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Abstract

Assessing the threat level to cyber-physical systems (CPS) requires evaluating the capabilities of potential
attackers. This thesis presents a model of attacker “danger” grounded in a detailed classification of attackers
for industrial control systems (ICS) and CPS. We categorize both internal and external attackers and assign
quantitative weight coefficients to their capabilities. A formal model is developed that incorporates attacker
competence, resource availability, time to breach, attack likelihood, and motivation. We derive formulas for
an attacker’s danger level and its weight coefficient, and we provide tables of criteria for expert evaluation.
Using the attacker classification, we map each attacker category to the technical levels of impact on ICS/CPS
infrastructure. A methodology is proposed to determine an unknown attacker’s category based on observed
attack features. The results enable security analysts to rank attackers by danger level and to identify critical
threats for each attacker category.
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1. Introduction

Modern ICS and CPS face a wide range of security threats. The feasibility and impact of each threat
depend heavily on the capabilities of the adversary. It is thus essential to model the attacker’s
capabilities and danger level as part of threat analysis. The “danger” posed by an attacker is a
function of factors such as the attacker’s skills and resources (“competence”), available time,
motivation, and the likelihood of successful exploitation of system vulnerabilities. By formally
characterizing attacker capabilities and mapping them to potential system impacts, we can better
prioritize security measures. This thesis develops an attacker classification and a quantitative danger
model to support cybersecurity risk assessment for ICS/CPS environments.

2. Attacker Classification

We propose a comprehensive classification of attackers targeting ICS/CPS, including both insider
and outsider categories. The classification defines attacker categories as follows [1]:

e ICS Insiders: including ICS Users (regular operators/users of the ICS or CPS), ICS
Management (executives or administrators), ICS Staff (other internal employees), “At-Risk”
Users (users in vulnerable positions or with risky access), Operational Personnel (engineering
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and control room staff), and Technical Support Personnel (maintenance and support staff).
These are trusted insiders with varying levels of access.

e External Attackers: persons not employed by the ICS operator. These
include Cyberterrorists, State Special Services (nation-state or intelligence
actors), Hackers (skilled individual outsiders), Cybercriminals (organized cyber-crime
groups), Competitors (industrial or corporate espionage agents), Organized
Crime (“criminal” entities in the classification), and Vandals (opportunistic or hobbyist
attackers).

Each attacker category is associated with certain capability levels. Insiders generally have
legitimate access to the system but limited malicious resources, whereas external groups vary widely
in resources and skills. For example, ICS users or staff may inadvertently or intentionally cause harm
but typically lack advanced cyber skills, whereas cyberterrorists or state-sponsored actors possess
extensive resources and expertise. This classification allows us to define a set of attacker categories
{Hj}, and to map each category to the technical levels of impact on an ICS/CPS. The levels of impact
correspond to layers of the system and network that an attacker can affect:

e HO: Technical channels (physical signal and wiring level)
e HI1: Physical layer of the TCP/IP stack

e H2: Data link layer (TCP/IP)

e H3: Network layer (TCP/IP)

e H4: Transport layer (TCP/IP)

e H5: Malicious software (malware) level

e Hé6: Hardware backdoor (implanted device) level

e H7: Application layer (TCP/IP and software applications)
e HB8: Information protection (security system) level

3. Attacker "Danger" Modelling

An attacker’s danger level quantifies the risk they pose to a system. We define a formal model for
attacker danger G/5% that incorporates the attacker’s category and capabilities. We express the
attacker’s danger as a function of their ability to carry out threats against system assets over time[2].
In particular, the model below considers the attacker’s category i, their capability weights for ICS
and CPS (8/5 and SFFS), the time T available for attack, the probability p, ; of realizing at least one

threat to asset j, and the attacker’s motivation 7y,

Gps = {aid, B € (B[}, BE™ € {BE™}  prjs Tnotins T} (1)

To instantiate this model, we must assign values to the various factors. We employ an expert
evaluation approach to determine the weight coefficients and probabilities. Table 1 (below)
summarizes the baseline quantitative values for each factor at five qualitative levels of attacker
capability: critical, high, medium, low, and very low. At the critical level (the most dangerous
attacker), all factors are set to 1 (indicating maximum threat likelihood, full motivation, daily attack
frequency, and effectively unlimited resources). At the very low level (minimal attacker capability),



factors are as low as 0.001 (indicating negligible probability or resources). Intermediate levels (high,
medium, low) are assigned scaled values (0.75, 0.5, 0.25) for each factor. These values serve as initial
criteria for weighting an attacker’s danger. For example, a “high”-capability attacker would have
prj = 0.75 (a 75% chance to realize a given threat), 1,44, = 0.75 (high motivation), and so on. By

using these baseline values, experts can estimate the weight coefficients S/ and SEFS for each
attacker category. In practice, an attacker category like Cyberterrorist might be rated “critical” on all
factors, whereas an insider staff might be rated “low” or “medium” on technical resources and
motivation (e.g. 0.25-0.5 range).

Table 1
Criteria and baseline values for expert evaluation of the attacker “danger” weight coefficient
ics ICS CPS CPS
Category Bi € {.Bi } i € {ﬁi }
ICS Ics Ics cPS cPs cPS
VVCP T Wcash VVCP T Wcash Prj Tmotiv
Critical 1 1 1 1 1 1 1 1
High 0,75 0,75 0,75 0,75 0,75 0,75 0,75 0,75
Medium 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5
Low 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25
Very low 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001

We next define the attacker danger weight coefficient y e more explicitly. This coefficient

combines the attacker’s resource factors and time factors for both ICS and CPS contexts. We propose
the following formula for the weight coefficient:

cps _ 1yN cPs 2)

Yics = y&i=1Yics >
CPS _ (pICS () pCPS
Yics i (ﬁz U ﬁi ) X prj X Tmotiv > (3)

where B{¢ = Wéfs NWIES NTICS, and BFFS = VVC%PS NWERS NTCPS are the weight
coefficients representing the attacker’s effectiveness in the ICS domain and CPS domain respectively.
These factors are assigned values based on attacker category: for instance, 1 for cyberterrorists
(unlimited computing resources), 0.75 for state-sponsored attackers, 0.5% for cybercriminal groups,
0.25 for ordinary criminals, competitors, or hackers, and 0.001for unsophisticated vandals. Similarly,
the same scaled values for these categories. T®Sand T¢PS denote the time windows required for a
successful attack on ICS and CPS targets, respectively. We categorize time availability on a scale
where 1 corresponds to attacks feasible within a day, 0.75 within a week, 0.5 within a month, 0.25
within a year, and 0.001 effectively unlimited time (for extremely slow, long-term attacks). Thus,
Equation above accumulates the attacker’s weighted capabilities in both the ICS and CPS realms.
The coefficient yf¢ is higher for attackers with greater resources and who can execute faster
attacks, and it reflects the combined hazard posed to both ICS and CPS components of a system.

These weight coefficients G.$5are used in equation 1 to calculate the overall danger level.

4. Mapping Attacker Categories to Impact Levels.

Using the attacker classification and danger model, we can construct a mapping between attacker
categories and the levels of impact {Hj}, on the system. Table 2 (below) presents this mapping. Each
row corresponds to an attacker category, and each column H, — Hs corresponds to a level of impact
(defined in the Attacker Classification section). A value of “1” in the table means that attackers of
that category are generally capable of executing attacks at that impact level, whereas “0” means they
typically cannot. This assessment is based on the technical knowledge, access, and resources
associated with each category.



Table 2

Mapping of attacker categories to levels of impact HO - H8 on ICS/CPS infrastructure. A value of 1
indicates the attacker category can operate at that level; 0 indicates inability to significantly attack
that layer

Level of impact

Category
Hs H,

o
o
&
T
o
o

ICS users

ICS management
ICS staff

At-risk users
Operational staff
Support staff
Cyberterrorists
State actors
Hackers
Cybercriminals
Competitors
Organized crime
Vandals
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From Table 2, we observe clear distinctions between attacker types. For instance, ICS insiders
such as regular users, staff, or at-risk users have limited impact—primarily at the application level
H; and possibly affecting the information security systems Hs through misuse of their access
(indicated by “1” in columns H; and Hs, and “0” in lower-level columns for those categories).
Management insiders show capability at physical and network-protocol levels (Ho, H;) due to their
broader access and authority, as well as at higher levels (Hs — Hs) via directing insider actions (hence
“1” for Hy, Hi, Hg — Hs for ICS Management). Operational staff (engineers/operators) can affect almost
all ICS levels (Hy — Hs and He) but may not launch malware attacks (Hs) or directly manipulate
security systems (Hs) without help. Technical support staff may install unauthorized devices (Hs) or
misuse applications (H;) but otherwise have little capability (zeros on most other levels).

External attackers, on the other hand, can often reach deeper into the tack. Cyberterrorists and
state-sponsored actors are assessed as capable of attacks on all levels (1’s across Hy — Hs) — they have
the expertise and resources to target everything from physical sabotage to advanced cyber intrusion.
Hackers (skilled outsiders) can attack most network and software levels but might not easily breach
dedicated security hardware or procedures (we note a 0 at Hs for Hackers). Organized cybercriminal
groups, competitors, and organized crime have substantial capabilities (many 1’s), especially in
network and software domains, but might lack the highest-level insider access or physical access in
some cases (reflected by some 0’s, e.g. at H, or H;/ H; for those categories). Vandals are very limited,
mainly capable of low-level physical disruption (Ho) or minor malware (Hs) vandalism, but not
advanced attacks (hence 1’s in only a couple of columns for Vandals). This categorical mapping helps
an analyst infer likely attacker types from the nature of observed attacks: for example, an incident
involving sophisticated malware and backdoor devices at multiple levels (Hs, Hs, H;) would point to
a high-capability external attacker (e.g. state actor or cybercriminal), whereas an attack confined to
misuse of an HMI application (H;) might point to an insider.

5. Attacker Category Determination Methodology

Given an unknown attacker and a set of detected threats, we can determine the most likely attacker
category using the above classification and mapping. We propose a methodology that reduces
attacker identification to an algorithm with the following steps:



1. Select Key Impact Features: Identify the characteristics of the attack in terms of impact levels
H. Determine which levels in { Hy,..., Hs } have been affected by the attacker (e.g. if the attack
involved network traffic manipulation, H;and H, might be marked). These impacted levels
serve as the classification features.

2. Determine the Threat Tuple: Based on the observed attack, form a tuple of realized threats
across the different security dimensions (confidentiality, integrity, availability, etc.)
according to a threat classifier. Essentially, enumerate which types of threats occurred
(denial of service, data breach, sabotage, etc.).

3. Construct the Impact Vector: Using the threat tuple and a predefined set of critical threats
(those with highest severity), construct a binary impact vector that indicates which critical
threats have been realized for each asset j. This can be based on an evaluation of the product
of importance coefficients of the attack and attacker (ensuring critical threats are weighted).

4. Identify Maximum Category: Starting from the lowest attacker category, compare the impact
vector to the expected capabilities (Table 2) for each category. The first category whose
capabilities fully explain the observed impact vector (or the highest category reached by the
attack features) is identified as the maximum likely attacker category for this incident. This
is done in increasing order of attacker “danger,” ensuring we pick the smallest category that
can account for all aspects of the attack.

Using this algorithm, we generate a list of critical threats relevant to the identified attacker
category. For example, if the maximum category determined is Category 6: External Cybercriminal,
we then focus on the critical threats that such attackers are known to pose and ensure those are
mitigated. Furthermore, if we can eliminate certain attacker types (e.g. through insider background
checks or external threat intelligence), we can reduce the maximum attacker category considered
and thereby reduce the number of critical threats to address. This helps prioritize defence measures
against the most probable attackers.

To automate the process of analyzing and categorizing text descriptions of threats, a neural
network-based model was proposed. The basis was taken from the existing cybersecurity classifier
[3], which is based on the synergistic threat model and provides extensive functionality for expert
assessment, determination of synergy, hybridity and probability of threat impact. The key goal of
the work was to create a system capable of classifying threats described by the user in arbitrary text
form, according to eight defined categories: criticality level, security status, security services, nature
of targeting, OSI level, social engineering threats, contour and category of the infrastructure object,
returning the corresponding tuple of classes, without the need for prior standardization. It is assumed
that the use of machine learning methods in combination with modern approaches to natural
language processing will allow building an effective tool for assessing cyber threats, which will
increase the practical value of the system for organizations that seek to respond quickly to risks and
form priorities in protective measures. In addition to implementing the classification algorithm, the
process of data preparation is valuable, especially in conditions of limited data quantity, which allows
testing modern data science techniques for this purpose, complementing the existing cybersecurity
classifier [3].

The initial data was an analysis table of 220 banking sector threats obtained from the
cybersecurity classifier [3], which contained text descriptions of threats and corresponding eight-
component class tuples, as well as coefficients and ratings of security services. Initially, the data were
grouped by threat tuple, so it was necessary to regroup them by description, because the task was to
group them by it. The set did not contain empty or corrupted values, but the threats did not
necessarily contain all classes of each of the components of the tuple. Given the limited volume of
the initial set, 220 unique threats, for each of which an "original" column was added, which is



insufficient for training effective machine learning models capable of generalizing on unknown
examples, were applied using the data augmentation technique [4]. This process involves artificially
increasing the training set by creating modified copies of existing data. Paraphrasing and synonymy
techniques were used to increase and diversify the training sample, in particular with the
involvement of models such as “bart-paraphrase”, “paraphrase-MiniLM”, “Rephrase” from the
Hugging Face platform [5]. The technique of translation through intermediate languages (first into
any language, and then back, sometimes several times or through different languages and
translators), implemented using the “deep_translator” library, turned out to be less effective due to
the specificity of the subject area. Threat descriptions often use professionalisms and abbreviations,
and sometimes are already exhaustive, which made it difficult to obtain natural and meaningful
translation results, since professionalisms often do not have synonyms even in other languages or
are borrowings. In contrast, the paraphrasing technique, which uses synonymy at the level of word
combinations or sentences together with a variation of grammatical forms, gave much better results.
After manual analysis and cleaning of augmented data, removal of duplicates, correction of
descriptions, enclosing descriptions with commas in quotes for correct reading of CSV, the final
dataset consisted of 1078 threat descriptions, where each original threat was represented by 3-5
parallel formulations. Working with tabular data was carried out using the Pandas library.

The next step was to develop a classification model. An environment was prepared using Jupyter
and key Python libraries [6-8], such as pandas for data processing, sklearn [6] for building machine
learning models, numpy for numerical calculations, matplotlib for visualization, re for working with
regular expressions, and hashlib and functools for optimization through caching. The training and
test data were split using the “original” column to ensure that all 220 unique threats in the test sample
were represented by one of their descriptions, with 17-25% of the data being test, while the
remaining descriptions were used for training, ensuring that all original threats were covered. The
categorical features of the target variables were encoded in a numeric format (from 0 to n-1), and an
uneven distribution of the data across classes was found, which could affect accuracy, as the model
would not be able to learn to assign a threat to a class it had not seen.

For classification, a data processing pipeline was created, which included three main components.
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Figure 1: Model structure

The first component, TextCleaner, was responsible for preprocessing text descriptions:
normalization (conversion to lower case, removal of digits, special characters, and punctuation) and
lemmatization — bringing words to their original dictionary form. For lemmatization of Ukrainian-
language texts, the Stanza NLP library [7] developed by Stanford University was used, which uses
neural network approaches for morphological analysis, identification of parts of speech, and
construction of dependencies between words, ensuring accurate lemmatization. To optimize
performance, a two-level caching system for lemmatization results was implemented (on disk in the
lemma_cache.pkl file and in RAM). The second component of the pipeline was the TF-IDF vectorizer
from Scikit-learn [6], which converted texts into numerical vectors, where each document is
represented by a set of numbers reflecting the weight of each word. TF, term frequency, shows how
often a word occurs in a document, and IDF, inverse document frequency, reduces the weight of
common words and strengthens unique ones. The vectorizer also used a list of Ukrainian stop words



to remove terms that did not carry a significant semantic load for classification. The third component
was the MultiOutputClassifier from Scikit-learn [6], which used RandomForestClassifier as the base
algorithm for simultaneous prediction of eight independent classes, chosen due to its resistance to
overfitting and good compatibility with TF-IDF. Model training and hyperparameter optimization
were performed using GridSearchCV from Scikit-learn [6], which uses cross-validation to find the
best combination of parameters to maximize accuracy. The variation of parameters was manually
sorted, and only the best parameters were retained in the final version. The weight of the keywords
“threat”, “danger”, “risk” was also manually changed to reduce their impact on classification, since
they are present in almost every description.

The trained model was evaluated using standard classification metrics such as accuracy,
completeness, and Fl-measure, as presented in the classification reports. Analysis of the results
revealed high accuracy on the training data, but also indicated signs of overfitting and the impact of
class imbalance on quality for individual categories. High precision with significantly different
response also indicated overfitting. The uncertainty matrices and learning curves further confirmed
these observations.
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The learning curves showed that the training accuracy is high from the beginning (indicating
insufficient diversity of the training data), while the accuracy on cross-validation is significantly
lower, although it tends to increase, indicating that the model may not have enough data to correctly
classify at the beginning, but the situation is improving. This indicates that the most likely option to
improve the accuracy of the model is to increase and diversify the dataset, in particular by
introducing new expert assessments, since the specificity of the threat description vocabulary limits
the effectiveness of simple synonymy.

At the final stage, an integrated threat classification system was implemented in the form of the
ThreatClassifier class. This system includes a preliminary stage of analyzing the description entered
by the user for similarity with the threat descriptions already available in the database using the
cosine similarity of vector representations obtained after identical data processing as for the machine
learning model. First, the stored serialized objects are loaded: the trained model, encoding,
dataframes. Then the lemmatizer and TF-IDF vectorizer process the input data. The vector of the
entered description is compared with all the original vectors, and the similarity fraction is compared
with the thresholds for categorization: classified threat, unclassified (requires model processing) or
“not a threat”.

This approach avoids overburdening the model for known threats and identifies irrelevant
descriptions. For user interaction, a simple console interface was developed to demonstrate the
system: the ThreatClassifier object performs tasks through the predict_threat() function, which
allows for modular implementation.

In the course of the research, a cyber threat classification system was successfully developed and
implemented, which effectively uses natural language processing methods and machine learning
algorithms. The basis for training was data obtained from an existing threat classifier, which
contained a previously conducted expert assessment of descriptions. The first and essential stage
was thorough data preprocessing, which is a fundamental component of any data science project. A
number of methods were applied to prepare the source data for effective use in the process of training
the model. Faced with the key problem of the limited volume of the initial data set, data augmentation
techniques were investigated and successfully tested, in particular paraphrasing using models from
the Hugging Face platform, which allowed to significantly increase the volume and
representativeness of the training sample. After that, the augmented data underwent a detailed
review and cleaning stage from redundant or irrelevant content, thus ensuring the quality of the
input information for the model.

6. Conclusion

We have developed a structured approach to quantify attacker risk (“danger”) by integrating a
detailed attacker classification with a formal danger modelling. By assigning weight coefficients to
attacker capabilities and mapping attacker categories to technical impact levels, security
practitioners can evaluate the threat level more systematically. The attacker classification model
allows the formation of tailored threat sets depending on attacker capability. The formal danger
model (Equations 1-3) provides a quantitative estimate of risk based on measurable criteria
(resources, time, probability, motivation), grounded in expert-defined values (Table 1). The mapping
in Table 2 and the identification algorithm offer a practical method to infer the likely attacker profile
behind observed cyber incidents and to focus on mitigating the most critical threats for that attacker
category. This approach enhances threat analysis for ICS and CPS by linking technical security
events to adversary models, ultimately improving preventive defence by anticipating attacker
behaviour and capabilities.

In the course of the research, a cyber threat classification system was successfully developed and
implemented, which effectively uses natural language processing methods and machine learning



algorithms. The basis for training was data obtained from an existing threat classifier, which
contained a previously conducted expert assessment of descriptions. The first and essential stage
was thorough data preprocessing, which is a fundamental component of any data science project. A
number of methods were applied to prepare the source data for effective use in the process of training
the model. Faced with the key problem of the limited volume of the initial data set, data augmentation
techniques were investigated and successfully tested, in particular paraphrasing using models from
the Hugging Face platform, which allowed to significantly increase the volume and
representativeness of the training sample. After that, the augmented data underwent a detailed
review and cleaning stage from redundant or irrelevant content, thus ensuring the quality of the
input information for the model.
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