model's ability to learn and predict the Lotka-Volterra
coefficients accurately.

A core objective of this study was to determine if the predicted Lotka-Volterra coefficients (a, f,
Y, ) capture meaningful, underlying differences between regular and malicious network activity
beyond simple classification. To investigate this, an analysis was conducted on the model's
predictions for 13,592 normal and 8,952 abnormal sessions from the test set. The descriptive statistics,
presented in Table 2, revealed statistically significant differences in the coefficient distributions
between the two classes.



Table 2
Descriptive statistics of predicted coefficients

Coefficient Class Median Std.Dev. Min Max
Normal 0.0603 0.0325 0.0200 1.0000

* Anomaly 0.0764 0.0256  0.0276 1.0000
Normal  0.2243  0.0203  0.1730 1.0000
B Anomaly 02514 00160  0.1941 0.7318
Normal 07386  0.0224  0.2732 0.7533
1 Anomaly 07348  0.0091  0.5205 0.7532
Normal  0.8434 0.0225  0.8127 1.0000
¢ Anomaly 08563 0.0159  0.8196 1.0000

Anomalous traffic is characterised by a higher median value for coefficient o (0.0764 vs. 0.0603
for normal), representing the intrinsic potential for attack growth. It also shows a higher median
value for B (0.2514 vs. 0.2243), signifying a more intense interaction with the defence system. These
statistical differences are visualised in the box plots shown in Figure 2. In the figure, the distributions
for the anomaly class are visibly shifted towards higher values for coefficients o and f§ compared to
the regular class, providing strong graphical evidence for the statistical findings. Furthermore,
histograms of the coefficients confirm that the very shapes of the distributions differ between the
two classes. For instance, the distribution of the a coefficient for the anomalous class is skewed to
the right, indicating a prevalence of higher values that correspond to greater attack potential.

Conversely, the coefficients y (defence adaptation rate) and ¢ (defence cost/decay) show less
pronounced, though still informative, differences. The median y values are nearly identical for both
classes, suggesting that the rate of defensive adaptation captured by the model is not a primary
distinguishing feature in this dataset. However, the slightly higher median ¢ for anomalous traffic
(0.8563 vs. 0.8434) is noteworthy. This could imply that interactions classified as anomalous are
associated with a higher 'cost of defence' or a faster rate of obsolescence for the responding security
measures.

Taken together, these results demonstrate that the model has successfully learned to assign a
distinct 'dynamic signature'—a unique vector of (a, B, y, ¢) coefficients—to different classes of
network traffic. The systematic variations in these signatures, particularly in the attack-related
parameters, provide strong evidence that the model captures the underlying behavioural
characteristics of network sessions, moving beyond superficial pattern matching to a more profound,
dynamic risk assessment.

To validate the practical utility of these predicted coefficients, we simulated the Lotka-Volterra
dynamics using parameter sets generated by the model for both regular and anomalous sessions. The
simulations revealed distinctly different behavioural patterns. As shown in Figure 3, parameters
predicted for regular traffic tend to generate stable, controlled trajectories where the "attack” and
"defence" levels remain in a bounded, cyclical balance. In stark contrast, the simulations for
parameters typical of anomalous traffic, shown in Figure 4, more often lead to unstable scenarios
characterised by a rapidly increasing "attacks," indicating a system state escalating out of control.

This crucial result confirms that the predicted coefficients carry meaningful information about
network activity’s potential risk and dynamic behaviour. By translating raw network data into
dynamic parameters, the model offers a much deeper insight than traditional intrusion detection
methods can provide, enabling a forward-looking assessment of threat evolution.
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Figure 3: Example of Lotka—Volterra dynamics simulation (normal)

It is essential to acknowledge the study's limitations, which also highlight clear directions for
future research. The age of the NSL-KDD dataset is a primary constraint, as it may not fully represent
the complexity and signature of modern, sophisticated cyber threats [4; 5]. The Lotka-Volterra model
itself, while a powerful analogy, is a simplification of the highly complex, multi-faceted nature of
real-world attack-defence interactions, and the specific method for operationalising its coefficients
could be further refined [6]. Additionally, while the neural network performs well, the
interpretability of its internal decision-making process requires further investigation, which is a
common challenge in the field of deep learning [2]. These limitations are not seen as detriments but
valuable starting points for improving and extending the proposed approach in future work.
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Figure 4: Example of simulation of Lotka—Volterra dynamics (anomaly)

Figure 4 visualises the dynamics for a typical anomalous session. It illustrates an unstable
trajectory where the attack level, A(t), shows escalating oscillations, signifying a growing and
uncontained threat. This simulation confirms that the model correctly associates anomalous traffic
with high-risk, unstable system behaviours, thus validating its ability to forecast the potential
evolution of a threat.

4. Conclusion

This paper successfully developed and validated a novel hybrid neural model that integrates deep
learning for network traffic classification with predicting parameters for the Lotka-Volterra dynamic
model. We demonstrated that the model accurately distinguishes between normal and anomalous
traffic and, more importantly, quantifies the underlying dynamics of the "attack-defence" interaction
through the predicted coefficients.

The core contribution of this work lies in its departure from traditional, static intrusion detection.
The analysis of the predicted coefficients and the subsequent system dynamics simulation confirmed
that the model effectively captures the distinct nature of normal and anomalous activity. By
predicting dynamic parameters, our approach allows for an assessment that is not limited to
identifying a threat's presence but extends to forecasting its potential development. This provides a
richer, more nuanced understanding of cyber risks than conventional intrusion detection methods,
moving the paradigm from simple detection to prognostic risk assessment.

The practical significance of this research lies in its potential to form the basis for more advanced
and informative decision support systems in cybersecurity. However, further development is
essential for its practical application. Future work should focus on several key areas: validating the
model on larger, more contemporary datasets to ensure its relevance against modern threats;
researching alternative or more complex dynamic models beyond the classical Lotka-Volterra
framework; enhancing the interpretability of the neural network's predictions; and working towards
the integration of this approach into real-time monitoring systems. In conclusion, this study
represents a significant step towards creating more intelligent and forward-looking cybersecurity
systems that can not only react to threats but also anticipate their evolution.
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