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Abstract

The article presents a novel method for detecting dangerous radio signals within a specified frequency
range, leveraging Bayesian hypothesis testing. With the increasing sophistication of covert technical
means, such as radio beacons and hidden transmitters, traditional detection techniques based on spectral
analysis or power measurement are often insufficient. These modern devices employ low-power
transmission, frequency agility, and signal masking to avoid detection. To address this challenge, the
authors propose a statistically robust approach rooted in Bayesian inference, which allows for the
integration of prior knowledge about signal characteristics and noise behavior. The methodology
formalizes the detection task as a binary hypothesis test: the presence (H;) or absence (H,) of a dangerous
signal in the observed data. By applying Bayes’ theorem, the model updates prior probabilities with
empirical observations, enabling more accurate and adaptive decision-making under uncertainty. The
study derives key performance metrics, including false alarm probability, signal detection probability,
and overall error probability, demonstrating how these indicators improve with the incorporation of
additional signal features. Simulation results show that increasing the number of detection parameters
from four to seven raises the success rate of identifying dangerous transmissions from 80% to 95%,
confirming the effectiveness of the proposed method. This Bayesian framework enhances the reliability
and precision of radio monitoring systems, particularly in complex electromagnetic environments where
classical methods fail. The research contributes to the field of information security by offering a
principled and flexible solution for countering technical espionage and preventing unauthorized data
leakage via radio channels. The proposed method can be implemented in practical operations of technical
protection services, significantly improving the efficiency of signal detection and strengthening the
overall security posture of critical information infrastructure.
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1. Introduction

Information has become one of the most valuable economic assets that influence the competitiveness
of enterprises, government institutions, and other entities in modern society. The acquisition of
confidential information without direct physical access has evolved into a new form of technological
activity known as "technical espionage.” Among the most common methods for acquiring sensitive
data is the use of specialized technical means designed to covertly obtain and transmit data via radio
channels. These devices are often referred to as radio beacons, radio bugs, or covert listening devices.

Radio beacons can vary significantly in their design: from simple analog transmitters to complex
digital systems equipped with data storage modules, remote control capabilities, encryption, and
environmental adaptability. The primary goal of such devices is to ensure maximum concealment of
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their operation. This is achieved through the use of low-power transmitters, careful selection of
operating frequencies, limited transmission duration (activation only when necessary), and the
application of signal masking techniques.

As a result, the challenge of detecting such devices becomes increasingly relevant, especially at
facilities where critical or classified information is stored or processed. Traditional detection methods
based on spectral analysis, power measurement, or visual inspection have limited effectiveness when
modern concealment technologies are employed. Therefore, researchers are increasingly turning to
statistical approaches—particularly hypothesis testing—as a foundation for building automated radio
monitoring analysis systems.

Hypothesis testing is one of the fundamental statistical tools used to verify assumptions about
the parameters of random processes. In general, it involves comparing two mutually exclusive
hypotheses: the null hypothesis (H,) and the alternative hypothesis (H,). The null hypothesis
assumes no significant changes or relationships in the process under study, while the alternative
suggests their presence. Based on collected data, a statistical analysis is performed to determine
whether the null hypothesis should be accepted or rejected.

In the context of radio monitoring, this method can be applied to detect anomalies in the spectrum
that may indicate the presence of illegal transmissions. For instance, if the background noise level in
a certain frequency band significantly exceeds the expected level, it may suggest the presence of a
hidden transmitter. Thus, hypothesis testing becomes an important tool for automating the analysis
of radio environment conditions.

According to [1], the formalization of the hypothesis testing problem involves determining the
probability of Type I error (rejecting a true H,) and Type II error (accepting a false H,). To ensure
optimal decision-making, various criteria are used, such as the Neyman-Pearson criterion, the
maximum likelihood criterion, or the Bayesian criterion. The latter becomes particularly relevant
when prior knowledge about the signal's occurrence probability is available.

Works [2] and [3] examine the classification of hypothesis testing into single-sample and two-
sample procedures. Single-sample methods are used to test hypotheses about a single distribution,
whereas two-sample methods are used to compare two independent datasets. However, in most
cases, these methods are discussed within the general framework of mathematical statistics, without
specific adaptation to physical processes such as radio signals.

Studies [4] and [5] demonstrate the advantages of the Bayesian approach to hypothesis testing
compared to classical methods. Classical algorithms, including the maximum likelihood method, do
not account for prior information, which can lead to increased error rates in uncertain situations. In
contrast, the Bayesian approach allows for the integration of knowledge about the signal model, its
probability of occurrence, and the statistical characteristics of noise.

A key distinction of the Bayesian approach is that model parameters are treated as random
variables with known or estimated prior distributions. This enables real-time adaptation of the
model, which is critically important in tasks involving the detection of weak, short-term, or chaotic
signals.

In works [6] and [7], two main strategies for implementing Bayesian learning from data are
described. The first, known as the Search and Score method, involves searching for the optimal model
structure by maximizing a quality criterion, such as the Akaike Information Criterion (AIC) or the
Bayesian Information Criterion (BIC). The second strategy employs constraint-based algorithms,
which infer conditional independence between variables based on statistical tests.



Although machine learning offers opportunities for data analysis automation, expert assessments
and analytical models often remain more reliable under high uncertainty. This is especially true for
specialized tasks such as detecting radio signals in complex electromagnetic environments.

Considering the current state of research, the limitations of existing detection methods, and the
need to improve the efficiency of radio monitoring, it is scientifically justified to develop a Bayesian
approach to hypothesis testing for identifying dangerous signals within a specified frequency range
at information-sensitive sites.

Therefore, it is relevant to develop a Bayesian hypothesis testing method for detecting dangerous
signals of a given frequency range at objects of information activity. This will enhance the
effectiveness of radio monitoring systems, ensure reliable protection of information resources, and
prevent the loss of confidential data..

Based on the above, the development of a method of Bayesian hypothesis testing for detecting
dangerous signals of a given frequency range at the objects of information activity is relevant.

2. Main part

In various information systems, it is often necessary to solve problems related to distinguishing
certain random processes. This primarily refers to the task of radio monitoring of a given frequency
range, digital measurement systems and calculation of parameters of dangerous noise-like signals in
technical channels of information leakage [10-13] .

The tasks of random signal recognition are related to the problems of statistics, and its solution
is based on the application of the theory of statistical hypothesis testing using appropriate measures
(dimensions).

To consider this issue, we will present the basic information that allows us to solve the problem
of observing random signals in discrete time.

Let the result of radio monitoring (observation) receive a vector x, which is the value of a vector
random variable X, which takes values from the radio monitoring frequency range (observation
space) Qx.

We take into account that random signals of the radio monitoring range can be an additive
mixture, a multiplicative mixture or a combined mixture.

That is, one of a given set of fully known signals, which are given by the expression

S = [Si’ Szl',---Sm']T, i e[O,m—l]

(1)
and noise (interference) with a given probability distribution density.

Then the task of detecting a dangerous signal is a special case of recognition when m = 2 and one
of the signals is identically zero: SO = 0.

For example, when recognizing two signals SO and S1 against the background of combined
additive V and multiplicative U noise on observation x, hypothesis testing should be carried out

HO:X:U2+V>H1:X:U_IS‘+V5 (2)
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where is a random matrix of divisions of multiplicative noises;

T
V: e n . ey . o e
[V“VZ’ v ] is a random vector of additive noise divisions.

The task of testing the hypotheses described by expression (1) can be presented in a parametric
form.

Let the random variable 9 take values from the set
Q9 = {0;1}. An available implementation would be a random variable described by the expression

X=(1-HWUs+tV)+HUs+V)=
=(1-HUso+ UtV (3)

It is necessary to test the hypotheses
HOZLQZO,S:l. (4)

The given example shows that, given the task of detecting (recognizing) the probable value
(dangerous signal) X depends on some random value (depends on the state of nature), the value of
which 9 must be determined in a specific experience.

Note that with this formulation, the tasks of detection and estimation of signal parameters do not
fundamentally differ and are solved in the same way.

FX‘g(x|49)=P{X<x|n9=6’}

We will assume that the conditional distribution function (conditional

density of the probability distribution) Wlx]0)

w.(0)

and the density of the probability distribution

are known at the beginning of the study.

For the given example, the action space A consists of two elements: a0 and al, which respectively

mean the acceptance of the hypothesis Ho(0=0)i Hi(0=D).

The solution space D consists of all mappings d: Qx — A of the vector of observations into
available actions. Thus, the frequency space of radio monitoring is divided into two areas:

Q. ={x]d(x)=ao}

Q,={x]d(x) =a1}} acceptance of hypothesis H1 (commitment of action al). The task of optimal
signal detection synthesis is to perform this breakdown. Note that the regions and may be disjoint.

acceptance of hypothesis HO (commitment of action a0 and the area

With this formulation of the task, each action is assigned a mutually unambiguous assessment of
the state (parameter) of nature, therefore the space A and Qe can be equated: A = Qe. Each action
(decision about the value of the random parameter Qe in a specific experience) is accompanied by

losses, which are described by the loss function L:QoxA>R" R _ et ofreal positive numbers.

The loss function maps the estimate of this parameter to each true value of the state (parameter) of

nature Qo. Since the decision 6= can be accompanied by errors, in the event of an error, the person
making the decision suffers losses, which are described by the loss function. It is clear that the loss
function is an integral function. At the same time, the losses in the case of a correct decision should
be greater than the losses in the case of a wrong decision



L=(6,6)>L=(60,0) 0+0,

A=0p d(x)=0
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We assign a risk to each solution d = d(x) and the state of nature
RO,d)= | L(H,d(x)WX|g(X| O)dx =
Qx
=F{L(0,d(X|0)=0
{L(0,d(x|0)=0} )

To detect dangerous signals, namely to test the hypotheses of the presence of dangerous signals,
we will apply the Bayes estimation method.

Bayesian hypothesis testing represents a robust statistical framework that enables researchers to
assess the relative plausibility of competing hypotheses in light of observed data. Unlike classical
frequentist methods, which primarily rely on p-values to reject a null hypothesis without directly
quantifying the evidence in favor of alternative explanations, Bayesian hypothesis testing provides
a more comprehensive and interpretable approach. It allows for the incorporation of prior knowledge
or expert beliefs about the hypotheses before observing the data, making it especially valuable in
domains where such information is available or critical for decision-making.

In this framework, each hypothesis is assigned a prior probability distribution that reflects
existing knowledge or assumptions regarding its likelihood. Once empirical data are collected, Bayes'
theorem is applied to update these prior probabilities, yielding posterior probabilities that quantify
the degree of belief in each hypothesis after considering the observed data. This process not only
supports hypothesis evaluation but also facilitates model comparison and uncertainty quantification
in a probabilistically coherent manner.

A key feature of Bayesian hypothesis testing is its ability to compute the Bayes factor — a
quantitative measure of the strength of evidence favoring one hypothesis over another. The Bayes
factor is defined as the ratio of the marginal likelihoods of the data under two competing hypotheses,
weighted by their respective prior probabilities. When the Bayes factor exceeds 1, it indicates that
the data provide more support for the first hypothesis compared to the second; conversely, values
below 1 suggest stronger support for the alternative hypothesis [14,15].

This methodological advantage makes Bayesian hypothesis testing particularly suitable for
applications in fields such as signal processing, cybersecurity, and information protection, where
decisions must often be made under uncertainty and with limited data. For instance, in the detection
of covert radio signals or anomalies in electromagnetic environments, Bayesian techniques can
improve classification accuracy by integrating prior knowledge about signal characteristics and
noise behavior [16-19]. As a result, the Bayesian approach offers a flexible, principled, and highly
informative alternative to traditional hypothesis testing methodologies.The Bayesian decision rule

d =d (€4 5 chosen from the condition of minimum average risk

rd)=mingeD | R@O.dx)wgOd©®)
Qo ) (6)

It is possible to determine that the Bayesian decision function can be found from the condition of
minimum posterior risk.



Characteristics of the detector. Under the condition A = Qe = {0;1}), the main characteristics of
the detector are:

a) the probability of a false alarm a = P {d(X) = 1 | e = 0}, which is equal to the probability of
accepting the hypothesis H1 about the presence of a useful signal while there is no useful signal;

b) the possibility of passing a signal B = P{d(X) = 0 | e = 1}, which is equal to the probability of
accepting the hypothesis HO about the absence of a useful signal while a useful signal is present;

c) probability of correct detection Qd = P {d(X) = 1 | e = 1} = 1-, is equal to the probability of
accepting the hypothesis H1 about the presence of a useful signal while the useful signal is actually
present;

d) the probability of a complete error Qd = aP {e = 0} + P { & = 1}.

The quantity a is called the level of significance of the criterion d(x), and the quantity Qd is called
the power of the criterion.

Bayesian hypothesis testing, adapted for the detection of whistleblowing signals, is a powerful
and flexible statistical method for detecting dangerous signals of a given frequency range, which can
help information security professionals make more informed decisions and draw more accurate
conclusions. In general, this method can take into account complex models with many parameters
and hypotheses that may be difficult to analyze using classical methods.

3. Overview of results and sources

The basis of the decision-making method in probabilistic-statistical research is a mathematical model
of the investigated process, which is characterized by its structure. A correct assessment of the
structure makes it possible to make a correct decision based on such a model.

The concept of the structure of a mathematical model includes the following elements [1, 2, 20-
23]:

1. dimensionality of the model (the number of equations forming the model);

2. order of the model (maximum order of the difference or differential equation included in the
model);

3. nonlinearity and its type (nonlinearity with respect to variables or non-linearity with respect
to parameters);

4. the time (or lag) of delay (at the entrance) and its assessment;

5. disturbance and its type (deterministic or random, type of distribution, probability distribution
parameters);

6. restrictions on model variables and parameters.

Let’s consider a practical application. Conducted radio monitoring and detected, for example, 52
unknown random signals. We denote by A the event which means that a signal exceeding the
amplitude threshold was detected from these signals, and by B — the event which means that a signal
of unknown frequency modulation was detected. Obviously, these events are dependently related,
since their intersection means that we have detected an unknown signal, i.e. A n B={funknown signal}.



Thus, the probability that we detect an unknown signal of unknown frequency modulation is

p(AVB) = p(A)+p(B)—p(ANB) =
1

134 1 16

50 50 50 50

Thus, the probability of detecting an unknown signal from an unknown frequency-pulse
modulation will be 80%.

How can we take not four signs of detection of dangerous signals, signals which may be signals
of means of secretly obtaining information, but more, for example, five, then six and seven signs.
That should significantly increase the probability of detecting random signals. This hypothesis was
verified by simulation. We leave other conditions for the analysis unchanged. Then we get for five

p(AVUB) = p(A)+ p(B)—p(ANB) =
IREINE N U VAP
50 50 50 50

That is, the probability became 85%, which corresponds to theoretical statements.

If we use not five, but six signs of detection when detecting the signals of radio jamming devices,
with unchanged initial conditions, we will get

p(AVUB) = p(A)+p(B)-p(ANB) =
B6 118
50 50 50 50

That is, the probability became 90%, which also corresponds to theoretical statements.

If we use not six, but seven signs of detection when detecting the signals of radio jamming devices,
with unchanged initial conditions, we will get

p(AVB) = p(A)+p(B)—p(ANB) =
BT L 19
50 50 50 50

That is, the probability became 95%, which also corresponds to theoretical statements.

It should be borne in mind that there are many parameters for detecting radio signals. Therefore,
probabilities must be carefully applied in mathematical calculations.

For a visual proof of the proposed method, we present a graphic representation. A graphic
presentation of the results of the methodology is presented in Fig. 1.
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Figure 1: Graphical results of practical use of the method

Fig. 1 presents a graphical representation of the practical application of the proposed Bayesian
hypothesis testing method for the detection of dangerous radio signals within a specified frequency
range. The graph illustrates the relationship between the number of signal detection features
(parameters) used in the analysis and the corresponding probability of successfully identifying
potentially hazardous transmissions, such as those emitted by covert information-gathering devices
operating on radio channels.

On the x-axis, the number of detection parameters increases incrementally from four to seven.
These parameters may include characteristics such as amplitude threshold exceedance, frequency
modulation type, signal duration, spectral density distribution, and temporal correlation with known
interference patterns. The y-axis represents the probability of signal detection expressed as a
percentage.

As shown in the figure, when only four detection features are applied, the probability of
identifying a dangerous signal reaches approximately 80% . With the inclusion of a fifth feature, this
probability rises to 85% , indicating improved accuracy due to additional contextual information.
Further enhancement is observed when six features are utilized, resulting in a detection probability
of 90% . Finally, with the integration of a seventh detection parameter, the success rate reaches 95%
, demonstrating that each added characteristic significantly contributes to the overall effectiveness
of the detection process.

This trend confirms the theoretical assumption that increasing the number of relevant signal
features enhances the reliability and precision of the decision-making mechanism based on Bayesian
hypothesis testing. It also supports the practical applicability of the method in real-world scenarios
where early and accurate detection of unauthorized transmissions is critical for information security.

4. Conclusion

Based on the conducted research of hypothesis testing methods with the aim of their application for
detecting dangerous signals within a specified frequency range, it has been proven that the adapted
Bayesian hypothesis testing method offers significant advantages over traditional classical
approaches. This method provides higher accuracy in detecting dangerous radio signals, especially
under conditions of uncertainty and in the presence of complex-structured noise.



The Bayesian approach enables specialists in information security not only to formalize the
decision-making process but also to consistently update their prior beliefs based on new empirical
data. This results in more substantiated, reliable, and flexible conclusions, which are critically
important in tasks related to the detection of covert information-gathering devices. Unlike classical
methods, which rely on p-value analysis and often fail to provide a quantitative measure of the
strength of evidence, Bayesian methodology allows for a quantitative assessment of hypothesis
probabilities, offering richer informational support for decision-making.

Simulation results have shown that the use of additional signal parameters — increasing from
four to seven — during hypothesis testing increases the probability of detecting dangerous signals
from 80% to 95%. This demonstrates the effectiveness of the proposed method. Such an improvement
of 15% is significant and confirms the theoretical assumptions regarding the advantages of the
Bayesian approach under real-world radio monitoring conditions.

Thus, the advantages of the adapted Bayesian hypothesis testing method for detecting dangerous
signals within a given frequency range unquestionably confirm the feasibility of its implementation
in the practical operations of technical information protection services. The proposed approach can
be successfully applied to enhance the efficiency of radio monitoring systems, ensure the integrity
and confidentiality of information, and counteract technical channels of data leakage.
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