CEUR-WS.org/Vol-4150/paper5.pdf

CEUR
E Workshop
Proceedings

published 2026-01-16

Analysis of software vulnerability detection methods*

Liudmyla Gryzun’', Alla Havrylova®", Andrii Tkachov*’, Andrii Hapon®' and Natalia
Brynza’f

! Simon Kuznets Kharkiv National University of Economics, Nauky Av.,9A, Kharkiv, Ukraine
2 National Technical University “Kharkiv Polytechnic University”, Kyrpychova Str., 2, Kharkiv, Ukraine
3 Kharkiv National University of Radio Electronics, Nauky Av.,14, Kharkiv, Ukraine

Abstract

The author proposes a direction of improvement of existing software protection systems, focusing efforts
on increasing their ability to detect new types of malware. The most promising direction for the
development of technologies for detecting vulnerabilities and vulnerabilities in software is an approach
that combines different methods of analysis. This allows achieving higher accuracy of the results, as well
as increasing the productivity of the tools used to check the code. A method of combining static analysis
of programs and dynamic symbolic execution is proposed to improve the accuracy of vulnerability
detection while maintaining high performance of analysis tools. This approach will significantly reduce
the risk of errors that can be missed when using one of the analysis methods separately, and also
improves the efficiency of the overall software security process.

Keywords

malware, antivirus solution, analysis, cybersecurity, method

1. Introduction

Despite great efforts, both theoretical and practical, to solve the problem of information security,
its current state is far from any reliable solution. Moreover, a number of new problems have arisen
that are related to protection against malware. Experts are even radically changing their views on
the problem of organising cyber defence in view of the threats posed by malware. malware makes
it impossible for a computer to function properly, so new anti-virus measures and intrusion
detection systems are undoubtedly needed to treat programs, destroy viruses and prevent them. A
large number of different methods are currently used to solve this problem.

These approaches have both strengths and weaknesses. According to experts in the field,
methods that use the pattern approach have become very effective. To ensure the smooth
operation of pattern scanners in anti-virus programs and intrusion detection systems, it is
necessary to constantly maintain the databases that contain malware samples.

2. Problematic issues of software vulnerability detection

The essence of malware detection is the identification of patterns or signs that are characteristic of
malware. This may include analysing the programme code for suspicious instructions or behaviour
that is not typical of legitimate programmes.

There can be several reasons for undetected malware [1-3].

Proceedings of the Workshop on Scientific and Practical Issues of Cybersecurity and Information Technology at the V international scientific and practical
conference Information security and information technology (ISecIT 2025), June 09-11, 2025, Lutsk, Ukraine

*Corresponding author.

“These authors contributed equally.

@ Liudmyla.Gryzun@hneu.net (L. Gryzun); sharayal972@gmail.com (A. Havrylova); andrii.tkachov@khpi.edu.ua (A. Tkachov); andrii.hapon@nure.ua (A.
Hapon), natalia.brynza@hneu.net (N. Brynza)

© 0000-0002-5274-5624 (L. Gryzun), 0000-0002-2015-8927 (A. Havrylova); 0000-0003-1428-0173 (A. Tkachov); 0000-0003-2560-7426 (A. Hapon),), 0000-0002-
0229-2874 (N. Brynza)

© 2025 Copyright for this paper by its authors. Use permitted under
Bv Creative Commons License Attribution 4.0 International (CC BY 4.0).

mailto:andrii.tkachov@khpi.edu.ua
https://orcid.org/0000-0003-1428-0173

1. Volume - although the exact number is unknown, researchers are finding hundreds of
thousands of new malware every day. The sheer number of malware means that some of the
newest malware can bypass common cybersecurity measures to protect a corporate information
system.

2. Outdated antivirus software — outdated antivirus software that blocks malware by detecting
patterns relies on an updated database to stop the latest known threats.

3. Undetectable malware - Some malware can be difficult to detect due to its sophisticated
design, allowing it to bypass cybersecurity mechanisms. For example, some malware may be
specifically designed to trick popular anti-virus software into believing it is harmless. Other
malware may use social engineering to trick users into installing it.

The use of intrusion detection and anti-virus software that is constantly updated is an
important element of the defence against new and evolving threats in the field of software
protection.

Based on the analysis of known approaches to detecting malware in software code, the
following methods of malware detection can be distinguished, which in turn are based on statistical
or dynamic tracking of code activity.

Static analysis methods involve checking code without executing it to identify malicious
patterns or known malware, while dynamic analysis methods execute code in a controlled
environment to observe its behaviour and detect suspicious activity. Dynamic analysis may include
elements of using algorithms to determine the likelihood that a program is malicious based on its
characteristics and behaviour (heuristic analysis) and monitoring the program to detect abnormal
behaviour that may indicate malicious intent (behavioural analysis).

One way malware spreads is by copying itself into every executable file it infects. These types
of malware replicate an identical copy of themselves, byte by byte, each time they infect a new file.
They can be easily detected by looking for a specific string of bytes, called a ‘pattern’, that is
derived from the malware body. The latter may include:

- character string;
- semantic expressions in a special language;
- formal mathematical model, etc.

Patterns are identified by experts in the field of computer virology. They are able to isolate the
virus code from the program code and formulate its characteristic properties in the most searchable
form. Almost every company that develops anti-virus software has its own group of specialists
who analyse new viruses and add new patterns to the anti-virus database.

The algorithm of the pattern-based method is based on the search for patterns — attacks in the
source data collected by network and host sensors of the attack detection system. When patterns
are detected, the attack detection system records the fact of an information attack that matches the
found signature.

The essence of a standard pattern-based virus detection strategy is to maintain a database of
malicious patterns. Each incoming file is checked for a virus signature that matches an entry in the
database of known patterns. In this case, the protection system provides for the constant updating
of the pattern database and relies on it.

Pattern-based malware detection is the most common method used by commercial antiviruses.
But despite its simplicity, it has the following significant drawbacks.

1. Protection is provided only against known malware. It should be noted here that patterns are
usually created to cover as many viruses as possible — a virus family. However, there is always a
change in an executable file that can cause the pattern to stop being detected.

2. Constant growth of the pattern database. As the number of viruses, their types, and the
ability of viruses to change increases, the speed of filling the database also increases.

3. When a virus appears and before the pattern database is updated, the client is vulnerable to a
new malware. Only by identifying the file under investigation as a virus can its pattern be retrieved
and added to the database. Moreover, malware developers have learnt to successfully bypass
pattern detection by obfuscating the virus body. This has forced anti-virus companies to develop
alternative protection methods.

With the anomaly detection approach, the developers of an anti-virus solution build a database
of actions that are considered safe. If an application's execution process violates any of these
predefined rules, it is marked as malicious. While anomaly-based detection has the potential to
detect new malware patterns, it also has a very high false positive rate. Many anti-virus packages
use algorithms for analysing the sequence of commands to generate some statistics and make
decisions about the possibility of infection for each object being scanned. They are called heuristic
scanning methods. Moreover, unlike the pattern-based method, the heuristic approach can detect
both known and unknown viruses (i.e. those created after heuristic processing). In this approach,
analysts use machine learning techniques to classify malware. Static, dynamic, visual
representations of features, or a combination of these are used to train a classifier on a dataset
consisting of both malicious and non-malicious binary files.

Various machine learning techniques such as support vector machine (SVM), random forests
(RF), decision trees (DT), naive bayes classifier (NB), k-nearest neighbours (kNN) and gradient
boosting are used to classify and detect malware samples and their respective classes, to filter out
malware that requires further investigation by an analyst. Static analysis is the process of
analysing binary malware without actually running the code. Patterns found during this analysis
include pattern strings, frequency distribution of byte sequences or opcodes, byte-level n-grams or
opcode-level n-grams, API (Application Programming Interface) calls, the structure of a
disassembled program, etc.

The following are studies that used static malware analysis approaches [2].

In [4], information was extracted from executable files, such as the list of DLLs (Dynamic Link
Library) used inside the executable file; the list of DLL system calls; the number of different system
calls inside each DLL; characters or strings encoded in a binary file using a hexadecimal dump as
features. For classification, NB was used with a training dataset consisting of 4266 files, including
3265 viruses and 1001 clean samples. According to the authors, the result was an accuracy of
97.11%. This is one of the first attempts to analyse malware using data mining techniques.

In [5], the classification accuracy of various machine learning methods, such as NB, SVM, DT
and their enhanced versions, was investigated for classifying malware in different families using
the features proposed in [6]. DT (C4.5 implementation) proved to be the best, with 99.6 per cent
accuracy and 2.7 per cent false positives.

In [7], they presented a new approach of using a variable-length instruction sequence to detect
worms in binary files using machine learning. They used RF and DT algorithms to classify a
dataset consisting of 1444 worms and 1330 clean files and achieved classification accuracy of 96 %.

In [8], they investigated the use of API call sequences for malware detection. They showed that
all versions of the same malware have a common basic pattern that can be identified using a basic
call sequence API.

In their study, [9] proposed a scheme based on the obfuscation technique to study the
shortcomings of static analysis approaches. Experiments have shown that the static approach is not
sufficient for effective malware analysis. Static analysis can be easily avoided if the malware is
obfuscated or compressed. Therefore, you need to pay attention to the following behavioural
features for better analysis. Dynamic analysis. Common to all Dynamic Approach approaches is
the execution of a malware sample in a controlled environment to extract behavioural features
(virtual machine, emulator, sandbox, etc.). The behaviour is monitored using tools such as Process
Monitor, Process Explorer, Wireshark, or Capture BAT.

Study [10] proposed a comprehensive approach to conducting behaviour-based malware
analysis and classifying malware into new groups using artificial intelligence methods.

They used a resource that is a bait for attackers — honeypots — and intrusion detection systems,
such as HoneyClients and Amun, to collect malware samples. Next, a behavioural report was
created for each sample using virtual machine platforms such as CWSandbox and Anubis, and each
report was analysed manually. Using artificial intelligence methods, the malware samples were
categorised into groups — worms and trojans. The main drawback of the study is that the analysis
of the reports was not automated. Therefore, given the huge volume of malware being generated
today, it is impossible to analyse reports manually.

In [11], they proposed a method for automated identification of new classes of malware with
similar behaviour (clustering) and classification of previously unseen malware for the identified
classes (classification) using machine learning. By using clustering and classification, a new
approach is used to handle the behaviour of a large number of malware binaries. This approach
significantly reduced the execution time of the analysis methods. The researchers captured state
change features such as file opening, mutex blocking, network activity, infection of running
processes, or registry key setting, and then mapped the malware behaviour in a multidimensional
vector space. More than 10 000 malware samples belonging to 14 different families were used in
the experiment. These malware samples were collected using honeypots and spam traps. The result
was an accuracy of 88% in classifying the families. The disadvantage of the work is that only one
binary execution path was considered in the analysis. It is clear from the above work that static or
dynamic analysis alone is not sufficient to accurately and effectively classify malware samples.
This is because the individual use of these methods can be easily circumvented by using code
obfuscation or various runtime stopping techniques. Also, dynamic analysis cannot examine all the
execution paths of a program file. The controlled environment in which malware is monitored is
different from the real one, the program may behave differently because some malware behaviour
can only be triggered under certain conditions, for example, with a specific command or on a
specific system date and, as a result, cannot be detected in a virtual environment.

In [12], a new approach to training a malware classifier was proposed using both statistical and
dynamic methods. As a result of training the model, it was found that statistical and dynamic
analysis together work better than separately. The experiments were conducted using two different
datasets and many machine learning algorithms, namely DT, kNN, Bayesian network and SVM.

In [13], a hybrid model for classifying binary files into clean and malicious ones was also
proposed, which integrates both dynamic and static analysis functions. For this purpose, static
information such as ‘printableString’ (a type of string with limited characters in ASN notation) and
function length frequency were extracted, and dynamic information such as API parameters and
API function names were extracted. To test the model, 2939 malicious and 541 clean samples were
used. Then, using integrated meta-classifiers such as SVM, DT, and RF, the malware samples were
classified with an accuracy of 97,055 %.

Another area is visualisation-based approaches to malware analysis.

Several tools were available for visualising and editing a binary file, which display the file in
hexadecimal and ASCII formats but do not convey any structural information to the analyst.

In [14], a dot plot data visualisation technique was applied and it was shown that visualisation
can be useful for identifying software design patterns — a technique for visualising software
product patterns that provides a visual overview of the system structure. This technique is useful
for designing software systems through sequential abstraction, a design pattern that helps
eliminate redundancy. The sequence is broken down into tokens, and then the tokens are plotted
on the graph as points.

In [15], they tried to detect and visualise viruses embedded inside an executable file using self-
organised Kohonen maps with artificial neural networks, which is used to visualise
multidimensional data [16], without using pattern information. The study found that each virus
family has its own mask.

In [17], the use of graphical byte visualisation for automatic malware classification was first
investigated. In the study, the entire malware sample was converted into a grey-scale image.

The research dataset consisted of 9 458 malware samples belonging to 25 different classes
collected from the Anubis system [18]. A kNN model was trained on these images; the Euclidean
distance was used to estimate the distance. The malware samples were grouped into the respective
classes and the accuracy of 97,18 %.

In [19], they also converted the malware into a two-dimensional grey-scale image and classified
the samples based on the resulting textures. They extracted common features based on the textures
using the Gabor wavelet transform and the image descriptor GIST. The experimental dataset
consisted of 3131 binary samples from 24 unique malware families. After building the feature
vector, classification is performed on the malware samples using SVM machine learning
techniques. As a result, the following accuracy was obtained 96,35 %.

In [20], a step-by-step approach was proposed to automatically classify malware into different
families and detect new malware. The study used a combination of byte-to-grayscale image
conversion, n-gram operating code, and an import function. The decision module uses these
features to classify malware samples into their respective families and to identify new unknown
malware. To detect new malware families, we applied the Shared Nearest Neighbour (SNN)
algorithm. The model was trained on a database consisting of 21 740 malware samples from 9
different families. The result was a classification accuracy of 98.9 % and a detection rate of 86.7 %.
The paper studies pattern-based and heuristic methods of malware detection. A separate analysis is
devoted to the use of machine learning methods for malware classification. Various machine
learning techniques for classifying and detecting malware samples and their respective classes, as
well as filtering them, are investigated. The usefulness of graphical visualisation of bytes for
detecting software design patterns for further automation of virus detection is shown. A
comparative characterisation of modern, mainly heuristic, malware detection methods is made and

systematised by search accuracy values. Among the many existing approaches to malware analysis,
dynamic analysis is the most appropriate, as it allows detecting the destructive activities of various
programs directly at runtime.

Dynamic malware analysis identifies methods that can detect new malware to a certain extent
due to the adaptation property [21, 22]. In addition, due to the growing requirements for security
systems [21, 22], the comparison of malware detection methods should be based on the properties
of verifiability and the ability to detect new malware: the presence of unknown unique
characteristics, the level of false positives, and the blurring of the data under study.

The results of the analysis of methods for detecting new malware according to the defined
criteria are presented in [1, 21, 22].

Since no effective methodology for detecting unknown malware has been identified at the
moment, in order to effectively search for and destroy malware, additional research is required,
taking into account all the features of using modern methods of malware detection, to develop a
more effective method of protecting software from malware in modern corporate systems.

Based on the analysis of methods for detecting new malware, it can be said that for existing
methods, due to their properties, detection of one of the most dangerous types of malware capable
of metaprogramming its own code in order to implement a method of hiding from security systems
is an extremely difficult task of introducing a large entropy of the characteristics of the samples
under study to solve the classification problem. This type of virus includes polymorphic
(oligomorphic) and metamorphic types of malware. Thus, each of the classes of existing methods
(knowledge-based, artificial intelligence, machine learning, behavioural) is able to solve this
problem to a certain extent, but under certain limitations.

The results of the comparative analysis according to the described criteria show that among
them it is possible to distinguish the methods that have shown the most complete compliance with
them — methods based on the synergy of several techniques for detecting and detecting malware.
Thus, formalisation of imprecise knowledge and implementation of approximate reasoning in the
field of malware detection allows detecting its destructive activity in conditions of certain
vagueness of information about the state of the information system with the possibility of
adaptation to detect similar types of malware [22].

3. Improvement of existing systems

Today, there are two strategies for detecting new malware [21, 22]: detection of anomalous activity
based on the audit of functioning scenarios, detection based on the experience gained in combating
known malware. To effectively detect new malware, it is advisable to use a hybrid approach based
on combining the most effective methods of static and dynamic software analysis in order to
protect it from the destructive effects of malware, since the number of new instances of it,
characterised by a fundamentally new set of features, is quite small.

A priority area for improving existing software protection systems is to supplement the existing
functionality with a method based on the theory of fuzzy logic. Moreover, the application of the
chosen method should provide for the determination of the polymorphic (metamorphic)
component of malware for each known type of malware, which will ensure the effective detection
of new malware based on the identification of polymorphic (metamorphic) structures of existing
viruses in the conditions of some inaccuracy (blurring) of information about the state of the
information system.

Official data from software developers often does not confirm the declared level of accuracy of
detecting new malware in practice, which indicates that the antivirus systems in question were
tested under specific conditions that are too different from the real world.

Today, the issue of software security is of both practical and research interest. Software security
is directly related to the search for errors and vulnerabilities.

Software vulnerabilities are potential entry points for malware and are directly related to
software security. Vulnerability detection is a complex task that requires the direct involvement of
an analyst. The difficulties lie not only in finding the state of the application in which the
vulnerability manifests itself, but also in assessing what security aspects it can affect in these
exploits of a given malware vulnerability [23].

Thus, it can be said that the task of malware identification can be indirectly interpreted as the
task of finding software defects as potential entry points for malware, and blocking and controlling
these defects as a function of the software security system. The size and complexity of software are
constantly increasing. The size of the source text of modern programs and software systems can
reach hundreds of millions of lines. This complexity leads to the fact that the creation of high-
quality software becomes virtually impossible without the use of automatic means of checking
programs for compliance with functional requirements for the software and the absence of
software errors.

The presence of vulnerabilities in software is primarily due to the fact that the improvement of
programmer training does not keep pace with the increase in the complexity and size of programs.
Despite the development of software development methods and tools to support the software
development process, released programs contain errors that can lead to incorrect operation of the
program, unauthorized access to critical data, and execution of malicious code. That is, software
errors should be considered in the context of potential entry points for malicious software.

According to the CVE Details portal (www.cvedetails.com), which provides statistics on
registered vulnerabilities in programs based on information from the MITRE corporation since
1999, several thousand critical vulnerabilities are registered annually in programs used [24]. A
reliable way to demonstrate vulnerability is to run a program on a set of input data, in which the
vulnerability leads to specified violations, such as execution of code specified by the attacker or
calling a library function with parameters controlled by the attacker. Software defects that underlie
such vulnerabilities are called exploitable defects.

Currently, methods are being developed that allow generating some types of test sets
automatically. Their development is actively engaged in by researchers whose work is based on the
technologies of automatic generation of test sets and symbolic interpretation. Symbolic
interpretation defines the process of converting input data in a program in the form of formulas
over symbolic variables and constants. Input data for the program act as symbolic variables that
can take on arbitrary values.

4. Software vulnerabilities and known approaches to their detection

As previously defined, software vulnerability is directly related to errors, which are potential entry
points for destructive malware and operational burdens for cybersecurity quartermasters.

The possibility of a software error was first mentioned in 1842 by Ada Augusta Lovelace in her
work "An Essay on the Analytical Engine, Introduced by Charles Babbage", the main narrative of
which was that the analytical process should be uniformly carried out according to the necessary
control data provided by the analytical engine, and this could also be a source of possible error. The

mechanism was believed to be error-free in its processes, but the cards (with control data) could
give erroneous commands [25].

Thus, we can formulate the definition of a loophole in a program as:

- program defect: Any error made during the design or implementation of a program that, if not
corrected, could cause the program to be vulnerable;

- application vulnerability: A flaw in an application that can be exploited to implement
information security threats.

It is obvious that the concept of program insufficiency is defined through the concept of
vulnerabilities in the design or implementation of the program [26]. In this case, it is possible to
define the concept of the process of examination of the program source code, which consists in
identifying program deficiencies (potentially vulnerable structures) in the program source code.
The IEEE 1044-2009 “Standard Classification of Software Anomalies” provides a more detailed
classification of various program anomalies (deviations from the norm):

- defect — an imperfection or deficiency in the operation of a product, in which the product does
not meet requirements or specifications and requires correction or replacement;

- error — a human action that led to an incorrect result;

- failure — cessation of the ability of a product to perform a required function or the inability to
perform it before certain limitations;

- fault — a message about an error in the program.

In 1993, the National Institute of Standards and Technology (National Institute of Standards and
Technology) issued a manual entitled “Program Error Analysis”, which provides the following
definitions:

- anomaly - any condition that differs from what is expected;
- defect — any non-conformity for use or non-conformity to specification;
- error:

a) the difference between a calculated, observed, or measured value and a true, specified, or
theoretically correct value or state;

b) incorrect step, process, or data definition;

c) incorrect result;

d) human action that led to an incorrect result;

- fault — an incorrect step, process, or data definition in a computer program (see also error);

- failure — the difference between the external result of program execution and the requirement
for the software product.

It should be borne in mind that in reality there is no difference between the concepts of "defect",
"error” and "failure”, since these terms are interpreted differently in the community (even in the
standards that use these terms).

For example, there are such definitions::

- error — a place in the source code of a program that can cause the program to crash or output
incorrect output data on certain external data;

- defect — a place indicating a lack of source code that will not necessarily lead to incorrect
operation of the program, but may worsen its performance characteristics (for example, a memory

leak);

- vulnerability — an error in a program that can be exploited by an attacker to intentionally
crash the program, execute arbitrary code, leak confidential data, or otherwise breach system
security.

» &«

Due to the fact that there is no single interpretation of such terms as “defect”, “error”, “failure”,
in this work the terms “error” and “defect” will be used as synonyms of the term “potential
vulnerability”, and the term “failure” will be used to denote the state of an emergency termination
of the program. The term “program vulnerability” will be used in the meaning of obtaining
unauthorized access to data processed by the program, or in the meaning of unauthorized
execution of program code, as an entry point for intercepting control by malicious software. In
turn, the “Dictionary of the Ukrainian Language” provides the following definition of the term
“vulnerability”: Vulnerability (vulnerability) is “the inability (for example, of a system or its part) to
withstand the effects of an unfriendly environment; the degree of sensitivity to damage, damage; a
weak point in one of the elements of the object of protection; a factor in the realization of a threat”.

In publications, “vulnerability” is defined as “weaknesses in source code that could potentially
be exploited to cause loss or damage” [27];

The National Institute of Standards and Technology in NISTIR-8011 Volume 4 “Supporting
Automation for Security Control Assessments. Software Vulnerability Management” defines
“vulnerability” as a weakness in computational logic (e.g., code) found in software or hardware
components that, if exploited, results in a negative impact on confidentiality, integrity, or
availability.

Vulnerability mitigation in this context typically involves code changes, but can also include
changes to specifications or even the discontinuation of specifications (e.g., complete removal of
affected protocols or functionality).

According to the CVE Details (Common Vulnerabilities and Exposures) website, a database of
common information security vulnerabilities, more than 94 000 critical vulnerabilities have been
registered in programs released to the market.

According to statistics [28], by types of malicious impact on the program, the following
vulnerabilities are most frequently registered:

- malicious code execution;
- program crash;

- overflow;

- execution of malicious code on the client side;
- obtaining unauthorized access to data (obtaining information);
- implementation in the query SQL.

Many software errors that lead to incorrect program behavior during execution can be divided
into the following classes according to the types of harmful effects [29]:

- vulnerabilities that lead to data corruption during processing: integer overflow, data
corruption in RAM, accessing an uninitialized memory block, accessing memory by an
uninitialized or hanging pointer, data falsification, etc.;

- vulnerabilities that lead to unauthorized access to user data: obtaining unauthorized access to
a database, obtaining unauthorized access to information in the RAM or permanent memory of a
computing device, obtaining elevated data access privileges, etc.;

- vulnerabilities that lead to exhaustion of system resources such as heap memory, files, sockets,
etc.;

- vulnerabilities that lead to a crash of the program execution: access to a memory area that
does not belong to the program, division by zero, etc.;

- vulnerabilities that lead to malicious code execution: interception of the malicious code control
path, execution of malicious code on the client side, implementation of a command in the
command line, and others.

Statistics regarding the relationship between programming errors and vulnerabilities show that
the majority of attacks on computer systems are related to programming errors. Here are some key
statistics that demonstrate this connection [30]:

1. The relationship between bugs and vulnerabilities. NIST (National Institute of Standards and
Technology) reports that about 70% of all software vulnerabilities are the result of code errors. This
includes types of errors such as incorrect input validation, memory management, and logic errors.

According to WhiteHat Security, 55% of software vulnerabilities can be traced to insufficient
error handling or improper exception handling, making this type of error particularly critical for
security [31].

2. Common types of vulnerabilities related to errors in code. According to OWASP (Open Web
Application Security Project), most of the critical vulnerabilities that make it onto their "OWASP
Top 10" list are a direct result of programming errors. For example [32]:

- SQL Injection (SQLi): abuse due to insufficient validation or sanitization of input data (logical
error).

- Cross-Site Scripting (XSS): A vulnerability that occurs due to poor input handling (processing
of input data).

- Buffer Overflow: Exploitation by attackers of memory management errors, which are often the
result of resource misallocation.

- The CWE/SANS Top 25 Most Dangerous Software Errors regularly notes that most of the
most common and dangerous errors are related to memory management and input data.

3. Vulnerability Exploitation Statistics. According to Veracode research, 83% of applications
have at least one vulnerability in their source code [30]. Synopsys, in its 2021 State of Open Source
Security Report, found that 84% of commercial applications contain vulnerabilities related to
memory management or input processing [33].

4. Common programming errors that lead to vulnerabilities [34]:

- buffer overflows and other memory management errors account for about 15% of all
vulnerabilities in systems using the C/C++ language, according to data from MITRE;

- incorrect login verification led to 37% of web application attacks, according to the Akamai
State of the Internet Security Report.

5. Vulnerability detection and remediation rate. Veracode State of Software Security 2021 notes
that more than 70% of vulnerabilities discovered in software were related to errors made by
developers during the coding stage [35].

When testing open source software for vulnerabilities, Sonatype in 2022 found that 85% of
vulnerabilities in them arose due to errors in data processing logic or thread management [36].

6. Vulnerabilities related to memory management and exceptions. According to Microsoft
Security Intelligence, vulnerabilities arising from incorrect memory management (and as a result,
the possibility of buffer overflow attacks) are responsible for 70% of critical vulnerabilities in their
software [35, 36].

Statistics clearly indicate a close relationship between software bugs and vulnerabilities. The
majority of cyber incidents are related to logic errors, incorrect memory management, or
insufficient input processing.

Effective testing and code quality management can significantly reduce the number of
vulnerabilities, as most attacks exploit these bugs.

Conclusions

A direction for improving existing software protection systems is proposed, focusing efforts on
increasing their ability to detect new types of malicious software. It is important that the chosen
method involves determining the evolutionary (metamorphic) component of malicious software for
each known class, which will allow detecting new malicious software based on identifying the
evolutionary structures of existing viruses, even under conditions of a certain inaccuracy
(fuzziness) of information about the state of information systems..

Based on the review of modern software analysis methods, the most promising direction for the
development of vulnerability detection technologies and vulnerabilities in programs is an approach
that combines various analysis methods.

This approach allows you to achieve higher accuracy of results, as well as increase the
performance of tools used to verify the code.

Traditional methods, such as static and dynamic analysis, have their strengths and weaknesses:
static analysis provides quick detection of possible vulnerabilities without executing the program,
but has a high probability of false positives; while dynamic analysis executes the code in a real
environment, allowing you to detect vulnerabilities that appear only during execution, but is much
less productive due to the need to run the program.

In this regard, modern researchers focus on combined methods that can take into account the
advantages of both approaches to minimize their disadvantages. One of the most promising
approaches is hybrid program analysis, which includes the integration of static analysis with
dynamic symbolic execution.

This combination allows not only to identify possible vulnerabilities in the code before it is run,
but also to verify these results during the actual execution of the program.

This approach significantly reduces the number of false positives and increases the accuracy of
critical error detection, since static analysis allows you to quickly identify possible dangers, and
dynamic symbolic execution clarifies their reality in specific scenarios.

A method of combining static program analysis and dynamic symbolic execution is proposed to
improve the accuracy of vulnerability detection while maintaining high performance of analysis
tools.

This approach significantly reduces the risk of errors that may be missed when using one of the
analysis methods separately, and also improves the efficiency of the overall process of ensuring
software security.

Hybrid analysis also provides the ability to scale for large projects, where it is necessary to
analyze a large amount of code quickly, but without losing accuracy. Special attention should be
paid to aspects of optimizing computing resources during hybrid analysis, which is an important
factor for applying this approach in real software production conditions.

Declaration on Generative Al

The authors have not employed any Generative Al tools.

References

[1] O. C. Camenko Kpmrepii xmacmdikanii MeTomiB BUABIEHHS IUKIJJINBOTO IIPOrPAMHOTO
3abesneyeHHA. BicHuk XmenvbHuyvkoeo Hayionamvhoeo yHieepcumemy. Ne 1. C. 23-27. (2018).
URL: https://journals.khnu.km.ua/ vestnik/pdf/tech/pdfbase/2018/2018_1/jrn/pdf/6.pdf.

[2] L L Xymnekoscbka, A. B. Ilnyxkuuk, O. A. KynskoBcbkuit. CyyacHi MeTOOM BUSBJIEHHS
LIKIVIMBUX IporpaM. Mamemamuune wmooenosanus. Ne 1. C. 46-54. (2021). URL:
http://nbuv.gov.ua/UJRN/Mm_2021_1_8.

[3] C. M. JIucenko, P. B. Illyka. AHami3 MeTOAIB ILIKiIIMBOIO IIPOrpaMHOr0 3a0e3IeYeHHS B
KOMII IOTEPHUX cucTeMaX. BicHux XmenvHuybkozo HayionanvHozo yHigepcumemy. Ne 2 (283). C.
101-107. (2020). doi: 10.31891/2307-5732-2020-283-2-101-107.

[4] M. G. Schultz, E. Eskin, F. Zadok. Data Mining Methods for Detection of New Malicious
Executables. Proceedings of the IEEE Symposium on Security & Privacy, California, 14-16 May
2001, 38-49 (2001). URL: https:// doi.org/10.1109/secpri.2001.924286

[5] I Santos, J. Devesa, F. Brezo, J. Nieves, P. G. Bringas, Semi-supervised Learning for Unknown
Malware Detection. Advances in Intelligent Systems and Computin. vol. 91. pp 415-422. (2012).
https://www.springer.com/ series/4240.

[6] Static and Symbolic Analysis. URL: https://www.talkcrypto.org/blog /2019/03/ 15/static-and-
symbolic-analysis/ (naTa 3Bep-HeHHs 16.04.2024).

https://journals.khnu.km.ua/
http://www.irbis-nbuv.gov.ua/cgi-bin/irbis_nbuv/cgiirbis_64.exe?I21DBN=LINK&P21DBN=UJRN&Z21ID=&S21REF=10&S21CNR=20&S21STN=1&S21FMT=ASP_meta&C21COM=S&2_S21P03=FILA=&2_S21STR=Mm_2021_1_8
https://www.springer.com/
https://www.talkcrypto.org/blog%20/2019/03/

[7] J. Z. Kolter, M.A. Maloof, Learning to Detect Malicious Executables in the Wild, 2004
International Conference on Knowledge Discovery and Data Mining, Seattle, WA, USA (22-25
August), pp. 470-478. URL: https://doi.org/ 10.1145/1014052.1014105.

[8] A. Sung, J. Xu, P. Chavez, S. Mukkamala, Static Analyzer of Vicious Executables (SAVE). In
Proc. of the 20th Annual Computer Security Applications, (2004). doi: 10.1109/CSAC.2004. 37.

[9] A. Moser, C. Kruegel, E. Kirda. Limits of Static Analysis for Malware Detection. In IEEE
Computer Society, (2007). doi: 10.1109/ACSAC.2007.4413008.

[10] E. Peter, T. Schiller. A practical guide to honeypots, URL: http://www.cs.wustl.edu/
~jain/cse571-09/ftp/honey.pdf. (2008).

[11] O. Komammuckuit, Y. Korenko, VHTenneKkTyanbHBINI aHANM3 OAHHBIX IS BBISBIEHNS
BpeOHOCHBIX mporpamm. International Journal of Computing. 12(1), 63-74. (2014). URL:
https://doi.org/10.47839/ ijc.12.1.589.

[12] K. Rieck, T. Holz, C. Willems, P. Dussel, P. Laskov. Learning and classification of Malware
behaviour. International Conference on Detection of Intrusions and Malware, and Vulnerability
Assessment, Springer, Berlin, Heidelberg. vol. 5137. pp 108-125. (2008).
https://doi.org/10.1007/978-3-540-70542-0_6.

[13] A. Gerasimov, L. Kruglov. Reachability confirmation of statically detected defects using
dynamic analysis. Proceedings of the 11th International Conference on Computer Science and
Information Technologies (CIST). Yerevan, (2017). URL: https://csit.am/2017/
Proceedings/DT/DT3.pdf.

[14] Y. A. Byeong, Y. J. Hyuk, K. Seoyeon, K. Taeguen. Malware Detection Using Dual Siamese
Network Model. Computer Modeling in Engineering & Sciences. 141(1): 563-584. (2024). URL:
https://doi.org/10.32604/cmes.2024.052403

[15] R. Islam, R. Tian, L. M. Batten, S. Versteeg, Classification of malware based on integrated static
and dynamic features. Journal of Network and Computer Applications. Vol. 36, Is. 2, P. 646-656.
(2013). URL: https://doi.org/10.1016/ j.jnca.2012.10.004.

[16] S. Rami, O. Khairuddin, A. Khairul, A. Zainol. A Survey on Malware Analysis Techniques:
Static, Dynamic, Hybrid and Memory Analysis. International Journal on Advanced Science,
Engineering and Information Technology, vol. 8, no. 4-2, pp. 1662-1671. (2018). doi:
10.18517/ijaseit.8.4-2.6827.

[17] J. Helfman, Dotplot patterns: A literal look at pattern languages. TAPOS. 2:31-41. (1995). URL:
https://citeseerx.ist.psu.edu/document?
repid=rep1&type=pdf&doi=9cb62eed1ee485813eac8df87485£89289b73197.

[18] CERT/CC, Carnegie Mellon University. URL: http: //www.cert.org/present/cert-overview-
trends/module-4.pdf, May 2003.

[19] L S. Yoo. Visualizing windows executable virus using self-organizing maps. In Proc. of ACM
workshop on Visualization and data mining for computer security, p. 82 — 89 (2004). URL:
https://doi.org/10.1145/1029208.102922.

[20] T. Kohonen, Self-Organizing Maps. Springer Series in Information Sciences (SSINF, vol. 30),
(1995). URL: https://www.springer.com/ series/0710.

https://doi.org/%2010.1145/1014052.1014105
https://doi.org/10.1109/CSAC.2004.37
http://dx.doi.org/10.1109/ACSAC.2007.4413008
http://www.cs.wustl.edu/%20%7Ejain/cse571-09/ftp/honey.pdf
http://www.cs.wustl.edu/%20%7Ejain/cse571-09/ftp/honey.pdf
https://doi.org/10.47839/
https://link.springer.com/conference/dimva
https://link.springer.com/conference/dimva
https://csit.am/2017/
https://www.sciopen.com/scholar/info?id=1838114666572304385
https://www.sciencedirect.com/journal/journal-of-network-and-computer-applications
https://www.sciencedirect.com/journal/journal-of-network-and-computer-applications/vol/36/issue/2
https://doi.org/10.1016/%20j.jnca.2012.10.004
http://dx.doi.org/10.18517/ijaseit.8.4-2.6827
https://citeseerx.ist.psu.edu/document
https://doi.org/10.1145/1029208.1029222
https://www.springer.com/series/710
https://www.springer.com/

[21] P. Godefroid, M. Y. Levin, D. Molnar. Automated Whitebox Fuzz Testing. NDSS'2008
Proceedings of the Network and Distributed Systems Security, pp. 151-166, San Diego, February 8
- 11, (2008). URL: https://www.researchgate.net/publica
tion/221655409_Automated_Whitebox_Fuzz_Testing.

[22] B. B. ®ecpoxa, [I. 10. Kucmernko, O. M. Hecrepos. AHaJti3 CIIpOMOKHOCT] iICHYIOUUX CUCTEM
AQHTUBIPYCHOTO 3aXMCTy Ta IOKJIAJeHMX y IXHIO OCHOBY METOJIB 1O BUSBJIEHHS HOBOTO
LIKIJIMBOTO IIPOTPAMHOTO 3abe3meueHHs y BilicbKoBUX iHpopMaliitHux cucremax. Cucremn
i TexHosorii 3B’43Ky, iHpopMarusamii ta kibep6esmekn. Bum. Ne 3. C.143-156. (2023). doi:
https://doi.org/10.58254/viti.3.2023.16. 143.

[23] O. Barabash, V. Sobchuk, A. Sobchuk, A. Musienko, O. Laptiev. Algorithms for synthesis of
functionally stable wireless sensor network. Advanced Information Systems. 9(1), P. 70-79. (2025)
https://doi.org/10.20998/2522-9052. 2025.1.08.

[24] A. Tkachov, A. Hapon, D. Balagura, O. Sievierinov, I. Bukatych, A. Havrylova. Analysis of the
Software Security Protection. 2024 8th International Symposium on Multidisciplinary Studies and
Innovative Technologies (ISMSIT), 07-09 November 2024. Ankara, Turkiye, p. 1-8, 2024. doi:
10.1109/ISMSIT63511.2024. 10757202.

[25] C. Flanagan, K. Rustan M. Leino, M. Lillibridge, G. Nelson, J. B. Saxe, R. Stata. Extended static
checking for Java. PLDI '02 Proceedings of the ACM SIGPLAN 2002 conference on Programming
language design and implementation, pp. 234-245, Berlin, Germany - June 17 — 19. (2002). doi:
10.1145 /512529.512558/

[26] N. Lukova-Chuiko, O. Herasymenko, S. Toliupa, S. Laptiev, T. Laptieva, O. Laptiev. The method
detection of radio signals by estimating the parameters signals of eversible Gaussian
propagation. 2021 IEEE 3rd International Conference on Advanced Trends in Information Theory,
ATIT 2021 - Proceedings. (2021). P. 67-70. doi: 10.1109/ATIT54053.2021.9678856.

[27] E. J. Schwartz, Th. Avgerinos, D. Brumley. All You Ever Wanted to Know About Dynamic Taint
Analysis and Forward Symbolic Execution (but might have been afraid to ask). SP '10 Proceedings
of the 2010 IEEE Symposium on Security and Privacy, pp. 317-331, Oakland, CA, USA, May 16 -
19, 2010. doi: 10.1109/SP.2010.26.

[28] CVEdetails.com — powered by Security Scorecard. https://www.cvedetails.com.

[29] L. Liu, W. Bao-sheng, Y. Bo and Z. Qiu-xi. Automatic Malware Classification and NewMalware
Detection using Machine Learning. In Frontiers of Information Technology and Electronic
Engineering, 18(9):1336-1347. (2016). doi: 10.1631/FITEE.1601325.

[30] I. Cy6au, B. ®ecboxa, H. O. Pecroxa. AHaii3 icHylOUUX pillleHb 3art00iraHHd BTOPTHEHHIM B
indopmariitHO-TeNeKOMyHiKaritHi Mepesxi. Information Technology and Security. Vol. 5, Ne 1. C.
29-41. (2017). URL: http://nbuv. gov.ua/UJRN/inftech_ 2017_5_1_6.

[31] E. Iannone, R. Guadagni, F. Ferrucci, A. De Lucia and F. Palomba, The Secret Life of Software
Vulnerabilities: A Large-Scale Empirical Study. in IEEE Transactions on Software Engineering, vol.
49, no. 1, pp. 44-63, 1 Jan. (2023). doi: 10.1109/TSE.2022.3140868.

[32] P. Anderson. The use and limitations of static-analysis tools to improve software quality.
CrossTalk, The Journal of Defense Software Engineering, vol. 21, No. 6, pp. 18-21. (2008). URL:
https://www.researchgate.net/publication/215835966_The_Use_and_Limitations_of Static-Ana-
lysis_Tools_to_Improve_Software_Quali ty/stats.

https://www.researchgate.net/
https://journal.viti.edu.ua/index.php/cicst/issue/view/tome_1_number_3
https://journal.viti.edu.ua/index.php/cicst/issue/view/tome_1_number_3
https://doi.org/10.58254/viti.3.2023.16.%20143
https://doi.org/10.20998/2522-9052
http://dx.doi.org/10.1145/512529.512558
https://www.researchgate.net/scientific-contributions/Serhii-Laptiev-2197149422?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InB1YmxpY2F0aW9uIiwicGFnZSI6InB1YmxpY2F0aW9uIn19
http://dx.doi.org/10.1109/ATIT54053.2021.9678856
https://doi.org/10.1109/SP.2010.26
https://www.cvedetails.com/
http://dx.doi.org/10.1631/FITEE.1601325
http://www.irbis-nbuv.gov.ua/cgi-bin/irbis_nbuv/cgiirbis_64.exe?Z21ID=&I21DBN=UJRN&P21DBN=UJRN&S21STN=1&S21REF=10&S21FMT=JUU_all&C21COM=S&S21CNR=20&S21P01=0&S21P02=0&S21P03=IJ=&S21COLORTERMS=1&S21STR=%D0%9674190
https://www.researchgate.net/publica

[33] A. Turing. On Computable Numbers With an Application to the Entscheidungsproblem.
Proceedings of the London Mathematical Society, Volume s2-42, Issue 1, pp. 230-265. URL:
https://doi.org/10.1112/plms/s2-42.1.230.

[34] Ch. Chen, B. Cui, J. Ma, R. Wu, J. Guo, W. Liu. A systematic review of fuzzing techniques.
Copmuters & Security, Vol. 75, pp. 118-137. (2018). URL: https://doi.org/10.1016/].cose.
2018.02.002.

[35] P. Godefroid, M. Y. Levin, D. Molnar, Automated Whitebox Fuzz Testing. NDSS'2008 Proceedings
of the Network and Distributed Systems Security, pp. 151-166, San Diego, February 8 - 11. (2008).
https://www.researchgate.net/ publication/22 1655409_Automated_Whitebox_Fuzz_Testing.

[36] E. J. Schwartz, Th. Avgerinos, D. Brumley. All You Ever Wanted to Know About Dynamic Taint
Analysis and Forward Symbolic Execution (but might have been afraid to ask). SP '10 Proceedings
of the 2010 IEEE Symposium on Security and Privacy, pp. 317-331, Oakland, CA, USA, May 16 -
19, 2010. doi: 10.1109/SP.2010.26.

[37] T. Wang, T. Wei, G. Gu, W. Zou. TaintScope: a Checksum-Aware Directed Fuzzing Tool for
Automatic Software Vulnerability Detection. SP’10 123 Proceedings of the 2010 IEEE Symposium
on Security and Privacy, pp. 497- 512, Oakland, CA, USA, May 16 - 19. (2010). doi:
10.1109/SP.2010.37.

[38] N. Stephens, J. Grosen, C. Salls, A. Dutcher, R. Wang, J. Corbetta, Y. Shoshitaishvili, C. Kruegel,
G. Vigna: Driller: Augmenting Fuzzing Through Selective Symbolic Execution. In 23rd Annual
Network and Distributed System Security Symposium, NDSS 2016 (23rd Annual Network and
Distributed System Security Symposium, NDSS 2016). URL: https://doi.org/ 10.14722/
ndss.2016.23368.

[39] S. Yevseiev, Y. Khokhlachova, S. Ostapov, O. Laptiev et al. Models of socio-cyber-physical
systems security. Monographs, PC TECHNOLOGY CENTER, number 978-617-7319-72-5.redif,
December. (2023). doi: https://doi.org/ 10.15587/978-617-7319-72-5.

https://doi.org/10.1112/plms/s2-42.1.230
https://doi.org/10.1016/j.cose.%202018
https://doi.org/10.1016/j.cose.%202018
https://www.researchgate.net/
https://doi.org/10.1109/SP.2010.26
http://dx.doi.org/10.1109/SP.2010.37
https://doi.org/%2010.14722/%20ndss.2016.23368
https://doi.org/%2010.14722/%20ndss.2016.23368
https://doi.org/%2010.15587/978-617-7319-72-5

	1. Introduction
	2. Problematic issues of software vulnerability detection
	3. Improvement of existing systems
	4. Software vulnerabilities and known approaches to their detection
	Conclusions
	Declaration on Generative AI
	References

