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Abstract 
A characteristic feature of modern control systems is the widespread introduction of various types of 
computing systems that implement methods and algorithms of control and modeling. Therefore, the quality 
of functioning of control systems is largely determined by the characteristics of the used computational 
tools. The problem of ensuring the quality of functioning of control systems with a computer in the control 
loop is very complex both technically and mathematically. In solving this problem, practice has put forward 
one of the first places the scientific direction, associated with the development of methods and means to 
ensure the reliability of computational processes and information processing. 
In real control systems or modeling processes of calculation are inevitably accompanied by various kinds 
of noises and errors. Thus, in the case of numerical analysis of the equations of dynamics on a digital 
machine, the solution errors, in addition to all, can be caused by failures and failures in the work of the 
hardware. 
Under failures we understand distortions of processed and controlling information under the influence of 
primary self-eliminating reasons (incorrect operation of binary hardware elements, interferences, power 
supply voltage fluctuations and so on). Moreover, most failures have an accidental character. Therefore, an 
effective current control is needed, which allows detecting and eliminating an error before it spreads in the 
control circuit, which determines the operability as one of the main characteristics of error control means. 
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1. Introduction 

Currently, both software and hardware methods of control of simulation processes are used, as 
well as their combinations [1 – 12]. Software control methods, in turn, can be divided into test and 
software-logic [7]. The test control is intended to check the hardware or software failures [13] at the 
moment, when the work task is not solved on the computing and controlling device or the test signals 
are allowed during the problem solving [14, 15]. 

In the case under consideration, it is necessary to control the computational process in the 
working mode of operation of the control system or simulation. And the main object of control are 
hardware failures. More rational are program-logical methods of control, allowing you to control in 
the process of solving the problem. Sufficiently complete review of existing methods of program-
logic control is given in a number of works [16 – 19]. The main limitation of application of existing 
methods of control of numerical solution of complex non-linear differential equations (as the main 
mathematical apparatus describing dynamic behavior of systems) in control and modeling systems 
is the time taken for control. Below we propose methods to control errors caused by failures in 
numerical solution of differential equations (in terms of control theory – equations of dynamics) in 
real time, i.e. at the rate with the realization of the control action in the control loop. 
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The aim of the work is to develop constructive algorithms to control the solution of the equations 
of dynamics of objects in the problems of synthesis of control actions. 

2. Self-assessment of numerical solution algorithms 

Numerical methods for solving the dynamics equations are step by step procedures for obtaining the 
desired function. In this case, the computational process is naturally divided into relatively constant 
in time parts corresponding to a certain desired function at the integration step. Besides, the 
computational process is divided inside the integration step into relatively constant in time parts 
corresponding to determination of values of the right part of the solved equation system 

( ) ( )0 0, , ,t t= =Y f Y U Y Y  (1) 

where ( )
T

1 2, ,..., ny y y=Y  – vector of state variables, ( )T21 ...,,, muuu=U  – vector of control 

signals, ( )T21 ...,,, nfff=f  – vector-function, t – independent time parameter. 

Let us consider the possibilities of numerical solution procedures (1) on organization of their 
control (self-control). To organize control (self-control) it is necessary to have reference values to 
compare the results of calculations. Controlled results of previous calculations or results with low 
probability of failure can be used as reference values. For any method of numerical solution of 
equations of dynamics of a type (1) failure control can be organized by comparing the results yi and 
yi+1, obtained at the current and subsequent steps of integration, respectively. The presence or 
absence of failures is determined by checking the condition 

( ) Dyy ii = +1,  (2) 

where   – is a measure of proximity of values yi and yi+1, D – is the region of admissible values 

of this measure. 

The sizes of the region D depend on solution changes from step to step and determine the 
accuracy of control. If the boundaries of the area D correspond to the maximum possible difference 
between the values of yi and yi+1 at the whole step of integration in the absence of failures, the error 
that can be missed in the control is equal to twice the value of the area D, which follows from (2), 
since in the latter the value yi+1 should be replaced with yi. In this case, the accuracy of control may 
be unsatisfactory. 

To control errors caused by failures and malfunctions, methods of controlling the methodological 
error of numerical solution on the integration step or peculiarities of construction of computational 
algorithms can be used. 

In prediction and correction methods [20], the difference 
cf yy −=  between the predicted yf 

and the corrected yc values of the desired function can be used to judge about the presence of a 
hardware failure. However, the existing correlation between the values  yf and yc removes the 
reliability of control. 

Let us show it on the example of the improved Euler-Cauchy method. Let the prediction be carried 
out by the formula: 

yi+1 = yi +hfi , (3) 
where h – is a step of integration, fi=f(Y, U, ti), and the correction is carried out according to 

expression 



( )11

~

2
++ ++= iiii ff

h
yy  (4) 

where ( )11 ,,
~~

++ = ii tff UY . 

As can be seen from (3) and (4), at one step of integration the function f(Y, U, ti) is calculated 
twice at the points ti and ti+1. Since this process, as a rule, takes the main part of computational work, 
let us assume that a failure has occurred at the moment of the calculation f(Y, U, ti) and the function 
value fi has been obtained with error ∆fi. Then the function value calculated by formula (3) will be 

 (5) 
Here the value is the ∆fi+1=h∆fi – error in the prediction value. Next, we will propose methods of 

algorithmic control, suitable for control of calculation process at any methods of numerical solution 
of equations of dynamics. In this case we will consider the control, based on application of additional 
(control) algorithm on each step of numerical solution of the equations of dynamics of the form (1). 

3. Overview of results and sources 

Let us consider the problem of obtaining algorithm Ak, which we will formulate as follows: for a 
certain class of problems Q to obtain an algorithm of solution Ak, the result of which Y in relation to 
the problem solution qQ coincides with the accuracy ε of the result obtained by the main algorithm 
Ak. In this case the time and memory costs for the algorithm's realization must be within the specified 
limits. 

When computing by the basic algorithm Ab for the class of problems under consideration for 
modeling the dynamics of dynamic objects, most of the time is spent on computing the right side of 
the system of equations (1). The computation time by the algorithm Ak can be significantly reduced 
in comparison with the algorithm if it uses the values of the function f(Y, U, t) obtained by the 
algorithm Ab. Since the computing process according to the algorithm Ak is also subject to failures, 
the refusal to calculate the function f(Y, U, t) will greatly reduce the probability of a first-order error 
α (i.e., the correct initial hypothesis will be rejected). In this case the accuracy of control at the 
controlled step is improved, if the controlled algorithm uses the information controlled at previous 
steps, in other words: use the idea of extrapolation for control. Then control of each component of 
vector equation (1) using extrapolation method can be done separately. Therefore, the construction 
of the control algorithm Ak can be considered for some component of the vector Y and, at the same 
time, not to lose generality of the statement. 

In this case, the control value of the function at the (i+1)-th step of integration can be defined by 
the formula 
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h=ti+1-ti – step of integration, ap, bs, – coefficients. 

In (6), only values of function and its derivative, controlled during previous steps of integration, 
are used. Upper limits of sums p1 and s1 are selected from the conditions of required accuracy of the 
controlled algorithm. Since the controlled algorithm is not always required to ensure stability, the 
coefficients ap, bs, can be selected from the condition of minimal local error (i.e., equality to zero of 
the residual term ri=0 between the exact and numerical solution (6)). 

Many algorithms for the numerical solution of ordinary differential equations determine 
estimates of the derivative function between integration nodes. Since these estimates provide 
information on the behavior of the solution at a point closer to the controlled value of the function 

( ) iiiiiii fhfhyffhyy ++=++=+1
~



than the value f(Y, U, ti-s) in (6) at s1=1, it is advisable to take this information into account when 
extrapolating. If, in extrapolation, we take into account one estimate of the derivative obtained by 
the basic algorithm Ab, then one term will be added to expression (6) 
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where f(Y, U, ti-s) – is the estimate of the derivative, and b0 – is the coefficient. 

For example, a fourth-order precision control formula in which the derivative estimate is used is
( )22111022111 −−+−+ ++++= iiii ybybybhyayay  . 

Obviously, in the general case, any information about the solution obtained by the basic algorithm 
Ab and checked at the previous steps of integration can be used for extrapolation. 

It should be noted that extrapolation uses finite differences of the necessary order. For example, 
in the linear method of extrapolation, the control value of the function at a point ti+1 is defined as 
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(8) 

Application of expression (8) for organization of control of numerical solution of equation of 
dynamics of a kind (1) does not allow taking into account all available information about controlled 
solution. Indeed, in numerical solution of equation of dynamics (1), as a rule, not only the values of 
function in integration nodes are known, but also the values of derivatives and their estimates which 
are used in (8). In addition, the use of finite differences to determine derivatives increases the error 
of the control value of the function 

1+iy . 

Thus, expression (6), in contrast to formulas of the type (8), allows taking into account the results 
of calculations using the main algorithm more completely Ab, which leads to more accurate results 
in extrapolations. 

As an example, Fig. 1 and Fig. 2 show the dependencies of the mathematical expectation and the 
standard deviation of the value   from the integration step h in the equation of the form (1), which 

describe the dynamics of an airplane flight. 

4. Interpolation control method 

When using the extrapolation method for control, as already noted, it is possible to correct the 
solution for errors not by the repeated method, but by replacing yi+1 by 

1+iy , which is essential in 

real-time control and modeling. However, the control accuracy depends on the accuracy of 
extrapolation of the solution using expression (6) and may not be satisfactory. 

From the point of view of increasing control accuracy, a method based on the idea of interpolation 
may be considered preferable to the extrapolation method. The interpolation control formulas, in 
contrast to extrapolation formulas, take into account changes in the solution at the controlled 
calculation step, which leads to a decrease in the difference of values and, obtained by algorithms Ab 
and Ak. Increasing the accuracy of interpolation can be obtained by attracting the results of 
calculations by the main algorithm Ab before the controlled calculation step. This leads to multi-step 
interpolation formulas. To increase the control sensitivity to errors that have been classified as 
failures, use the control interpolation formula to determine the function value obtained in the 
calculation step closest to the controlled calculation step. 



 
Figure 1: dependencies of the mathematical expectation of the value ξ from the integration step h 
in the equation of the form (1). 

 
Figure 2: dependencies the standard deviation of the value ξ from the integration step h in the 
equation of the form (1) δσ. 

Considering the above, the control multi-step interpolation formula by means of which the 
process of calculations at the (i+1)-th step is controlled, obviously, can be represented as follows: 
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where ap, bs – are real coefficients; 0p  (otherwise a0=1, and all other coefficients are zero). 

As in the case of the extrapolation formula (6) in (9), the upper limits of summation have to be 
chosen depending on the required order of control accuracy, and the coefficients ap and bs – from the 
condition of the accuracy of representation of polynomials of appropriate degree. 

The principal difference between the interpolation expression (8) and the extrapolation 
expression (6) as control algorithms is as follows. In the case of extrapolation formulas, the directly 
controlled value is the value of the function obtained by the basic algorithm Ab at the controlled step 
of integration, and the control value 

iy  is obtained by expression (6). In case of interpolation 

formulas the controlled value is obtained by expression (8), and the reference value is the value of 
the function obtained by the main algorithm Ab on the previous (i-p) step of the calculation, i.e., in 
fact, indirect control is carried out. The error of calculating the value 

1+iy  according to the basic 

algorithm Ab is transformed into the error 
iy  of determination 

iy  by the formula (8). The deviation 

iy  in this case, in the framework of the linear theory of accuracy, will be defined as 

= Lyi   



where 

1+= ii yyL   
As applied to expression (8), L is determined by 
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where a* and b* are the coefficients, at 1+iy  in (9). 

Fig. 3 and Fig. 4 shows the dependence of the mathematical expectation and the standard 
deviation of the value 
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on the integration step h for equation (1) describing the aircraft flight dynamics. The curves 1 and 
2 were obtained by using interpolation formulas of the 1st and 2nd orders on the (i+1)-th step of 
integration according to the basic algorithm: 

For comparison, curve 3 corresponding to the application of the extrapolation formula for control 

( )211 25,125,2 −−+ −+= iiii yyhyy    

It can be seen that by increasing the integration step, the accuracy of the interpolation control 
method, as compared to the extrapolation method, increases. 

The interpolation method of control allows you to increase the accuracy of obtaining reference 
values. However, when organizing control of the computational process it should be borne in mind 
that when using the interpolation method of control there is no possibility to replace the erroneous 
value obtained by the basic algorithm Ab with the value obtained by the control algorithm Ak (which 
is possible by the extrapolation method). 

5. Adaptive control method 

The coefficients of control algorithms of the form (6) and (8) are determined from the condition of 
obtaining the exact result by the control algorithm Ak for the solution of yj(t), nj ,1= , representing 

a polynomial of the highest possible degree. Taking into account the above said, the choice of 
coefficients ap and bs allows to get the given order of control error at relatively small volume of 
calculations by the control algorithm Ak in the course of calculation. In fact, the control accuracy 
defined by the residual of the Taylor series for control formulas varies from step to step, depending 
on the smoothness of the solution yj(t), nj ,1= . 

Let us propose a method for organizing the control of the solution of the system of equations (1) 
with the help of the control algorithm Ak, which reconstructs itself depending on the behavior of the 

controlled solution yj(t), nj ,1= . The peculiarity of this approach consists in the fact that the results 

controlled at the next step are used to determine the parameters of the control algorithm Ak. In this 
case, the parameters are determined from the condition of a minimum of some measure of proximity 
of results obtained by the control algorithm Ak and the basic algorithm Ab at the section of the 
solution including the last step of calculations under control. The obtained algorithm, denoted as Aa, 

11 ++ −= iii yhyy   , 
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is used to control the next calculation step. After that the parameters are refined again. Obviously, 
the algorithm Aa, in view of the above, can be regarded as adaptive. 

 
Figure 3: Dependence of the math ematical expectation of the value ξ on the integration step h for 
equation (1) 

 
Figure 4: Dependence of standard deviation of the value ξ on the integration step h for equation (1) 

The method under consideration allows the following interpretation: on the basis of the 
controlled information about a physical process (i.e. its dynamics described by system (1) and the 
assumption that behavior of the solution yj(t), nj ,1= , from step to step changes slowly enough) the 

problem of parametric identification is solved for a given structure of the mathematical process 
description (i.e. system (1)). The resulting model in the form of an algorithm Aa is used for subsequent 
control. Otherwise, as control information becomes available, the model used for control (algorithm 
Aa) is specified (or – adapted). Further, we will use methods of parametric identification of inertia-
free objects [3, 21] to determine the parameters of the control algorithm, which is already considered 
as the algorithm Aa. 

Using results of calculations on the basic algorithm Ab obtained to the (i+1)-th step of integration, 
we can determine parameters of the control algorithm Aa on the (i+1)-th step of the system of 
algebraic equations 

BCQ =  (10) 
For the ectrapolation control method which uses evaluation of the derivative at the point ti-1+α, 

the values included in expression (10) are determined on the (i+1)-th step of integration as follows 
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For the interpolation method of control: control method 
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If the matrix C is not degenerate and the number of its rows is equal to the dimension of the 
parameter vector (for the extrapolation method ( )sp bbbaaaa ...,,,,...,,,, 10211ers −=Π  and interpolation 

method ( )sp bbaaa ...,,,...,,, 121int =Π , respectively) defined by the value of k, then the evaluation Q̂  

of the parameter matrix Q (for both extrapolation and interpolation methods) is the solution of the 
system of algebraic equations 

BCQ
1ˆ −=   

and the results obtained by the main and control algorithms on the sequence 
11 ...,,, +−− kiii yyy  

coincide. 

If the matrix C is rectangular, we can use the method of least squares to determine the estimate 
of the parameter vector. 

Example. As an example, consider the Runge-Kutta algorithm of second order precision [22, 23] 
with control when solving the equation of dynamics 

( )tUfy ,,Y=  (11) 
The solution of problem (11) boils down to the following: 

1. Do the calculations by Runge-Kutta algorithm 
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(12) 

where  ,,  – parameters of the algorithm. 2. 

2. Determine the control value of the function by the first-order extrapolation formula of the form 
(6) 

+−+ −= 11 iii yhbayy   (13) 

where ( ) hthtukyfy iiii +++=+− ,,11 – is the value of estimation of derivative, 

obtained by algorithm Ab on the i-th step of integration. At the first step of integration coefficients 
a, b are determined from the condition of exact result according to the control algorithm Ak for the 
polynomial of the first degree of accuracy. 3. 

3. Determine the value of 

11 ++ −= ii yy   

 



4. Check condition 

sup , (14) 

where 
sup  – is a permissible value of  . If condition (14) is not satisfied, then correct the solution 

(for example, by replacing with yi+1 на 
1+iy ). If 

ktt  , where 
kt  – integration time, then proceed to 

item 5, otherwise carry out the end of the calculation process. 

5. Form the matrix 
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where 
+−− 1kiy  – value of evaluation of derivative, obtained by algorithm (12) on (i-k-1)-step of 

integration. The value defines the number of matrix rows. 

6. Form the vector 

( )T1...,, −−= kii yyB   

7. Determine the coefficients of the control algorithm (13) from the system of algebraic equations 

BCQ =   

where ( )T, ba=Q . 

To continue the solution go to step 1. 

As can be seen from the solution procedure above, additional calculations are required to 
determine the current value of coefficients a, b. It is possible to simplify the control procedure by 
determining not the whole vector Q, but its part, assuming that the remaining vector components 
have equal values obtained from the exact result of the control formula for a polynomial of a possibly 
high degree. Thus, in the considered procedure, it was possible to determine the first coefficient a by 
assuming the other b=1. This corresponds to the transformation of the model (truncation of the 
model by parameters). 

6. Conclusion 

The main purpose of the considered algorithms is to detect failures during the numerical solution of 
the equations of dynamics in real-time simulation and control systems. 

Since both the basic Ab and the control Ak algorithms are executed by different programs, the 
proposed control methods also allow detection of hardware failures during computations. 

Spending time on control depend on the method of control, the order of accuracy of the control 
formula, the accuracy measure of calculations and are determined by the number of multiplication 
and addition operations on the control formula, the time of determination of the accuracy measure 
of calculations and the operation of comparing the obtained value of the accuracy measure of 
calculations with tolerances. 

The main advantages of the proposed methods of control should be the simplicity and low cost 
of time for control at a relatively high control accuracy, which can be regulated by both changing 
the method of control and changing the order of accuracy of control formulas. 



The disadvantages of the proposed methods include "inherent noise" (i.e., mismatch of results at 
the integration step obtained by the basic Ab and control Ak algorithms), which reduces the control 
accuracy. The characteristics of "intrinsic noise" of the control algorithms Ak are the initial data for 
choosing the control method and defining the control quality indices. 

The fact, that the model of the controlled process (i.e. equation of dynamics of the form (1)) is 
known, is essentially used in suggested methods of control. This allows to refuse from application of 
finite differences for determination of derivatives and to organize iterative control. When finite 
differences are used, it is difficult to organize iterative control because the controlled variable and 
the control variable can be used together to determine the derivative estimate. 

The proposed control methods may be used to control dynamic processes, the mathematical 
model of which is known. For example, with their help it is possible to organize control of sensors 
of the state of a dynamic object. 
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