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Abstract

We propose a fundamentally new steganographic approach based on perfect binary arrays — two-
dimensional algebraic structures with ideal 2D periodic autocorrelation properties. The method operates in
the spatial domain and utilizes the symmetry of perfect binary arrays under cyclic shifts and inversion to
encode information with mathematically guaranteed control over signal perturbation. By assigning each
message fragment to a specific transformation from a set of 2V? possible states (where N is the block
size), the method enables flexible, high-capacity embedding: for instance, up to 7 bits per 8x8 block, which
exceeds the capacity of classical code-controlled schemes by a factor of seven. We derive general
modulation and decoding formulas, rigorously analyze perceptual impact, and demonstrate that pixel
modifications are limited to #1, resulting in PSNR values above 48 dB even at 100% embedding density.
Moreover, the method shows resilience under JPEG compression, maintaining message integrity at low
compression levels. These results highlight the potential of algebraic structures such as perfect binary
arrays not only to redefine payload capacity limits but also to inspire a shift in steganographic design
toward structured, high-order embedding, as originally envisioned in Shannon's coding theory.
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1. Introduction

The rapid growth of digital technologies and the exponential increase in the volume of multimedia
data — including images, audio, and video — have led to heightened concerns regarding the
protection of sensitive information and the confidentiality of communication. In this context,
steganography has emerged as a vital field of research, offering the ability to conceal the very
existence of a message within innocuous-looking media. Unlike cryptography, which protects the
content of a message, steganography focuses on hiding the act of communication itself, making it an
essential tool in modern information security. As the digital ecosystem continues to expand, the
development of robust and imperceptible steganographic techniques, particularly those based on
mathematically sound structures, becomes increasingly important.

The effectiveness of steganographic methods is typically evaluated through several key criteria:
perceptual transparency, ensuring that modifications to the cover medium are imperceptible to
human senses; robustness against attacks, including signal processing and noise; embedding
capacity, indicating the amount of information that can be hidden; resilience to steganalysis, which
reflects the ability to withstand statistical or machine learning-based detection; and computational
efficiency, which determines the feasibility of real-time or large-scale deployment. Modern
steganographic techniques often achieve high performance across these metrics by operating in
transform domains, such as the Discrete Cosine Transform (DCT), Discrete Wavelet Transform
(DWT), or Singular Value Decomposition (SVD).
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Recent advances in image steganography have introduced a variety of techniques aimed at
improving payload capacity, imperceptibility, and robustness. Vakani et al. [1] proposed a novel
“DCT-in-DCT” scheme that enhances the quality of payload extraction by embedding data within
nested DCT domains. Sabeti and Aghabagheri [2] developed an adaptive DCT-based method
employing a genetic algorithm to dynamically optimize embedding, achieving a favorable balance
between capacity and distortion. Kaur and Singh [3] introduced an n-ary steganographic approach
in the DCT domain that leverages chaotic maps to enhance both robustness and visual quality. In
another contribution, Sahu and Pradhan [4] integrated AES encryption into a DCT-based framework,
increasing security without significantly degrading image fidelity. Liu et al. [5] proposed a method
combining wavelet-domain SVD and adaptive QIM for JPEG image steganography, resulting in
improved resistance to compression attacks. Similarly, Pramanik [6] utilized integer wavelet
transform and genetic algorithms to adaptively control embedding locations, thus enhancing
imperceptibility. Ahmad et al. [7] explored a CNN-DCT hybrid model that applies deep learning for
steganographic embedding over cloud systems, maintaining high visual fidelity. Ray et al. [8] applied
edge detection via deep learning to identify perceptually insensitive embedding regions, improving
both security and transparency. Hassaballah et al. [9] addressed steganography in the context of
Industrial Internet of Things by proposing a lightweight, secure method suitable for resource-
constrained environments. Finally, Meenadshi et al. [10] introduced an Al-enhanced LSB framework
that leverages machine learning to optimize concealed data embedding, offering improvements in
both embedding efficiency and concealment quality. These developments highlight the ongoing
trend toward adaptive, transformation-domain, and Al-driven steganographic solutions tailored for
diverse application scenarios.

However, these transformations are computationally intensive, making such methods unsuitable
for resource-constrained environments, such as Internet of Things devices, where memory and
processing power are severely limited. This limitation motivates the exploration of alternative
approaches that combine mathematical rigor with low computational complexity.

A breakthrough in this context has been achieved by code-controlled steganographic methods,
which operate directly in the spatial domain of the cover medium while preserving precise control
over the desired frequency components [11]. Unlike traditional transform-based techniques, these
methods leverage structured code constructions to guide the embedding process in a way that
ensures both low computational overhead and predictable spectral characteristics of the resulting
steganographic message. By avoiding explicit transformations, code-controlled methods
significantly reduce the complexity of embedding and extraction procedures, making them
particularly attractive for deployment on lightweight or embedded platforms. Moreover, they open
new avenues for achieving fine-grained trade-offs between imperceptibility, robustness, and
security.

Existing code-controlled steganographic methods often rely on Walsh functions as codewords,
taking advantage of their orthogonality and binary nature to selectively affect specific transform
coefficients in the Walsh-Hadamard domain. This selective modulation enables controlled
manipulation of particular frequency components within the spatial domain, without performing an
explicit transform. However, such approaches typically embed only one bit of information per block,
which significantly limits the embedding capacity. In applications where capacity is a critical
requirement, such as covert communication or high-volume data hiding, this limitation becomes a
significant drawback. To address this, we propose a novel approach based on perfect binary arrays
— well-structured algebraic constructions that allow for efficient partitioning of the embedding
space. We show that equivalence classes of perfect binary arrays enable the embedding of one bit of
information per pixel, drastically increasing capacity while maintaining control over the signal’s
spectral properties and preserving computational efficiency.

The purpose of this paper is to develop and justify a conceptual framework for a high-capacity,
code-controlled steganographic method based on perfect binary arrays.

The proposed approach is designed to operate in the spatial domain while ensuring selective
control over frequency characteristics through structured algebraic encoding. By leveraging the



inherent properties of perfect binary arrays, the concept of the steganographic method aims to
significantly increase embedding capacity — up to log,(2NV?) bit per pixel — without sacrificing the

possibility of code control or computational efficiency, where N is the order of the perfect binary
array. This work focuses on the theoretical foundations and structural principles of the method,
laying the groundwork for future practical implementations and performance evaluation.

2. Theoretical foundations

Let us briefly consider the basic idea of the concept of code-controlled information embedding. Let
X to be the matrix of the container block of size N x/N . The Walsh-Hadamard transform for X
can be calculated according to the following formula
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where H/'V is the normalized Walsh-Hadamard matrix of order N =2%, Hl’v is determined as

H,=(1/N)H, , and H, is constructed following the Sylvester construction
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On the other hand, the transform vector V' of the one-dimensional Walsh-Hadamard transform
of a vector ¥ of length NV is determined by the following relation

V=YH, . (3)

N

One of the theoretical achievements underlying the concept of code-controlled information
embedding is the relationship between the two-dimensional and one-dimensional Walsh-Hadamard
transforms [12], which can be written (with an accuracy to the coefficient 1/ ) using the operator

A, which defines the writing of the matrix 4 of size N xN in the form of a row vector of length

N? by sequential concatenation of the rows of the original matrix 4

W=XH ,. 4)

Let d to be the bit of the additional information, which should be embedded in the given image

block. In correspondence with this bit, a codeword 7" of size N x /N is placed, by means of which
the bit d is embedded.

Then the block of the steganographic message M , will have the form

M=X+T. )

Let us consider the Walsh-Hadamard transform of a row vector M

o - ©)
W=MH,=(X+T)H ,=XH +TH,,.

Expression (6) allows us to make a fundamental conclusion about the nature of the perturbation
of Walsh-Hadamard transformants in the steganographic message after additive embedding of the



additional information into it. The magnitude and localization of such perturbations will depend on

the specific type of term 7' A, , which represents the Walsh-Hadamard transformants for the row

vector T , with the help of which the additional information bit d is encoded.

The N x N matrix representation of the Walsh functions of length N* has been widely employed
in code-controlled steganographic schemes as codewords due to their ability to influence specific
frequency components in the Walsh-Hadamard transform domain. When used in the spatial domain,
these functions enable selective spectral shaping of the modified image blocks, allowing the
embedding process to target certain frequency bands. This property is particularly useful for
maintaining resisting attacks against the embedded message.

For example, let us consider the codeword T7; s ,, targeting (5,1) Walsh-Hadamard transformant

and its Walsh-Hadamard transform (assuming 1-based indexing)

11111111 (00000000
11111111 00000000
11111111 00000000

s 11111111 _| 00000000 o

86D 1 -1-1-1-1-1-1-1 %s» 640000000/
-1-1-1-1-1-1-1-1 00000000
-1-1-1-1-1-1-1-1 00000000
-1-1-1-1-1-1-1-1]| 100000000]

However, due to their rigid structure and block-wise application, Walsh-based embedding
schemes typically offer limited capacity, motivating the search for more flexible algebraic
frameworks such as perfect binary arrays.

Definition 1 [13]. A perfect binary array is a two-dimensional sequence (matrix)

HWN) =4, |, 7,j=01.,N-1, h 6 e{-11}, ®)

hi,/

having an ideal two-dimensional periodic autocorrelation function (2DPACF), whose elements

N-1N-1

2 0
bk N°, for m=n=0;

R(m,n)=PACF(m,n)= =
(m, 1) (m.1) L {O, for any other m and n,
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where m,n=0,1,...,N —1, and all indices of elements 4, are reduced modulo NV .

i+m,j+7

Let us give as an example a perfect binary array of order N =8 as well as its two-dimensional
periodic autocorrelation function



1-11-111-1-1] (640000000]
11111-11-1 00000000
11 1-1-1-1-1-1 00000000
1 1-11 -1-1-1 00000000
4=l 1 11-111-1-1"% 00000000/ (10)
-1-1-1-1-11-11 00000000
11 1-1-1-1-1-1 00000000
-1-11-1-11 1 1| 10 0000000]|

Statement 1 [14]. Each perfect binary array of order V' generates an E(N)-class of equivalent
matrices — perfect binary arrays by operations of cyclic shift on rows and columns and inversion,
while the cardinality of the class of equivalent matrices is

/E(N) =2N*. (11)

From the research [14], the following is known. If an arbitrary generating perfect binary array
Ay(N) of order N is given, then all its cyclic shifts are defined as L, AQ, , k,,k,=0,1,.,N -1
and let the two-dimensional periodic cross-correlation function (2DPCCF) between A4 (/N) and its

cyclically shifted array be defined by the relation

=

B(m,m)= A(N)**L, AN)Q, = > 3 1y e (12)
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where the symbol ** denotes a two-dimensional correlation (convolution); m,n=0,1,...,N—-1.
The following statement is known:

Statement 2 [14]. The 2DPCCF B(:m,n) of an array 4 (V) and array L, 4,(N)Q,, of order N
, k,,k,=0,1,...,N—-1, is a 2DPACF ||R(m,17)|| of an array 4 (N) shifted by k&, rows and %,

columns, i.e.
B(m,n)=R(m+k ,n+k,), mn=0,1,.N-1 (13)

The core of the proposed steganographic method is based on an information modulation principle
that exploits a key property of perfect binary arrays: the 2DPCCF between a perfect binary array and
its cyclically shifted version (in rows or columns) is structurally equivalent to the corresponding
cyclic shift of the 2DPACF of the original array. This algebraic symmetry enables precise and
predictable manipulation of correlation peaks. We propose to encode information by selecting one
of 2V? possible states, through controlled cyclic shifts (either along rows or columns) combined
with optional binary inversion. The embedding process thus corresponds to a particular
transformation of the array structure within an image block. During extraction, the method relies on
non-blind decoding, typical for code-controlled schemes: the cover component is reconstructed, the
2DPCCF is computed, and the position of its global maximum uniquely determines the embedded
message bit pattern.

3. The concept of the steganographic method based on the perfect
binary arrays

This section introduces the conceptual foundation of a steganographic method that leverages the



structural properties of perfect binary arrays. Unlike conventional transform-based approaches, the
proposed method operates entirely within the spatial domain, using perfect binary arrays as code
carriers to embed information through carefully controlled spatial transformations. The key idea is
to exploit the unique autocorrelation and cross-correlation characteristics of perfect binary arrays,
particularly their behavior under cyclic shifts and inversion. These algebraic symmetries enable
reliable and high-capacity data encoding while maintaining low computational complexity and
compatibility with resource-constrained environments. We describe the encoding and decoding
procedures, and the modulation scheme used to map information onto structured transformations of
perfect binary arrays.

The main steps of the proposed steganographic method based on [11] are as follows.
Additional information embedding.

Step 1. Perform a standard partition of the source container image into non-overlapping blocks of
size NxN .

Step 2. Choose a reference perfect binary array 4 (/N) of size N .

Step 3. Let X be the next container block involved in the steganographic transformation. Choose
a vector D={d, d, ...d

,.} that contains the next log (2N?) bits of information to be
log, (2N°) gZ

embedded in this container block.

Step 4. Define the bit d, value as the encoding sign of the perfect binary array, the decimal

equivalents of the bits &, ={d, d; ... d\, (y),1}10 as the value of the row shift, and the bits

ky =i, ivyi2 Dogynyes a’logz (2w )10 s the column shift.

Step 5. Construct an array L, 4,(NV)Q, of the E(NV)-class for embedding additional information

and perform embedding, then the next block of the steganographic message will be defined as
M=X+1L, A (N)Q,, (14)

Note that when embedding the value +1 into the container pixel value 255, as well as when
embedding the value -1 into the container pixel value 0, the embedding operation for these pixels is
not performed.

Additional information extraction.

Step 1. Perform a standard partition of the steganographic message into non-overlapping blocks

of size NxN .

Step 2. Let M to be the next block of the possibly perturbed steganographic message, involved in
the steganographic transformation, corresponding to the block X of the container.

2.1. Construct a matrix A=M — X with elements A(i,/), 1,7=0,1,...,u—1 for which to construct
the 2DPCCF matrix

B(m,n) = A (N)**A. (15)

2.2. Find the row x and column y indices of the maximum (absolute value) of the matrix B(m,n)



2.3. Restore the log,(2N?) embedded information bits as

dy = sign(B(x, y)) —1(mod3);
{d2 ds ... dlogz(N)Jrl}lO =X (16)

{d g2 diog,)43 ... diog,@n?) }1p =V

4. Experimental data

This section presents the experimental evaluation of the proposed steganographic method based on
perfect binary arrays. The method's performance is assessed according to key steganographic
metrics, including embedding capacity, perceptual transparency, and robustness against message-
targeted attacks.

To evaluate the efficiency of the proposed method in terms of data payload, we compare its
embedding capacity with that of the classical code-controlled steganographic approach based on

Walsh-Hadamard functions. The comparison is performed for various block sizes N x /N , which
determine the granularity of embedding. While the classical method typically encodes a single bit
per block regardless of size, the proposed scheme leverages the structural properties of perfect binary

arrays to encode up to log,(2V?) bits per block. Table 1 summarizes the resulting capacities in terms

of bits per block and bits per pixel.

Table 1
Throughput for steganographic methods

Block size N | Classical code-controlled method Proposed code-controlled method
Bit per block Bit per pixel Bit per block Bit per pixel
4 1 0,0625 5 0,3125
1 0,0156 7 0,1093
16 1 0,0039 9 0,0351

The data presented in Table 1 demonstrates the significant advantage of the proposed method
over the classical code-controlled approach in terms of embedding capacity. While the classical
method consistently embeds only 1 bit per block regardless of block size, the proposed method
exploits the combinatorial richness of perfect binary arrays to achieve a markedly higher payload.

Notably, for small block sizes (e.g., N =4), the proposed method achieves a fivefold increase in
throughput per pixel. Even for larger blocks, where embedding density typically declines, the method
maintains a considerable advantage in both bits per block and bits per pixel. This highlights the
method’s potential for applications requiring high-capacity embedding, particularly when
maintaining visual quality is essential.

Assessing perceptual fidelity is a complex task due to the subjective nature of human visual
perception. The human visual system exhibits varying sensitivity to spatial, frequency, and color
distortions, making formal evaluation inherently limited. Nevertheless, in the proposed method, the
modification of container elements is strictly bounded: changes do not exceed +1 in magnitude. This
constraint ensures a minimal distortion footprint, which is expected to be imperceptible under
normal viewing conditions. To support this claim, we provide a quantitative analysis using the peak
signal-to-noise ratio (PSNR) metric for different embedding densities, reflecting the proportion of
modified blocks in the image.

The PSNR is evaluated as



2557
PSNR =10log, | == |, 17
gw(MSEj (17)

where MSE is the root mean square error between the original and modified image. If p% pixels are
changed by +1, then

1 p
MSE = =—. 18
plOO 100 (18)

In Table 2 we present the values of PSNR for different embedding rates

Table 2

PSNR values for different embedding rates
Embedding Rate (%) MSE PSNR (dB)
25% 0.25 54.15
50% 0.50 51.14
75% 0.75 49.38
100% 1.00 48.13

The results presented in Table 2 confirm that the proposed method preserves excellent perceptual
fidelity across different embedding rates. Even at 100% embedding, where each block contributes to
data hiding, the PSNR remains above 48 dB — well within the range considered visually
imperceptible. This robustness stems from the method’s foundational design, inherited from the
code-controlled paradigm, where modifications are limited to 1 per pixel. By carefully constraining
the amplitude of changes, the proposed approach ensures that the embedded information does not
introduce noticeable visual artifacts, thus maintaining the visual integrity of the cover image.

The experiments were performed on standard 500 test images subjected to JPEG compression to
simulate realistic transmission conditions. We show in Table 3 the obtained dependency of the
decoding error rate on the compression rate QF.

Table 3
The dependency of the decoding error rate on the QF in conditions of JPEG compression attack
QF 100 90 80 70 60
Error rate, % | 0.02 26.53 42.88 46.41 47.77
QF 50 40 30 20 10
Error rate, % | 48.40 48.88 49.23 49.53 49.82

The experimental results demonstrate that even with a relatively small block size of 8x8 and
embedding of 7 bits per block, representing a sevenfold increase in payload compared to classical
code-controlled methods, the proposed technique maintains acceptable performance under low
levels of JPEG compression, which is an impressive outcome given the aggressive payload and lossy
compression. These results raise an important and underexplored question in steganographic design:
Is it more effective to use small blocks with limited payload to ensure robustness, or to utilize larger
blocks that accommodate more data per unit but may exhibit different distortion-resilience
properties? As Shannon observed in his foundational work [15], larger codes often yield better
efficiency and robustness. Extrapolating this principle, larger block sizes may potentially provide
enhanced resistance not only to compression artifacts but also to steganalytic attacks, due to
increased structural complexity and embedding variability. This hypothesis suggests that the
traditional preference for small embedding units in spatial and transform-domain steganography
might need to be re-evaluated. Consequently, this opens a compelling direction for rethinking the
very foundation of steganographic design, possibly leading to the emergence of new principles and
embedding architectures grounded in large-block algebraic frameworks.



5. Conclusion

This paper introduced a novel steganographic method based on perfect binary arrays, offering a fresh
algebraic perspective on payload encoding within digital images. The proposed technique
significantly increases embedding capacity by exploiting the unique autocorrelation and cross-
correlation properties of perfect binary arrays and their cyclic shifts, enabling the modulation of up
to 2N? distinct states within a block of size N x/N . Compared to classical code-controlled
approaches that typically embed only one bit per block, our method demonstrates up to sevenfold
improvements in throughput without compromising perceptual quality.

Experimental results confirm that the modifications introduced to the spatial domain are minimal,
with pixel-level changes constrained within *1, yielding high PSNR values and excellent visual
imperceptibility. Moreover, the method retains robustness under moderate compression, suggesting
suitability for real-world applications, including constrained environments such as IoT platforms.
The analysis also raises essential theoretical considerations: while smaller blocks have traditionally
dominated steganographic designs, larger blocks, as advocated by Shannon for coding, may offer
increased resistance to compression and steganalysis, pointing toward the need for reevaluating
current paradigms.

Overall, the proposed concept not only advances the practical utility of spatial-domain
steganography but also opens new avenues for integrating algebraic structures into the core of
information-hiding systems.
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