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Abstract

Large Language Models (LLMs) are increasingly adopted in edge applications, with notable advantages compared
to cloud-based approaches, such as enhanced privacy, reduced latency, and improved energy efficiency. While
deploying pre-trained models at the edge is common, training or fine-tuning them locally poses significant
challenges due to data remaining on-device in distributed, heterogeneous environments and the ones related to
computational constraints and communication overhead. In this context, a well-established solution is Federated
Learning (FL), where clients train models locally, without sharing their data, and a global model is obtained
by aggregating their parameters, weighted by the number of examples. This method may be inadequate for
LLMs, as it overlooks the varying information content of training examples. In fact, longer sequences often
contain more informative structures, offering richer learning signals. To investigate this issue, we evaluate
the training performance of LLMs in a federated learning setting using two aggregation methods: standard
FedAvg and a token-based variant that weights updates based on the number of tokens processed locally. We
conduct experiments using lightweight LLMs, specifically SmolLM2, comparing performance using different
open-source datasets from the healthcare field. Experimental results demonstrate that token-based FedAvg
reaches the performance of standard FedAvg and, in some cases, slightly surpasses it.
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1. Introduction

Machine Learning (ML) solutions are being increasingly used to streamline and enhance processes across
a wide range of application domains [1, 2, 3]. These include social networks [4], healthcare, energy
management [5], and smart manufacturing [6, 7]. However, effectively developing and deploying ML
services presents several challenges [8] related to both functional (e.g., model performance, robustness
to contextual changes) and non-functional aspects, which include privacy, confidentiality, fairness, and
explainability [9].

Within this context, the introduction of Transformer-based Large Language Models (LLMs) [10] has
fundamentally transformed the way humans interact with machines and external information. Lever-
aging the self-attention mechanism, these models excel at capturing intricate semantic relationships
within text, enabling them to understand and generate human-like language with remarkable coherence
and contextual awareness. Unlike earlier models, LLMs can process extended sequences of text, making
them especially effective for tasks such as summarization, translation, configuration generation [11],
and conversational Artificial Intelligence (AI).

These models, sometimes consisting of millions or billions of parameters, are typically trained on
large text corpora in data centers and are deployed exclusively in cloud environments due to their
substantial computational requirements. However, as LLM-powered applications gain popularity across
diverse environments, and with the recent advancements in model optimization and the development
of smaller architectures by both academia and industry, there is a growing trend toward deploying

ITADATAZ2025: The 4™ Italian Conference on Big Data and Data Science, September 9-11, 2025, Turin, Italy

& lorenzo.colombi@unife.it (L. Colombi)

@ 0009-0004-9681-9842 (L. Colombi); 0009-0004-4350-8151 (M. Vespa); 0009-0004-9900-717X (F. Resca); 0009-0002-0771-0067
(S, Cavicchi); 0009-0003-3740-5204 (E Di Caro); 0000-0002-3717-3779 (E. Bellodi); 0000-0002-7417-4455 (M Tortonesi);
0000-0003-4617-1836 (C. Stefanelli)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
5


mailto:lorenzo.colombi@unife.it
https://orcid.org/0009-0004-9681-9842
https://orcid.org/0009-0004-4350-8151
https://orcid.org/0009-0004-9900-717X
https://orcid.org/0009-0002-0771-0067
https://orcid.org/0009-0003-3740-5204
https://orcid.org/0000-0002-3717-3779
https://orcid.org/0000-0002-7417-4455
https://orcid.org/0000-0003-4617-1836
https://creativecommons.org/licenses/by/4.0/deed.en

them at the edge [12].

This shift enables more applications, for example, in the healthcare and smart city fields, where
aggregating all collected data in a central location is not possible for different reasons (e.g., privacy, lack
of connectivity, limited bandwidth) and at the same time preserves privacy, reduces costs, and improves
energy efficiency.

Notably, despite many applications only requiring the deployment of a pre-trained model in an edge
environment, significant challenges arise when the models must be trained or fine-tuned in such a
distributed and heterogeneous setting, where data must remain on-device. A promising and well-studied
solution to this issue in Federated Learning (FL), where each client trains its model and then a global
model is obtained by the aggregation of the weights [13]. For example, one of the most used aggregation
techniques is Federated Averaging (FedAvg) [14], where the global model is the result of the average of
the clients’ parameters, weighted by the number of examples.

However, this simple aggregation technique could be limiting when applied to LLM fine-tuning,
because it does not reflect the information content of each example. In LLMs, longer sequences often
encode more complex and informative linguistic structures, providing a richer learning signal. By
integrating token counts, other than the number of examples, into the aggregation function, token-based
FedAvg variation accounts for this variability, promoting more balanced and performance-aligned model
updates. This improved fine-tuning accuracy could be particularly beneficial in scenarios where data is
highly heterogeneous, having large variability in example length.

Healthcare is a particularly interesting scenario in which smarter distributed LLMs training methods
could have a significant impact. In fact, health applications are characterized by vast amounts of
sensitive textual data of highly varying length, such as electronic health records, clinical notes, and
patient reports that cannot be shared across hospitals due to privacy regulations and institutional
policies - with longer length documents often containing a larger informative content [15].

In this context, FL combined with LLMs offers a powerful solution, enabling collaborative learning
across institutions without breaching patient privacy. Hospitals can jointly train language models for
tasks such as clinical note analysis or diagnostic support while keeping data strictly on-premise [16].
This setup aligns with stringent regulatory frameworks like General Data Protection Regulation (GDPR)
and Health Insurance Portability and Accountability Act (HIPAA), while also benefiting from a pooled
knowledge base that enhances model quality and robustness [17].

Small Language Models (SLMs) are particularly advantageous because they can be hosted on ex-
isting hospital IT infrastructure, enabling low-latency, offline inference during clinical workflows, all
while minimizing reliance on external cloud services. Furthermore, federated collaboration effectively
increases the diversity of training data, improving generalization for rare diseases or diverse patient
populations that a single institution might not cover alone. Importantly, a federated approach can
unlock insights from prestigious medical centers whose data would otherwise remain siloed, thereby
boosting predictive performance for all participants [18]. Smaller clinics and hospitals also benetfit, as
SLMs lower the computational barrier, allowing participation in federated training without the need for
extensive hardware resources.

Nonetheless, medical data poses unique challenges due to its heterogeneity. Different hospitals use
various Electronic Health Record (EHR) systems, data schemas, and serve diverse patient populations.
This variability can cause federated models to converge more slowly or develop biases toward larger
institutions’ data. Strategies such as weighted averaging and domain-specific fine-tuning are therefore
crucial to address these issues and ensure equitable model performance across all participating sites.

In this paper, we evaluate the training performance of LLMs in a federated learning setting using
two parameter aggregation methods: the standard FedAvg and a weighted variant that accounts for
the number of tokens processed by each client during local training. To address the computational
constraints typical of edge devices, we employ Parameter Efficient Fine-Tuning (PEFT) techniques,
which enable more efficient fine-tuning of Transformer-based models like LLMs. This token-based
weighting accounts for the fact that, in the context of LLMs, larger textual examples often provide
richer learning signals than smaller ones. Additionally, to support scalability and heterogeneity in
real-world federated environments, our experiments focused on low-parameter LLMs, which could also



be deployed and fine-tuned on edge devices.

We conducted a series of preliminary experiments using open-source datasets from the healthcare
field and two versions of the SmolLM2 model, a state-of-the-art low-parameter LLM, specifically chosen
for use in edge environments without requiring specialized hardware to better simulate real-world
conditions.

We measured the performance increase obtained through PEFT in various tasks, utilizing publicly
available datasets focusing on a conversational healthcare scenario.

We empirically compared the federated PEFT performance using the aforementioned token-based
FedAvg against the standard FedAvg aggregation method, as well as against centralized training.
Our initial results show that token-based FedAvg matches—and in some cases slightly exceeds—the
performance achieved in both the centralized and FedAvg settings. However, the observed performance
gains were marginal, indicating the need for further experimentation, particularly with datasets featuring
more diverse example lengths.

The paper is structured as follows: Section 2 reviews background and related work. Section 3 presents
the proposed token-based Federated Averaging scheme and its aggregation rule. Section 4 reports the
experimental evaluation: datasets (Sec. 4.1), environment (Sec. 4.2), and results (Sec. 4.3). Section 5
concludes and outlines directions for future work.

2. Background and Related Works

2.1. Federated Learning

FL is an ML paradigm designed to enable collaborative model training while addressing data silos and
preserving data privacy [14]. Since Google introduced the concept in 2017, numerous studies have
focused on improving FL in terms of training accuracy, speed, fault tolerance, and efficiency. In addition,
novel architectures [19] and aggregation techniques have been proposed. The novelty and advantage of
FL lie in its ability to perform local training on edge devices without requiring the transfer of sensitive
data, thereby preserving user privacy. Furthermore, FL is particularly beneficial when centralized data
collection is impractical, such as in healthcare, smart cities, and Industry 4.0/5.0 applications [20].

In the FL framework, multiple clients (e.g., mobile devices, institutions, or organizations) collaborate
with a central server to perform decentralized ML [21]. Each client downloads an initial global model
from the server and trains it using its local data. The server then aggregates the model parameters
received from all clients to update the global model for the next training round. The most widely
adopted aggregation algorithm is FedAvg, which computes a weighted average of the clients’ model
parameters, where each weight corresponds to the proportion of training samples at that edge location
[14]. For simplicity, the following formulation omits the explicit inclusion of the learning rate, as it is
applied during each client’s local training phase:

K
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where:
w, are the global model weights at round r,
wgk) are the model weights from client k after local training in round r,
ny is the number of local data samples used by client k,

N = 2,1521 ny is the total number of samples across all K participating clients,

K is the number of clients involved in the current communication round.



Since its initial introduction, several aspects of the FedAvg algorithm, including the objective function,
learning rate, and weighting scheme, have been modified to enhance FL performance and robustness.
For example, FedProx [22] incorporates a proximal term in the objective function to pull the local model
closer to the global model, thereby enhancing stability and providing convergence guarantees. Another
notable strategy is FedNova, which addresses non-IID-ness by normalizing and scaling each client’s
updates based on its local iteration count before updating the global model [22].

2.2. Large Language Models

A novel area of research aims at integrating the characteristics of the FL paradigm with the capabilities
of LLMs, ensuring collaborative model training without the need to share private data. LLMs are neural
language models built on transformer architectures, usually containing tens to hundreds of billions of
parameters and pre-trained on extensive text datasets [23]. LLMs leverage self-attention mechanisms
[24] to process entire sequences simultaneously, thereby removing the sequential processing bottleneck,
and greatly enhancing scalability and performance in language tasks.

Training LLMs typically includes two main stages: pre-training on extensive text corpora to learn
grammar, facts, general knowledge, and language comprehension abilities, followed by task-specific fine-
tuning using smaller datasets to adapt the model to specific applications. Nevertheless, fine-tuning LLMs
typically requires sharing vast amounts of data, raising significant privacy and regulatory concerns,
particularly in sensitive domains such as healthcare, finance, and legal services [25]. A promising
approach to preserving sensitive information is shifting LLMs fine-tuning to the edge. Moreover, this
transition would reduce reliance on constant connectivity, as edge-deployed LLMs can operate even
without communication capabilities. Additionally, performing fine-tuning or inference locally can
decrease latency and bandwidth usage, resulting in an improved user experience and faster response
times. Another significant advantage is the ability to personalize edge-based LLMs better to reflect
individual user preferences and behavior [12]. Moreover, using FL techniques the global model could
be updated by aggregating the parameters of the local models. However, this shift is challenged by
the massive size and computational demands of these models, along with the inherent limitations of
edge devices, since efficient fine-tuning in edge environments still requires reducing model size or
optimizing parameter updates to avoid overloading resource-constrained devices, without compromising
performance [26].

To address these challenges, many solutions have been developed. The first is PEFT, which updates
only a small subset of model parameters while keeping the rest frozen. Unlike conventional full-
parameter fine-tuning, which can have high computation and communication costs due to the sheer
size of LLMs, PEFT reduces overhead and enables effective model adaptation to new tasks, even
within the constraints of edge devices. One of the most well-known PEFT techniques is Low-Rank
Adaptation (LoRA), which freezes the original model weights and injects trainable low-rank matrices
into each layer of the Transformer architecture. Other notable methods include prompt tuning, which
prepends tunable virtual tokens to the input sequence, and adapter tuning, which inserts lightweight
trainable modules between existing layers of the model [12, 26].

In addition to PEFT, another promising strategy is Split Learning (SL), which partitions the model
into two segments—one deployed on edge devices and the other on the server. Clients perform
partial computations locally to generate intermediate representations (smashed data), which are then
transmitted to the server for further processing. This approach reduces training costs and enhances
privacy by keeping raw data on-device [27]. Although this emerging collaborative learning method can
be regarded as an alternative to the FL paradigm, a promising research direction aims to combine the
two strategies to unleash the respective advantages while mitigating their weaknesses [28].

Alternatively, model quantization reduces the size of LLMs by decreasing the number of bits used to
represent model weights. Although there are different quantization methods, their common objective
is to replace full-precision computations with low-precision alternatives. In contrast, model pruning
reshapes the weights to compress LLMs. This approach can be categorized into structured model pruning,
which decreases the number of layers in the model or attention heads in the case of Transformers,



and semi-structured model pruning, which zeros out specific weights. Model compression can also be
achieved through knowledge distillation, which transfers the knowledge of a high-capacity teacher
model to a smaller student model by training the student to match the teacher’s output distributions
[12].

Model compression techniques can also be used to derive high-performing SLMs from larger coun-
terparts. While the definitions of “small” and “large” significantly depend on both context and time,
SLMs have attracted growing interest in the research community due to their ability to perform a
wide range of language tasks effectively with limited computational resources. This makes them
well-suited for deployment in resource-constrained environments such as mobile, on-device, and edge
computing platforms [29]. SLMs typically have lightweight encoder-only or decoder-only architectures.
Several encoder-only models are derived from BERT [30], with notable examples including MobileBERT
[31], DistilBERT [32], and TinyBERT [33]. In contrast, lightweight decoder-only architectures include
TinyLLaMA [34], Gemma [35], Phi-3-mini [36], MobileLLM [37], and SmolLM *.

The integration of LLMs into edge and federated environments has driven the development of
specialized frameworks and aggregation techniques aimed at addressing the specific challenges of
distributed learning, while leveraging the unique characteristics of these models. For example, FedDat
addresses the challenge of data heterogeneity across clients by introducing a Dual-Adapter Teacher to
regularize local updates and employing Mutual Knowledge Distillation for knowledge transfer [38].
To reduce the high computational and storage demands of deploying LLMs at the edge, the authors
of [39] propose M*FEDSA, a framework that employs split learning to partition large-scale models
and assign only privacy-sensitive components to client devices. Additionally, it transfers multimodal
knowledge from the server to unimodal clients, aiming at further enhancing model performance. In
contrast, FlexLoRA addresses resource and data heterogeneity by introducing an aggregation scheme
that dynamically adjusts local LoRA ranks. These ranks are then aggregated on the server using Singular
Value Decomposition, which also redistributes weights to ensure that all clients contribute effectively,
regardless of resource capacity [40].

3. Token-based Federated Averaging
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Figure 1: Typical Federated Learning architecture, where each client has different computation resources and
datasets.
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In a typical FL setting, as the one illustrated in Fig. 1, traditional aggregation methods like FedAvg,
which weights client updates by the number of processed examples, may be insufficient for fine-tuning
LLMs. This limitation arises because it fails to account for the variability in the information content
of different training examples. In the context of LLMs, longer input sequences often contain more
intricate linguistic patterns and richer semantic structures, which contribute more significantly to
model learning. As a result, treating all examples equally, regardless of their token length, can lead to
suboptimal updates and hinder overall model performance.

To address this, we propose a token-based weighting scheme that adjusts each client’s contribution
based on the total number of tokens processed during local training. This refinement ensures that
updates from clients processing more linguistically dense and informative sequences are weighted
more appropriately during aggregation. Such an approach is particularly valuable in federated settings
where data is highly heterogeneous, and the lengths of input sequences vary widely. By aligning
the aggregation process more closely with the actual learning signal, token-based weighting has the
potential to improve fine-tuning accuracy and ensure more effective model convergence across diverse
client datasets.

Therefore, when this FedAvg variation is used, the global model weights are computed as a weighted
average of the local model updates, based on the processed number of tokens, from participating clients:
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where:

w; is the updated global model weights after round ,

wgk) is the model weights from client k after local training in round r,

t is the number of local data tokens used by client k,

T = Zszl tx is the total number of tokens across all K,

ny. is the number of local data samples used by client k,

N = Zszl ny is the total number of samples across all K participating clients,
K is the total number of clients involved in the current communication round,
1 is the learning rate,

« is a customizable parameter, which varies in a range between 0 and 1 and measures how the number
of tokens and the number of samples influence the overall weights. Noteworthy, if @ = 0, the
aggregation strategy is the classical FedAvg.

4. Experimental Evaluation

To evaluate the PEFT performance of the token-based FedAvg variation in our FL setting, we designed
a set of experiments that simulate geographically distributed edge clients, each with access to a unique
dataset to represent the local data distribution. Subsequently, we compared the results obtained with
the token-based variation against both the classical FedAvg approach and a centralized PEFT, both used
as baselines.

Each training step performs PEFT leveraging LoRA as a fine-tuning technique, which enables efficient
adaptation of LLMs by injecting low-rank trainable matrices into frozen pre-trained models, significantly
reducing the memory and computational overhead, enabling resource-constrained clients to join the
federation.



Furthermore, to address the scalability and device heterogeneity that characterize the real world,
where, for instance, some devices may be unavailable, we experimented using a semi-synchronous
communication protocol between clients and the central server in our experiments, as also introduced

n [41]. In detail, during the PEFT process, we define a minimum number of clients, smaller than the
total client population, required to complete a training round and trigger the global weight aggregation.
Clients unable to finish local training within the current round’s time window are not discarded. Instead,
they transmit their updates in the subsequent round, avoiding wasted computation and preserving
energy efficiency. This design choice eliminates the need for strict synchronization barriers, allowing
edge devices with varying availability, computational capacity, and connectivity to participate effectively.

4.1. Datasets

The datasets used to fine-tune the models revolve around the topic of healthcare, but they differ in
structure, content, and style, reflecting the heterogeneous nature of real-world medical data where
silos often emerge due to institutional, regional, or organizational boundaries. Such differences serve
not only to enhance the realism of our evaluation but also to improve experimental flexibility. The
diverse nature of the datasets allows for systematic evaluation of model performance under varying
conditions, such as differences in input length, linguistic complexity, and contextual depth, enabling a
deeper understanding of model strengths and limitations.

PubMedQA [42] is the largest dataset included in this study, comprised of approximately 211,000
biomedical question-answer pairs derived from PubMed abstracts, providing a rich resource of in-
formation in the form of long answers. Complementing this, collections of medical flashcards from
Medical Meadow [43] encapsulate concise, high-yield clinical facts and definitions, offering shorter
sequences ideal for assessing models on shorter examples. Patient information from WikiDoc includes
detailed narratives, differential diagnoses, and treatment pathways, introducing complex, longer-context
clinical scenarios that test models’ abilities in a longer, more elaborate context. Finally, conversational
data from iCliniq® reflects real-world doctor—patient dialogues, capturing colloquial language, patient
concerns, and pragmatic clinical advice, thereby allowing evaluation of models’ performance interactive
communication. By leveraging these datasets and varying both the length of the sequences and their
number, our experiments enable robust assessment of model capabilities across multiple conditions,
with different input lengths and context, showing how different data types and structures may influence
the model’s understanding and generalization in a distributed federated environment.

4.2. Environment

As LLMs we used two versions of the SmolLM2 model, specifically the 135M and 360M ones, since their
great tradeoff between model size and performance. We then compared multiple aggregation strategies,
including traditional FedAvg and the token-based approach, to evaluate convergence behavior and final
model performance. Our experiments also included a comparison with local fine-tuning, where we
assume a single node has all the datasets available in a central location.

The experiments were conducted in a federated setting consisting of one central server and six client
configurations (from A to F) distributed on 3 machines:

« Machine 1 (Configurations A and D): NVIDIA GeForce RTX 3060 GPU (1320 MHz base, up to
1777 MHz boost), Intel Core i7-9750H CPU (2.6 GHz base, up to 4.5 GHz turbo), 32GB RAM.

« Machine 2 and 3 (Configurations B, C, E, and F): Intel Core Ultra 7 155U CPU (1.7 GHz base, up to
4.8 GHz turbo), 32GB RAM.

Each client was assigned a distinct dataset for training. The number of examples processed per round
was adjusted based on the computational capacity of each machine, ensuring a balanced workload
distribution. Table 1 summarizes the specific configurations, including dataset names, example counts,
and batch sizes, Table 2 describes how configurations are distributed on the machines.

*https://huggingface.co/datasets/lavita/ChatDoctor-iCliniq



The first experiment, involving client configurations A, B, and C, as presented in Table 1, was
conducted by assigning a portion of the training set from each dataset to a separate machine, simulating
a situation where each edge node has access to its private information.

In the second experiment, all training datasets were merged and then split into ’long’ and ’short’
examples: records with a length greater than 90 words (corresponding to the 90th percentile) were
assigned to the ’long’ dataset and used with configuration D. The remaining examples formed the "short’
dataset, used with configurations E and F. This is to better measure the performance variations when
model weights are aggregated using standard FedAvg and token-based FedAvg, which also take care of
the number of tokens used to fine-tune the model.

Finally, each experiment was benchmarked against classical centralized fine-tuning, in which LoRA
was performed on the same data used in the federated setup, serving as the baseline.

Evaluation examples were extracted via seeded random sampling from data previously separated from
the training sets, ensuring the test examples were not seen by the model during training. Specifically,
the evaluation has been carried out by the central server using the global model on 512 examples, drawn
from all the datasets. RougeL [44] and Bert Score [45] were used as evaluation metrics. RougeL measures
the overlap between a generated text and the reference by computing the longest common subsequence
(LCS) of tokens, which captures the highest degree of in-order matching without requiring contiguous
matches; this makes RougeL sensitive to the preservation of key semantics and phrase structures. In
contrast, BERTScore leverages contextualized embeddings from a pre-trained BERT model to compute
token-level cosine similarities between candidate and reference sentences, thereby capturing not only
exact matches but also paraphrases and synonyms [45]. Both BERTScore and RougeL metrics range
from 0 to 1, making them interpretable as percentage values. When fine-tuning LLMs on data from
a specific domain, such as the medical one, ROUGE-L provides a straightforward indication of how
well the model reproduces specialized nomenclature and phraseology, while BERTScore offers a deeper
semantic assessment, ensuring that conceptually equivalent but lexically varied outputs are properly
credited.

4.3. Results

The results of the first experiment, conducted using the 135M parameter version of the SmolLM2 model,
are presented in Fig. 2 and Table 3. This figure depicts the BERTScore and Rouge-L metrics of the global
model across 10 rounds of federated PEFT training with varying values of . Both BERTScore and
Rouge-L metrics are tracked to provide a comprehensive view of model quality over time. Notably, the
most significant performance gains occur during the initial round of training, after which the metrics
stabilize. In particular, Table 3 (SmolLM2-135M, first experiment with heterogeneous clients) shows that
the largest gains occur immediately after the first round (0—1), with RougeL rising from 0.172 to 0.210
(+0.038) and BERTScore from 0.519 to 0.575 (+0.056) across all a. After round 2-3, both metrics plateau
with only minor fluctuations. This behavior is consistent with the findings reported in [46], where

Table 1
Client configurations used in the experimental setup, including datasets, number of training examples per round,
batch sizes, and assigned machines.

Config | Dataset #Examples | Batch size
A pubmed_qa_211k 32,768 4
B medical_meadow_medical flashcards_ 34k 4,096 1
C medical_meadow_wikidoc_patient_information_6k 4,096 1

+ medical_meadow_wikidoc_10k
+ chatdoctor_iclinig_7k

D long examples 16,384 4
short examples (1) 8,192 1
F short examples (2) 8,192 1

m




Experimental setups
Experiment | Machine 1 | Machine 2 | Machine 3
1 Server, A B C
2 Server, D E F

Table 2
Machine-Configuration association for the experimental setups. Machine 1, being the most performing, is
assigned the Server task to leverage the RTX 3060 GPU during inference.

early-stage adaptation captures the bulk of the performance improvement. Following this initial gain,
in subsequent training rounds, performance remains stable and relatively consistent across different o
settings.

Table 4 presents the corresponding results for the same experimental setup using the larger 360M
version of the model. The overall trend mirrors that of the smaller model, reinforcing the consistency of
the observed dynamics across model scales. Importantly, the table includes the results from a centralized
PEFT configuration, which are consistently lower than those obtained in the federated setting. This
contrast highlights the advantages of federated fine-tuning, particularly in leveraging diverse local data
distributions while maintaining privacy and decentralization. These findings underscore the efficacy
and scalability of federated PEFT, as they hold true across both small and larger model architectures.
Finally, of particular note is that by round 10, the 135M model trained with o = 0.5 exhibits slightly
superior performance, suggesting a mild advantage for this setting over extended training durations.
Although the performance gains are not substantial, they may point to a favorable balance between
local update strength and global model coherence at this « value, making it a reasonable default in
practical applications.

BERTScore across Experiments Rougel across Experiments
0.58 0.21
o <4
= o
S0.56 3020
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& $0.19
@ 3
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Round Round
(a) BERTScore across federalized rounds (b) RougeL across federalized rounds

Figure 2: Evaluation metrics across federated rounds for SmolLM2-135M in experimental setup 1, where each
client is trained on examples drawn from a distinct dataset.

Table 3
First experiment: each client is trained on a different dataset with SMoLLM2-135M fine-tuned. We report
per-round Rougel and BERTScore for three aggregation settings & € {0, 0.5, 1}.

SmolLM2-135M
Round Alpha =0 Alpha = 0.5 Alpha =1
RougelL  BERTScore | RougelL BERTScore | RougelL  BERTScore
0 0.172 0.519 0.172 0.519 0.172 0.519
1 0.210 0.575 0.210 0.575 0.210 0.575
2 0.216 0.584 0.214 0.584 0.214 0.580
3 0.216 0.587 0.214 0.583 0.213 0.583
4 0.216 0.586 0.214 0.584 0.212 0.583
5 0.214 0.584 0.212 0.584 0.213 0.584
6 0.214 0.587 0.213 0.586 0.211 0.580
7 0.212 0.583 0.213 0.584 0.214 0.585
8 0.214 0.584 0.213 0.585 0.214 0.587
9 0.213 0.589 0.211 0.586 0.215 0.587
10 0.214 0.586 0.215 0.588 0.213 0.586




Table 4
First experiment: each client is trained on a different dataset with SMOoLLM2-360M fine-tuned. We report RougeL
and BERTScore per round for three aggregation settings a € {0, 0.5, 1}, plus a centralized PEFT configuration.

SmolLM2-360M
Round Alpha=0 Alpha = 0.5 Alpha =1 Centralized

RougelL BERTScore | RougeL BERTScore | RougelL BERTScore | RougelL BERTScore
0 0.176 0.533 0.176 0.533 0.176 0.533 0.176 0.533
1 0.214 0.590 0.214 0.589 0.214 0.588 0.204 0.579
2 0.216 0.595 0.214 0.594 0.215 0.592 0.206 0.586
3 0.218 0.598 0.216 0.595 0.217 0.593 0.205 0.587
4 0.218 0.597 0.150 0.596 0.217 0.595 0.205 0.588
5 0.218 0.599 0.218 0.598 0.220 0.597 0.207 0.590

From the results of the second experiment, which are presented in Tables 5 and 6, we can draw the
same conclusion, as the federated settings proved to be valuable when compared with the centralized
one, with minimal differences varying the « value. This is an encouraging outcome, as it implies that the
system is relatively insensitive to the exact choice of ¢, allowing practitioners to adjust this parameter
based on data availability, client heterogeneity, or system constraints without risking significant
degradation in model quality. This flexibility enhances the practical applicability of the approach,
especially in real-world federated environments where data distributions and client participation levels
may vary considerably.

Table 5

Second experiment: each client is assigned a portion of the global dataset formed by aggregating all individual
datasets. Examples are distributed across nodes based on the number of tokens. SMOLLM2-135M fine-tuned. We
report per-round Rougel and BERTScore for aggregation settings € {0, 0.25}.

SmolLM2-135M
Round Alpha =0 Alpha = 0.25
RougelL  BERTScore | RougeL  BERTScore
0 0.173 0.521 0.173 0.521
1 0.210 0.575 0.211 0.574
2 0.214 0.584 0.213 0.593
3 0.219 0.591 0.217 0.585
4 0.215 0.591 0.216 0.591
5 0.217 0.591 0.220 0.590

Table 6

Second experiment: each client is assigned a portion of the global dataset formed by aggregating all individual
datasets. Examples are distributed across nodes based on the number of tokens. SMOLLM2-360M fine-tuned.
We report per-round Rougel and BERTScore for aggregation settings a € {0, 0.1,0.25}, plus a centralized PEFT
configuration.

SmolLM2-360M
Round Alpha=0 Alpha=0.1 Alpha = 0.25 Centralized

Rougel  BERTScore | RougelL BERTScore | RougeL  BERTScore | RougeL  BERTScore
0 0.180 0.533 0.180 0.533 0.180 0.533 0.180 0.533
1 0.221 0.594 0.218 0.596 0.216 0.593 0.207 0.578
2 0.221 0.599 0.217 0.596 0.217 0.595 0.211 0.587
3 0.223 0.601 0.216 0.596 0.217 0.597 0.210 0.588
4 0.224 0.603 0.219 0.601 0.219 0.599 0.210 0.590
5 0.225 0.604 0.219 0.601 0.221 0.600 0.213 0.590

5. Conclusions and Future Work

In this paper, we endeavoured to address the challenges inherent in the deployment and fine-tuning of
LLMs on edge devices, with an aggregation strategy specifically designed for LLMs and a distributed



infrastructure replicating a real-world federated setting.

Our preliminary experiments, conducted using open-source healthcare datasets and two lightweight
versions of the SmolLM2 model, demonstrate that a token-based approach achieves competitive—and
in some cases superior—performance compared to both centralized training and conventional FL with
FedAvg. These results validate the potential of our approach for enabling effective, privacy-preserving,
and resource-efficient training of LLMs at the edge.

However, the observed performance improvement was marginal, suggesting that further experimen-
tation is needed to validate these findings, for example, using datasets with a greater variety of example
lengths. Future work will extend the experimentation to other datasets, from different use cases, to
better highlight the differences between the token-based variation and the classical FedAvg.

Given that our evaluation relies on standard metrics, which are widely adopted in the literature, but
are often criticized for having limitations in capturing the semantic quality of outputs, focusing more
on surface-level differences than on true meaning. As a promising direction, we also plan to explore
the use of LLMs as evaluators to provide a more nuanced, semantically-informed assessment of model
outputs [47].

Finally, we plan to take into consideration the scalability aspects in terms of training times and
communication overhead.
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