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Abstract 
We propose a fundamentally new steganographic approach based on perfect binary arrays — two-
dimensional algebraic structures with ideal 2D periodic autocorrelation properties. The method operates in 
the spatial domain and utilizes the symmetry of perfect binary arrays under cyclic shifts and inversion to 
encode information with mathematically guaranteed control over signal perturbation. By assigning each 
message fragment to a specific transformation from a set of 22N  possible states (where N  is the block 
size), the method enables flexible, high-capacity embedding: for instance, up to 7 bits per 8 8  block, which 
exceeds the capacity of classical code-controlled schemes by a factor of seven. We derive general 
modulation and decoding formulas, rigorously analyze perceptual impact, and demonstrate that pixel 
modifications are limited to ±1, resulting in PSNR values above 48 dB even at 100% embedding density. 
Moreover, the method shows resilience under JPEG compression, maintaining message integrity at low 
compression levels. These results highlight the potential of algebraic structures such as perfect binary 
arrays not only to redefine payload capacity limits but also to inspire a shift in steganographic design 
toward structured, high-order embedding, as originally envisioned in Shannon's coding theory. 
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1. Introduction 

The rapid growth of digital technologies and the exponential increase in the volume of multimedia 
data — including images, audio, and video — have led to heightened concerns regarding the 
protection of sensitive information and the confidentiality of communication. In this context, 
steganography has emerged as a vital field of research, offering the ability to conceal the very 
existence of a message within innocuous-looking media. Unlike cryptography, which protects the 
content of a message, steganography focuses on hiding the act of communication itself, making it an 
essential tool in modern information security. As the digital ecosystem continues to expand, the 
development of robust and imperceptible steganographic techniques, particularly those based on 
mathematically sound structures, becomes increasingly important. 

The effectiveness of steganographic methods is typically evaluated through several key criteria: 
perceptual transparency, ensuring that modifications to the cover medium are imperceptible to 
human senses; robustness against attacks, including signal processing and noise; embedding 
capacity, indicating the amount of information that can be hidden; resilience to steganalysis, which 
reflects the ability to withstand statistical or machine learning-based detection; and computational 
efficiency, which determines the feasibility of real-time or large-scale deployment. Modern 
steganographic techniques often achieve high performance across these metrics by operating in 
transform domains, such as the Discrete Cosine Transform (DCT), Discrete Wavelet Transform 
(DWT), or Singular Value Decomposition (SVD). 
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Recent advances in image steganography have introduced a variety of techniques aimed at 
improving payload capacity, imperceptibility, and robustness. Vakani et al. [1] proposed a novel 
“DCT-in-DCT” scheme that enhances the quality of payload extraction by embedding data within 
nested DCT domains. Sabeti and Aghabagheri [2] developed an adaptive DCT-based method 
employing a genetic algorithm to dynamically optimize embedding, achieving a favorable balance 
between capacity and distortion. Kaur and Singh [3] introduced an n-ary steganographic approach 
in the DCT domain that leverages chaotic maps to enhance both robustness and visual quality. In 
another contribution, Sahu and Pradhan [4] integrated AES encryption into a DCT-based framework, 
increasing security without significantly degrading image fidelity. Liu et al. [5] proposed a method 
combining wavelet-domain SVD and adaptive QIM for JPEG image steganography, resulting in 
improved resistance to compression attacks. Similarly, Pramanik [6] utilized integer wavelet 
transform and genetic algorithms to adaptively control embedding locations, thus enhancing 
imperceptibility. Ahmad et al. [7] explored a CNN-DCT hybrid model that applies deep learning for 
steganographic embedding over cloud systems, maintaining high visual fidelity. Ray et al. [8] applied 
edge detection via deep learning to identify perceptually insensitive embedding regions, improving 
both security and transparency. Hassaballah et al. [9] addressed steganography in the context of 
Industrial Internet of Things by proposing a lightweight, secure method suitable for resource-
constrained environments. Finally, Meenadshi et al. [10] introduced an AI-enhanced LSB framework 
that leverages machine learning to optimize concealed data embedding, offering improvements in 
both embedding efficiency and concealment quality. These developments highlight the ongoing 
trend toward adaptive, transformation-domain, and AI-driven steganographic solutions tailored for 
diverse application scenarios. 

However, these transformations are computationally intensive, making such methods unsuitable 
for resource-constrained environments, such as Internet of Things devices, where memory and 
processing power are severely limited. This limitation motivates the exploration of alternative 
approaches that combine mathematical rigor with low computational complexity. 

A breakthrough in this context has been achieved by code-controlled steganographic methods, 
which operate directly in the spatial domain of the cover medium while preserving precise control 
over the desired frequency components [11]. Unlike traditional transform-based techniques, these 
methods leverage structured code constructions to guide the embedding process in a way that 
ensures both low computational overhead and predictable spectral characteristics of the resulting 
steganographic message. By avoiding explicit transformations, code-controlled methods 
significantly reduce the complexity of embedding and extraction procedures, making them 
particularly attractive for deployment on lightweight or embedded platforms. Moreover, they open 
new avenues for achieving fine-grained trade-offs between imperceptibility, robustness, and 
security. 

Existing code-controlled steganographic methods often rely on Walsh functions as codewords, 
taking advantage of their orthogonality and binary nature to selectively affect specific transform 
coefficients in the Walsh-Hadamard domain. This selective modulation enables controlled 
manipulation of particular frequency components within the spatial domain, without performing an 
explicit transform. However, such approaches typically embed only one bit of information per block, 
which significantly limits the embedding capacity. In applications where capacity is a critical 
requirement, such as covert communication or high-volume data hiding, this limitation becomes a 
significant drawback. To address this, we propose a novel approach based on perfect binary arrays 
— well-structured algebraic constructions that allow for efficient partitioning of the embedding 
space. We show that equivalence classes of perfect binary arrays enable the embedding of one bit of 
information per pixel, drastically increasing capacity while maintaining control over the signal’s 
spectral properties and preserving computational efficiency. 

The purpose of this paper is to develop and justify a conceptual framework for a high-capacity, 
code-controlled steganographic method based on perfect binary arrays. 

The proposed approach is designed to operate in the spatial domain while ensuring selective 
control over frequency characteristics through structured algebraic encoding. By leveraging the 



inherent properties of perfect binary arrays, the concept of the steganographic method aims to 

significantly increase embedding capacity — up to log ( )2
2 2N  bit per pixel — without sacrificing the 

possibility of code control or computational efficiency, where N  is the order of the perfect binary 
array. This work focuses on the theoretical foundations and structural principles of the method, 
laying the groundwork for future practical implementations and performance evaluation. 

2. Theoretical foundations 

Let us briefly consider the basic idea of the concept of code-controlled information embedding. Let 
X  to be the matrix of the container block of size N N . The Walsh-Hadamard transform for X  
can be calculated according to the following formula 

 = T

N N
W H XH ,  (1) 

where 
N

H  is the normalized Walsh-Hadamard matrix of order =2kN , 
N
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On the other hand, the transform vector V  of the one-dimensional Walsh-Hadamard transform 
of a vector Y  of length N  is determined by the following relation 

=
N

V YH . (3) 

One of the theoretical achievements underlying the concept of code-controlled information 
embedding is the relationship between the two-dimensional and one-dimensional Walsh-Hadamard 
transforms [12], which can be written (with an accuracy to the coefficient 1 N ) using the operator 

A , which defines the writing of the matrix A  of size N N  in the form of a row vector of length 
2N  by sequential concatenation of the rows of the original matrix A  

= 2N
W XH . (4) 

Let d  to be the bit of the additional information, which should be embedded in the given image 

block. In correspondence with this bit, a codeword T  of size N N  is placed, by means of which 

the bit d  is embedded. 

Then the block of the steganographic message M , will have the form 

~ ~ ~

= +M X T . 
(5) 

Let us consider the Walsh-Hadamard transform of a row vector 
~

M  

~ ~ ~ ~ ~ ~

( )= = + = +2 2 2 2N N N N
W M H X T H X H T H . 

(6) 

Expression (6) allows us to make a fundamental conclusion about the nature of the perturbation 
of Walsh-Hadamard transformants in the steganographic message after additive embedding of the 



additional information into it. The magnitude and localization of such perturbations will depend on 

the specific type of term 
~

2N
T H , which represents the Walsh-Hadamard transformants for the row 

vector 
~

T , with the help of which the additional information bit d  is encoded. 

The N N  matrix representation of the Walsh functions of length 2N  has been widely employed 
in code-controlled steganographic schemes as codewords due to their ability to influence specific 
frequency components in the Walsh-Hadamard transform domain. When used in the spatial domain, 
these functions enable selective spectral shaping of the modified image blocks, allowing the 
embedding process to target certain frequency bands. This property is particularly useful for 
maintaining resisting attacks against the embedded message. 

For example, let us consider the codeword ,( , )8 5 1T  targeting (5,1) Walsh-Hadamard transformant 

and its Walsh-Hadamard transform (assuming 1-based indexing) 
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However, due to their rigid structure and block-wise application, Walsh-based embedding 
schemes typically offer limited capacity, motivating the search for more flexible algebraic 
frameworks such as perfect binary arrays. 

Definition 1 [13]. A perfect binary array is a two-dimensional sequence (matrix) 

, ,( ) , , , ,..., , { , }= = −  −0 1 1 1 1i j i jH N h i j N h , (8) 

having an ideal two-dimensional periodic autocorrelation function (2DPACF), whose elements 
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where , , ,...,= −0 1 1m n N , and all indices of elements , + +i m jh  are reduced modulo N . 

Let us give as an example a perfect binary array of order 8N =  as well as its two-dimensional 
periodic autocorrelation function 
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Statement 1 [14]. Each perfect binary array of order N  generates an E(N)-class of equivalent 
matrices — perfect binary arrays by operations of cyclic shift on rows and columns and inversion, 
while the cardinality of the class of equivalent matrices is 

( ) =
22E NJ N . (11) 

From the research [14], the following is known. If an arbitrary generating perfect binary array 
( )0A N  of order N  is given, then all its cyclic shifts are defined as 

1 2k kL AQ , , , ,...,= −1 2 0 1 1k k N  

and let the two-dimensional periodic cross-correlation function (2DPСCF) between ( )0A N  and its 

cyclically shifted array be defined by the relation 
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where the symbol ** denotes a two-dimensional correlation (convolution); , , ,...,= −0 1 1m n N . 

The following statement is known: 

Statement 2 [14]. The 2DPCCF ( , )B m n  of an array ( )0A N  and array ( )
1 20k kL A N Q  of order N

, , , ,...,= −1 2 0 1 1k k N ,  is a 2DPACF ( , )R m n  of an array ( )0A N  shifted by 1k  rows and 2k  

columns, i.e. 

( , ) ( , ), , , ,..., .= + + = −1 2 0 1 1B m n R m k n k m n N  (13) 

The core of the proposed steganographic method is based on an information modulation principle 
that exploits a key property of perfect binary arrays: the 2DPCCF between a perfect binary array and 
its cyclically shifted version (in rows or columns) is structurally equivalent to the corresponding 
cyclic shift of the 2DPACF of the original array. This algebraic symmetry enables precise and 
predictable manipulation of correlation peaks. We propose to encode information by selecting one 

of 22N  possible states, through controlled cyclic shifts (either along rows or columns) combined 
with optional binary inversion. The embedding process thus corresponds to a particular 
transformation of the array structure within an image block. During extraction, the method relies on 
non-blind decoding, typical for code-controlled schemes: the cover component is reconstructed, the 
2DPCCF is computed, and the position of its global maximum uniquely determines the embedded 
message bit pattern. 

3. The concept of the steganographic method based on the perfect 
binary arrays 

This section introduces the conceptual foundation of a steganographic method that leverages the 



structural properties of perfect binary arrays. Unlike conventional transform-based approaches, the 
proposed method operates entirely within the spatial domain, using perfect binary arrays as code 
carriers to embed information through carefully controlled spatial transformations. The key idea is 
to exploit the unique autocorrelation and cross-correlation characteristics of perfect binary arrays, 
particularly their behavior under cyclic shifts and inversion. These algebraic symmetries enable 
reliable and high-capacity data encoding while maintaining low computational complexity and 
compatibility with resource-constrained environments. We describe the encoding and decoding 
procedures, and the modulation scheme used to map information onto structured transformations of 
perfect binary arrays. 

The main steps of the proposed steganographic method based on [11] are as follows. 

Additional information embedding. 

Step 1. Perform a standard partition of the source container image into non-overlapping blocks of 
size N N . 

Step 2. Choose a reference perfect binary array ( )0A N  of size N . 

Step 3. Let X  be the next container block involved in the steganographic transformation. Choose 
a vector 

log ( )
{ ... }= 2

2
1 2 2N

D d d d  that contains the next log ( )2
2 2N  bits of information to be 

embedded in this container block. 

Step 4. Define the bit 1d  value as the encoding sign of the perfect binary array, the decimal 

equivalents of the bits log ( ){ ... }+=
21 2 3 1 10Nk d d d  as the value of the row shift, and the bits 

log ( ) log ( ) log ( )
{ ... }+ += 2

2 2 2
2 2 3 102N N N

k d d d  as the column shift. 

Step 5. Construct an array ( )
1 20k kL A N Q  of the ( )E N -class for embedding additional information 

and perform embedding, then the next block of the steganographic message will be defined as 

( )= +
1 20k kM X L A N Q . (14) 

Note that when embedding the value +1 into the container pixel value 255, as well as when 
embedding the value -1 into the container pixel value 0, the embedding operation for these pixels is 
not performed. 

Additional information extraction. 

Step 1. Perform a standard partition of the steganographic message into non-overlapping blocks 
of size N N . 

Step 2. Let M  to be the next block of the possibly perturbed steganographic message, involved in 
the steganographic transformation, corresponding to the block X of the container. 

2.1. Construct a matrix  = −M X  with elements ( ), , , , ,..., = −0 1 1i j i j  for which to construct 

the 2DPCCF matrix 

( , ) ( )**= 0B m n A N . (15) 

2.2. Find the row x  and column y  indices of the maximum (absolute value) of the matrix ( , )B m n
. 



2.3. Restore the log ( )2
2 2N  embedded information bits as 
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4. Experimental data 

This section presents the experimental evaluation of the proposed steganographic method based on 
perfect binary arrays. The method's performance is assessed according to key steganographic 
metrics, including embedding capacity, perceptual transparency, and robustness against message-
targeted attacks. 

To evaluate the efficiency of the proposed method in terms of data payload, we compare its 
embedding capacity with that of the classical code-controlled steganographic approach based on 

Walsh-Hadamard functions. The comparison is performed for various block sizes N N , which 
determine the granularity of embedding. While the classical method typically encodes a single bit 
per block regardless of size, the proposed scheme leverages the structural properties of perfect binary 

arrays to encode up to log ( )2
2 2N  bits per block. Table 1 summarizes the resulting capacities in terms 

of bits per block and bits per pixel. 

 
Table 1 
Throughput for steganographic methods 

Block size N  Classical code-controlled method Proposed code-controlled method 
Bit per block Bit per pixel Bit per block Bit per pixel 

4 1 0,0625 5 0,3125 
8 1 0,0156 7 0,1093 
16 1 0,0039 9 0,0351 

 
The data presented in Table 1 demonstrates the significant advantage of the proposed method 

over the classical code-controlled approach in terms of embedding capacity. While the classical 
method consistently embeds only 1 bit per block regardless of block size, the proposed method 
exploits the combinatorial richness of perfect binary arrays to achieve a markedly higher payload. 
Notably, for small block sizes (e.g., = 4N ), the proposed method achieves a fivefold increase in 
throughput per pixel. Even for larger blocks, where embedding density typically declines, the method 
maintains a considerable advantage in both bits per block and bits per pixel. This highlights the 
method’s potential for applications requiring high-capacity embedding, particularly when 
maintaining visual quality is essential. 

Assessing perceptual fidelity is a complex task due to the subjective nature of human visual 
perception. The human visual system exhibits varying sensitivity to spatial, frequency, and color 
distortions, making formal evaluation inherently limited. Nevertheless, in the proposed method, the 
modification of container elements is strictly bounded: changes do not exceed 1  in magnitude. This 
constraint ensures a minimal distortion footprint, which is expected to be imperceptible under 
normal viewing conditions. To support this claim, we provide a quantitative analysis using the peak 
signal-to-noise ratio (PSNR) metric for different embedding densities, reflecting the proportion of 
modified blocks in the image. 

The PSNR is evaluated as 



log
 

=  
 

2

10

255
PSNR 10

MSE
, (17) 

where MSE is the root mean square error between the original and modified image. If %p  pixels are 
changed by ±1, then 

= =
21

100 100

p
MSE p .  (18) 

In Table 2 we present the values of PSNR for different embedding rates 

Table 2 
PSNR values for different embedding rates 
Embedding Rate (%) MSE PSNR (dB) 
25% 0.25 54.15 
50% 0.50 51.14 
75% 0.75 49.38 
100% 1.00 48.13 

 
The results presented in Table 2 confirm that the proposed method preserves excellent perceptual 

fidelity across different embedding rates. Even at 100% embedding, where each block contributes to 
data hiding, the PSNR remains above 48 dB — well within the range considered visually 
imperceptible. This robustness stems from the method’s foundational design, inherited from the 
code-controlled paradigm, where modifications are limited to ±1 per pixel. By carefully constraining 
the amplitude of changes, the proposed approach ensures that the embedded information does not 
introduce noticeable visual artifacts, thus maintaining the visual integrity of the cover image. 

The experiments were performed on standard 500 test images subjected to JPEG compression to 
simulate realistic transmission conditions. We show in Table 3 the obtained dependency of the 
decoding error rate on the compression rate QF. 

Table 3 
The dependency of the decoding error rate on the QF in conditions of JPEG compression attack 
QF 100 90 80 70 60 
Error rate, % 0.02 26.53 42.88 46.41 47.77 
QF 50 40 30 20 10 
Error rate, % 48.40 48.88 49.23 49.53 49.82 

 
The experimental results demonstrate that even with a relatively small block size of 8 8  and 

embedding of 7 bits per block, representing a sevenfold increase in payload compared to classical 
code-controlled methods, the proposed technique maintains acceptable performance under low 
levels of JPEG compression, which is an impressive outcome given the aggressive payload and lossy 
compression. These results raise an important and underexplored question in steganographic design: 
Is it more effective to use small blocks with limited payload to ensure robustness, or to utilize larger 
blocks that accommodate more data per unit but may exhibit different distortion-resilience 
properties? As Shannon observed in his foundational work [15], larger codes often yield better 
efficiency and robustness. Extrapolating this principle, larger block sizes may potentially provide 
enhanced resistance not only to compression artifacts but also to steganalytic attacks, due to 
increased structural complexity and embedding variability. This hypothesis suggests that the 
traditional preference for small embedding units in spatial and transform-domain steganography 
might need to be re-evaluated. Consequently, this opens a compelling direction for rethinking the 
very foundation of steganographic design, possibly leading to the emergence of new principles and 
embedding architectures grounded in large-block algebraic frameworks. 



5. Conclusion 

This paper introduced a novel steganographic method based on perfect binary arrays, offering a fresh 
algebraic perspective on payload encoding within digital images. The proposed technique 
significantly increases embedding capacity by exploiting the unique autocorrelation and cross-
correlation properties of perfect binary arrays and their cyclic shifts, enabling the modulation of up 
to 22N  distinct states within a block of size N N . Compared to classical code-controlled 
approaches that typically embed only one bit per block, our method demonstrates up to sevenfold 
improvements in throughput without compromising perceptual quality. 

Experimental results confirm that the modifications introduced to the spatial domain are minimal, 
with pixel-level changes constrained within ±1, yielding high PSNR values and excellent visual 
imperceptibility. Moreover, the method retains robustness under moderate compression, suggesting 
suitability for real-world applications, including constrained environments such as IoT platforms. 
The analysis also raises essential theoretical considerations: while smaller blocks have traditionally 
dominated steganographic designs, larger blocks, as advocated by Shannon for coding, may offer 
increased resistance to compression and steganalysis, pointing toward the need for reevaluating 
current paradigms. 

Overall, the proposed concept not only advances the practical utility of spatial-domain 
steganography but also opens new avenues for integrating algebraic structures into the core of 
information-hiding systems. 
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