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Abstract
This doctoral research investigates multimodal, memory-augmented agents for Extended Reality (XR) to address
current deficiencies in integrating generative AI, such as Large Language Models (LLMs), for improving the
interaction through multimodality, personalization, and adaptivity. The research wants to investigate how
to synthesize just-in-time, context-aware interfaces and integrate persistent memory systems. The primary
objective is to identify models and technological architectures enabling the development of proactive, embodied
XR assistants capable of mitigating cognitive load and enhancing user interaction through dynamic user interface
synthesis, memory architectures, and anticipatory agent behaviors.
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1. Introduction

Over the past few years, Large Language Models (LLMs) have rapidly evolved till reaching multimodal
capabilities, with models that accept both image and text inputs and achieve human-level performance
on professional benchmarks [1]. In parallel, the Extended Reality (XR) ecosystem is expanding rapidly,
enabling spatial, embodied, and perceptual interaction. These technological advancements are enabling
new forms of interaction by enhancing the ability to understand user intents, interpret usage contexts,
and adapt interaction paradigms accordingly. Research in Human-Computer Interaction (HCI) has long
argued for interaction paradigms presenting only the controls required in situ. Thanks to the new AI
models’ capability, the concept of ephemeral user interfaces, composed of UI elements “intentionally
created to last for a limited time only” and tailored to their physical or digital milieu, now captures this
aspiration [2]. Nonetheless, most LLM systems are still limited to fixed chat window interactions.
Recent proposals suggest evolving traditional language assistants into agentic systems capable of

perceiving environments and performing actions through dynamic interfaces, such as Rabbit’s GUI-
automating Large Action Model [3] and OpenAI’s web-browsing Operator. The Model Context Protocol
further facilitates this shift by standardizing inter-agent memory and tool interoperability [4].

The convergence of advanced AI, XR technologies, and action-oriented agents opens new opportuni-
ties for adaptive, just-in-time interfaces that cab be centered on human needs while automating tasks.
My research explores this space by developing proactive, multimodal XR agents that interpret user
input, generate context-aware ephemeral interfaces, and personalize interactions through structured
long-term memory. This approach aims to anticipate user intent, adapt to context, and reduce cognitive
load for more natural interactions.

This paper discusses the motivations and the main steps of this research, and is organized as follows:
Section 2 discusses the motivations and the objectives of my research. Section 3 illustrates the main
related work, and Section 4 proposes research directions to address current lacks. Section 5 finally
draws the conclusions.
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2. Motivations and Objectives

This research positions XR as a hub for multimodal interaction, integrating gestures, voice, and spatial
context to enable personalized, adaptive interfaces beyond purely verbal interaction, as discussed below.

Limitations of Verbal-Only Interaction. Current interactions with LLMs predominantly rely on
text-based conversational interfaces. Although intuitive for basic information retrieval tasks, relying
solely on textual or verbal communication introduces significant cognitive load by forcing users
to serialize complex, multimodal intentions into linear text [5]. This inadequacy is emphasized in
XR scenarios, where traditional input modalities (e.g., text or speech) often fail to support effective
interaction due to spatial, cognitive, and contextual challenges [6].
Decades of research in HCI have consistently demonstrated that multimodal interfaces, combining

speech, gesture, spatial visualization, and tactile feedback, substantially reduce cognitive load, lower
error rates, and accelerate task completion compared to unimodal interactions [7].

Shallow Personalization and Lack of Adaptivity. Existing LLM deployments exhibit limited
personalization, typically treating interactions as isolated episodes without meaningful longitudinal
adaptation. Current models lack stable and structured long-term memory, hindering persistent user
profiling and contextual awareness [8].

In XR, deep adaptivity is essential. Multimodal inputs enable rich user-agent interaction, yet current
efforts—like cognitive load–aware interfaces [9] and adaptive training systems [10]—lack long-term
preference learning. Embedding structured, user-controlled memory remains a key research challenge.

Restricted Interaction Flexibility in XR Environments. Current XR systems struggle with inte-
grating and semantically enriching multimodal inputs. While modalities like gesture, speech, and gaze
are common, they remain limited to rigid vocabularies and shallow interpretations. Surveys highlight
that collaboration in AR/VR/MR still relies on inflexible paradigms [11]. Prototypes such as LLMR show
promise by using language models to generate XR scenes, but remain weak in real-world use due to
unpredictability, limited precision, and performance constraints [12]. Unlocking XR’s full potential
requires multimodal frameworks that fuse inputs in real-time and adapt to user context and intent.

These gaps call for rethinking LLM interactions: adaptive multimodal interfaces, dynamically shaped
by agentic LLMs and grounded in persistent, user-controlled memory, are key to building truly human-
centered AI in XR.

2.1. Research Objectives

My project pursues three tightly coupled goals. First, I will formalize ephemeral interface synthesis as
a constrained generation problem in which an AI agent assembles just-in-time multimodal widgets,
building on early evidence that language models can already reason about user intent to shape task-
specific UIs [13]. Second, I will endow the agent with a privacy-aware, persistent memory substrate that
combines vector retrieval with symbolic policies, extending recent long-term-memory architectures
such as MemoryBank and LongMem that demonstrate continual recall and update across sessions
[14, 15]. Third, I will integrate these capabilities into an embodied, proactive assistant that leverages
spatial, visual, and verbal cues native to XR to anticipate user needs and autonomously execute actions,
drawing on design principles from proactive context-aware chatbots [16].

3. Related Work

LLM-Generated Interfaces. Recent research has explored leveraging LLMs to dynamically generate
user interfaces tailored to user intentions and context. The Bespoke system utilizes LLM agents
to produce just-in-time interfaces by directly reasoning about user intent, enhancing task-specific



interactions [13]. Similarly, the Large Language User Interface (LAUI) paradigm leverages LLMs to
proactively suggest adaptive interface elements, anticipating user needs and dynamically adjusting
interactions [17]. OpenAI’s Operator illustrates practical applications, where an LLM autonomously
navigates existing web interfaces to accomplish user-defined tasks, demonstrating both feasibility and
robustness in real-world scenarios. ReactGenie complements these approaches by leveraging LLMs to
interpret multimodal (voice + touch) user commands and map them to developer-defined UI components
and state abstractions, enabling rich, context-aware interactions with minimal development effort [18].
Most recently, Cao et al. introduced a model-driven pipeline for generative and malleable user interfaces,
where task-specific data models generated via LLMs serve as the foundation for dynamically constructed
and user-customizable UIs [19].
These systems provide important contributions to prove the feasibility of generating intent-based

interfaces felxibly. However, they remain limited to desktop and web-based interactions, lack con-
tinuous real-time adaptations, and do not address immersive spatial affordances or long-term user
personalization, all of which my research aims to fill.

Memory Systems for LLMs. Persistent memory systems are vital for long-term personalization and
adaptivity in LLM interactions. MemoryBank implements structured long-term memory, allowing LLMs
to recall and utilize relevant user-specific and contextual information [14]. Similarly, Jones et al. [16]
demonstrate the importance of contextual and persistent user information in a proactive, goal-oriented
chatbot. Their system continuously integrates environmental and personal context (e.g., location, time,
weather, user goals) to proactively recommend personalized actions, highlighting how persistent and
adaptive memory can improve user engagement and effectiveness in long-term goal pursuit.
Despite their advances, these memory systems primarily handle textual data, lack multimodal

integration, and offer limited user control over memory retention policies. My research extends these
approaches to include structured multimodal memory with explicit user control in XR environments.

Interaction in XR Environments and Multimodal Agents. Integrating LLM-based agents into XR
environments significantly enhances multimodal interaction capabilities. Systems like LLMR illustrate
how LLMs can interpret natural language commands to dynamically generate and manipulate complex
virtual scenes, improving intuitiveness and accessibility in 3D content creation [12]. XaiR employs
multimodal capabilities, combining vision and language processing to provide real-time contextual
guidance in augmented reality (AR) tasks, markedly improving task performance and efficiency [20].
However, most systems rely on predefined tasks, lack persistent multimodal memory, and seldom

include proactive behaviors. My approach, instead, aims to combine ephemeral interfaces, structured
memory, and anticipation in immersive XR.

4. Towards Just-in-Time Multimodal Interfaces

Our proposed approach aims to overcome the limitations of existing text-based and basic personalized
interactions by developing adaptive agentic systems that dynamically generate just-in-time multimodal
interfaces. The core concept integrates adaptive interfaces, personalized contextual memory, and
proactive anticipation to deliver a deeply personalized and context-aware user experience, particularly
tailored for XR environments. The envisioned AI agent will use multimodal inputs to synthesize
context-aware interfaces in real time, adapting to tasks and environments. Interaction devices like
smart glasses offer an ideal platform for continuous sensing and interaction.

Grounded in HCI, the research will leverage user-centered designmethods, using iterative prototyping
with XR technologies. The focus will be on developing and validating new multimodal interaction
mechanisms, including real-time semantic fusion of voice, gesture, and visual cues. To this end, the
research will adopt a research-through-design approach [21], with extensive user research to identify
challenges and needs in multimodal interaction, followed by empirical studies to assess usability,
interaction effectiveness, and cognitive load of the devised solutions.



Figure 1: Overview of the three types of interactions.

The research will adopt in particular simulated environments to test fine-grained mechanisms in
anticipatory agent behaviors in controlled, context-rich scenarios, enabling systematic evaluation of
relevant interaction patterns. This methodology will support the development of interaction paradigms
that are responsive but still unobtrusive. It will also help identify meaningful scenarios in which the
new technology can help address relevant user needs.
Currently, we are conducting a first user study to validate initial design choices developed in a

prototype that integrates multimodal LLM interactions within immersive XR environments [22]. The
prototype allows interactions via gestures, voice, and text, providing users with immediate, contextual
responses within industrial training and maintenance scenarios. The user study, in particular, aims to
evaluate the effectiveness of different XR interactions, as illustrated in Figure 1:.

1. Menu-based interaction: users manually navigate a menu to search for 3D models and docu-
mentation.

2. Infographic-based interaction: relevant 3D models are pre-loaded in the XR space, and users
can access detailed infographics displaying characteristics by interacting directly with the models.

3. AI-driven interaction: an intelligent agent retrieves and contextualizes information from
documentation, highlights relevant 3D models within the environment, and answers context-
specific questions related to these models.

Early results show that the AI assistant improves task efficiency and reduces cognitive load by oper-
ating directly within the 3D space and offering contextual support. Even if preliminary, these outcomes
suggest that AI integration into the XR environment — beyond traditional chatbot-style interaction —
offers opportunities to enhance user experience in complex tasks, paving the way for more immersive
and adaptive interaction paradigms. These results also highlight interesting research directions for
advancing the definition of multimodal interaction paradigms along three main technological directions:

• Multimodal interfaces generated by LLMs. Using AI to dynamically synthesize multimodal
interfaces, based on both explicit user requests and inferred needs, can help generate ephemeral
graphical overlays. If integrated into the interactive environment via XR devices, like smart
glasses, this technique can prioritize visual interaction over text to reduce cognitive load.

• Memory and contextual customization. This direction explores persistent, structured memory
for deep personalization. By combining graph-based retrieval with symbolic reasoning, agents
can track and recall contextual data—visual inputs, conversations, behaviors—enabling tailored,
evolving interactions with increasing precision over time.

• Proactivity and anticipation in XR environments. This third direction focuses on proactive
and anticipatory behaviors in XR. By analyzing multimodal inputs, visual cues, gestures, spatial
data, and conversations, the agent can suggest interfaces or actions in real time. The design of
proactive, anticipatory agents ca be grounded in cognitive science, which identifies expectation,
goal modeling, and anticipatory representations as key drivers of adaptive and emotionally
resonant interactions [23].



5. Conclusion

The research illustrated in this paper aims to introduce an innovative paradigm for adaptive multimodal
interaction by integrating intelligent agents into XR environments. The project is currently in its
early stages, adopting a user-centered approach to systematically identify user needs and understand
interaction challenges in complex multimodal XR contexts.
Given the limited body of research on LLM-based multimodal interaction in XR, the initial focus

is on characterizing the properties of the emerging interaction style described. Achieving this goal
requires extensive user studies and the formulation of new conceptual models and design principles.
Future work will involve iterative empirical investigations to collect data and insights that will

drive the refinement of the design framework. The research aims to develop generalized models and
actionable design principles that can guide the creation of intuitive, adaptive user experiences across a
wide range of contexts and user needs.
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