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Abstract
In the digital age, machine learning (ML) algorithms are becoming increasingly important in decision-making
processes across a wide range of domains, including criminal justice, healthcare, and finance. While these
algorithms provide significant benefits, they also pose the risk of perpetuating and exacerbating societal biases,
especially when fairness is not taken into account during their design and implementation. We address the
critical issue of fairness in machine learning, with a focus on combining statistical and causal fairness metrics to
provide a more comprehensive approach to evaluate and ensure fairness by selecting the most suitable metric.
To tackle this problem, we developed a research methodology aimed at systematically reviewing the existing
literature while focusing on four research questions targeting the relationship between statistical and causal
fairness metrics, which drove our analysis and categorization of papers. Based on the results of this review, we
built a new fairness decision tree that integrates both types of metrics, which can guide users to choose the most
suitable metric.
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1. Introduction

In the digital age, machine learning (ML) systems have become essential to many aspects of daily living
and social functions. Machine learning covers a wide range of critical applications, from criminal
justice and credit scoring to healthcare diagnostics. However, a serious concern for justice has emerged
along with the technological advancements that machine learning has brought forth. It is imperative to
ensure that these systems do not perpetuate or exacerbate societal inequalities and biases that already
exist [1, 2]. Machine learning algorithms, being data-driven, may inadvertently encode human bias. One
striking example is the COMPAS Risk Assessment Tool [3] based on information about a defendant’s
criminal record, type of offense, record of contact with the community, and history of failing to appear
in court to assist the judge in making bail decisions. Regarding this last aspect, the ProPublica team
found that the software used by U.S. courts incorrectly labeled Black defendants as high-risk, almost
twice as likely as White people [3]. Similar biases have been identified in other domains, such as
e-commerce, where differentiated pricing strategies unfairly target returning customers based on their
online behavior [4].

These examples show the need for a systematic approach to assessing and mitigating bias in machine
learning systems. The problem’s complexity is increased by the fact that fairness inML can be understood
from multiple perspectives, including statistical fairness, which focuses on ensuring equitable outcomes,
and causal fairness, which aims to understand and address the underlying causal mechanisms that lead
to biased results.

In this paper, we study the topic of fairness in machine learning, with a focus on the difference
between statistical and causal fairness metrics; in particular, we study the possibility of incorporating
them into a common vision. Our key contributions are as follows:
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• Research Methodology: We develop a systematic research methodology to identify and catego-
rize the relevant literature.

• Results of Literature Analysis: Our systematic analysis of selected papers brings significant in-
sights into the distinction between statistical and causal fairness, and the datasets most commonly
used.

• Fairness Decision Tree: We present a new fairness decision tree framework that integrates
both statistical and causal fairness metrics.

The rest of this paper is organized as follows. Section 2 introduces some preliminary concepts.
Section 3 presents the adopted research methodology. Section 4 describes the analysis of the results.
Section 5 presents the fairness decision tree. Section 6 concludes the paper.

2. Preliminaries

Fairness can be defined as the absence of any prejudice or favoritism toward an individual or a group
based on their inherent or acquired characteristics [5], and it holds significant relevance within the
domain of Machine Learning (ML). In this context, ML algorithms embody a decision-making paradigm
characterized by impartiality and the absence of bias. It is important to acknowledge that existing
biases in the data can significantly influence the performance and outcomes of these algorithms,
rendering the data and results unfair [1]. In terms of fairness, binary classification plays a crucial role
in decision-making systems where outcomes significantly impact individuals, such as loan approvals,
hiring decisions, and medical diagnoses. It maps input features to one of two possible outcomes: positive
(1) or negative (0). These predictions are then compared to the actual outcomes to evaluate the model’s
performance. Ensuring fairness in these models is essential to prevent discrimination [6].

Existing fairness definitions in ML algorithms can be classified into two categories: statistical fairness
and causal fairness. Statistical fairness focuses on frequency statistics, ensuring equitable outcomes
across demographic groups. In contrast, causal fairness explores causal relationships between attributes
and outcomes, intervening to eliminate biases rooted in causal mechanisms. Statistical-based fairness
metrics are categorized in [7, 8] and the Fairness Decision Tree presented by Baresi et al. [8] is designed
to identifying the most suitable fairness interpretations for ML-based systems.

While statistics offer the tools to identify patterns and correlations within data [9], Judea Pearl’s
work on causality challenges us to understand the ”why” behind these patterns. This means that
causal fairness differs from statistical fairness in that it is not entirely determined by observed data and
necessitates the introduction of additional cause-and-effect assumptions. Causal fairness is a definition
of fairness based on a causal connection between protected attributes and decisions. Causal graph
models have limitations in their very structure, derived from domain knowledge, and inconsistencies in
assumptions may occur [10]. Based on observed data, causal graph models often suffer from model
non-uniqueness, which refers to the possibility that multiple different causal graph models can fit
the same set of observed data equally well. This non-uniqueness implies that there may be multiple
plausible explanations for the causal relationships in the data.

Based on Pearl’s structural causal models [11, 9], a structural equation-based mathematical object
that describes the causal mechanisms of a system. Each causal model is associated with a causal graph
for visualizing in a more user-friendly way the causal inference, where causal effects are carried by
the causal paths that trace arrows pointing from the cause to the effect [12]. To better illustrate these
notions, we introduce the Ladder of Causation taken from [13], a causal hierarchy presented by Pearl,
which affirms that causation has three levels: association, intervention, and counterfactual.

1. Association [13] can be inferred directly from the observed data using conditional probabilities
and conditional expectations, which correspond to statistically-based fairness metrics.

2. Intervention [13] involves not only seeing what is but also changing what we see. Interventional
questions deal with expressions of the type 𝑃(𝑦|𝑑𝑜(𝑥), 𝑧), which denote “The probability of event
𝑌 = 𝑦, given that we intervene and set the value of 𝑋 to 𝑥 and subsequently observe event 𝑍 = 𝑧”.



It can be estimated experimentally from randomized trials or analytically using causal Bayesian
networks.

3. Counterfactual [13] deals with expressions of the type 𝑃(𝑦𝑥|𝑥′, 𝑦 ′)which denote ”The probability
that event 𝑌 = 𝑦 would be observed had 𝑋 been 𝑥, given that we actually observed 𝑋 to be 𝑥′
and Y to be 𝑦 ′”. It can be computed only when the model is based on functional relations or is
structural.

The majority of causal-based fairness notions are defined in terms of the non-observable quantities 𝑈 of
interventions and counterfactuals, so their applicability depends heavily on the identification of those
quantities in the data. An overview of the principal causal-based fairness metrics is presented by [2].

1. No unresolved discrimination [7]: Requires that there exists no path from the protected
attribute 𝐴 to the predicted outcome 𝑌̂.

2. Total Causal Effect [11]: Is defined as the effect of changing the sensitive attribute 𝐴 from 𝑎 = 0
to 𝑎 = 1 on decision 𝑌 = 𝑦 along all causal paths from 𝐴 to 𝑌, it is considered to be fair if the
difference between the conditional distributions is within the fair threshold.
It is defined as follows:

𝑇𝐸(𝑦) = 𝑃(𝑦|𝑑𝑜(𝑎 = 1)) − 𝑃(𝑦|𝑑𝑜(𝑎 = 0))

3. Path-specific Effect [11]: Given a causal path set, the path-specific effect is defined as the value
change of the sensitive attribute 𝐴 from 𝑎 = 0 to 𝑎 = 1 on decision 𝑌 = 𝑦 along specific causal
path 𝜋, it is considered to be fair if the difference is within the fair threshold.
It is defined as follows:

𝑃𝐸𝜋(𝑦) = 𝑃(𝑦|𝑑𝑜(𝑎 = 1|𝜋, 𝑎 = 0|𝜋̂)) − 𝑃(𝑦|𝑑𝑜(𝑎 = 0))

where 𝑃(𝑦|𝑑𝑜(𝑎 = 1|𝜋, 𝑎 = 0|𝜋̂)) represents the post-intervention distribution of 𝑌where the effect
of intervention 𝑑𝑜(𝑎 = 1) is transmitted only along 𝜋 while the effect of reference intervention
𝑑𝑜(𝑎 = 0) is transmitted along the other paths.

4. No proxy discrimination [14]: Requires there exists no path from the protected attribute 𝐴 to
the predicted outcome 𝑌̂ that is blocked by a proxy variable 𝑅.
It is defined as follows:

𝑃(𝑌 |𝑑𝑜(𝑅 = 𝑟)) = 𝑃(𝑌 |𝑑𝑜(𝑅 = 𝑟 ′)) ∀𝑟 , 𝑟 ′ ∈ 𝑑𝑜𝑚(𝑅)

5. Counterfactual Fairness [15]: Requires that the predicted outcome 𝑌̂ in the graph does not
depend on a descendant of the protected attribute 𝐴. This means that an outcome 𝑌 achieves
counterfactual fairness towards an individual if the probability of 𝑌 = 𝑦 for such an individual is
the same as the probability of 𝑌 = 𝑦 for the same individual but belongs to a different sensitive
group.
It is defined as follows:

𝑃(𝑦𝑎=1(𝑈 )|𝑋 = 𝑥, 𝑎 = 0) = 𝑃(𝑦𝑎=0(𝑈 )|𝑋 = 𝑥, 𝑎 = 0)

Where 𝑋 is the subset of observed variables 𝑂 except sensitive variables and decision variables.
Any context 𝑋 = 𝑥 represents a certain sub-group of the population.

6. Individual direct discrimination [16, 2]: It aims to discover the direct discrimination at
the individual level. It is based on situation testing, by comparing the individual with similar
individuals from both groups (protected and unprotected). This means for a target individual 𝑖,
select top-K individuals most similar to 𝑖 from group 𝑎 = 1, denoted as 𝑆+ and top-K individuals
most similar to i from group 𝑎 = 0, denoted as 𝑆−. The target individual is considered as
discriminated if the difference observed between the rate of positive decisions in 𝑆− and 𝑆+ is
higher than a predefined threshold (typically 5%).



Causal inference is used to define the distance function 𝑑(𝑖, 𝑖′) to measure similarity between
individuals: given a causal graph, only the variables that are direct parent nodes of the decision
variable are considered to compute the similarity between individuals, which are denoted as
𝑄 = 𝑃𝑎(𝑌 )\{𝐴}. The formal definition of 𝑑(𝑖, 𝑖′) is:

𝑑(𝑖, 𝑖′) =
|𝑄|
∑
𝑘=1

|𝐶𝐸(𝑞𝑘, 𝑞′𝑘) ∗ 𝑉𝐷(𝑞𝑘, 𝑞
′
𝑘)|

Where 𝑉𝐷(𝑞𝑘, 𝑞′𝑘) is a distance function proposed by Luong et al. in [17] and 𝐶𝐸(𝑞𝑘, 𝑞′𝑘) represents
the causal effect of each of the selected variables 𝑞𝑘 ∈ 𝑄 on the actual outcome. In particular,
𝐶𝐸(𝑞𝑘, 𝑞′𝑘) is defined as follows:

𝐶𝐸(𝑦) = 𝑃(𝑦|𝑑𝑜(𝑄)) − 𝑃(𝑦|𝑑𝑜(𝑞′𝑘, 𝑞\𝑞𝑘))

Where 𝑃(𝑦|𝑑𝑜(𝑄)) is the effect of the interventions that forces 𝑄 to take the set of values 𝑞, and
𝑃(𝑦|𝑑𝑜(𝑞′𝑘, 𝑞\𝑞𝑘)) is the effect of the intervention that forces 𝑄𝑘 to take value 𝑞′𝑘 and other attributes
in 𝑄 to take the same values as 𝑞.

7. Equality of Effort [18]: It detects discrimination by comparing the effort required to reach the
same level of the actual outcome of individuals from advantaged and disadvantaged groups who
are similar to the target individual. A treatment variable 𝑇 is selected and used to address the
question: “To what extent the treatment variable 𝑇 should change to make the individual (or a
group of individuals) achieve a certain outcome level?”.
Equality of effort notions are defined based on the potential outcome framework into individual 𝛾-
Equal effort and system 𝛾-Equal effort. Both criteria can be used to measure the effort discrepancy
between protected and unprotected groups.
Let’s consider 𝑌 𝑡𝑖 as the potential outcome for individual 𝑖 had 𝑇 been 𝑡, 𝐸[𝑌 𝑡𝑖 ] the expected outcome
under treatment 𝑡 for individual 𝑖, and consider, similar to Individual direct discrimination, 𝑆+ and
𝑆− as two sets of similar individuals of group 𝑎 = 0 and 𝑎 = 1 respectively.
In consequence, 𝐸[𝑌 𝑡𝑆+] is the expected outcome under treatment 𝑡 for the subgroup 𝑆+. And the
needed minimal value of treatment variable 𝑇 to achieve 𝛾-level of outcome within the subgroup
𝑆+ is defined as follows:

Ψ𝑆+(𝛾 ) = 𝑎𝑟𝑔𝑚𝑖𝑛𝑡∈𝑇𝐸[𝑌 𝑡𝑆+] ≥ 𝛾

For a certain outcome level 𝛾, individual 𝛾-Equal effort is satisfied for individual 𝑖 if:

Ψ𝑆+(𝛾 ) = Ψ𝑆−(𝛾 )

When 𝑆+ and 𝑆− are extended to the entire group with sensitive attribute 𝑎 = 0 and 𝑎 = 1
respectively, 𝐷+ is used to denote the first set and 𝐷− denoted the second one. The System
𝛾-Equal effort is satisfied for a sub-population if:

Ψ𝐷+(𝛾 ) = Ψ𝐷−(𝛾 )

8. Path-specific Counterfactual Fairness (PC Fairness)[11]: Is defined to cover various causality-
based fairness notions. Given a factual condition 𝑋 = 𝑥 where 𝑋 ⊆ 𝑂 and causal path set 𝜋, a
predictor 𝑌̂ achieves the PC fairness is it satisfies the following expression:

(𝑃( ̂𝑦𝑎=1|𝜋,𝑎=0|𝜋̂|𝑋 ) − 𝑃( ̂𝑦𝑎=0|𝑋 )) ≤ 𝜏

Where 𝜏 is a predefined fairness threshold.
Consequently, for example, if we set 𝜋 contains all causal paths and 𝑋 an empty set, PC-Fairness
corresponds to the Total Causal Effect.

Finally, regarding unfairness mitigation, depending on the stage of the ML algorithm, pre-processing,
in-processing, and post-processing mechanisms can be used to intervene in the algorithm to achieve
fair ML, respectively.



3. Research Methodology

This section defines the research questions and the methodological approach taken to address them,
including the specific search techniques and keywords that were employed to locate pertinent material,
discussing the inclusion and exclusion criteria employed to identify the most relevant studies.

3.1. Research Questions

The methodology is based on a set of structured research questions designed to explore fairness in
ML, comprehending both statistical and causal dimensions. These questions guide the entire research
process, from the initial literature review to the final analysis and synthesis. Here, we discuss each of
these questions.

RQ1: What are themain concepts and differences between statistical-based and causal-based
fairness?

This question is to provide a clear and simple review of the fundamental ideas and differences between
statistical and causal approaches to fairness in ML. Understanding these differences is important for
comprehending each perspective’s specific advantages and limits.

RQ2: Which datasets aremost commonly used in fairness research, and are there differences
between those used in causal-based and statistical-based studies?

Identifying commonly used datasets in both causal and statistical fairness is crucial as it helps in
understanding the contexts in which fairness metrics are tested and validated. This question attempts
to figure out not just the most often used datasets in general, but also if there are differences in dataset
utilization across causal and statistical fairness studies.

RQ3: Is it possible to have a common vision between causal and statistical fairness?
This question investigates the theoretical feasibility and applicability of combining causal-based and

statistical-based fairness metrics.
RQ4: How to choose the most suitable metric considering both perspectives?
This final question discusses the research’s practical consequences, suggesting an approach for

selecting the most appropriate fairness metric while balancing causal and statistical aspects.
By addressing these questions, this work provides the foundation for a detailed investigation of

fairness research, ensuring an in-depth knowledge of both the theoretical foundations and practical
applications of the subject.

3.2. Search Strategy

We delineate the comprehensive search strategy employed to gather relevant literature, focusing on
evaluating fairness in ML with a particular emphasis on fairness metrics.

The literature collection process is illustrated in Figure 1 and which delineates the steps from research
question formulation to final paper selection that are: Keywords and Query Creation, Setting Database
and Inclusion and Exclusion Criteria, Paper Analysis and Snowballing.

To ensure targeted and relevant database searches, keywords were identified from the research
questions. These keywords, along with supportive terms, guide the search process effectively and are:
AI, Machine Learning, ML, Data, Fairness, Metric, Definition, Solution, Mitigation, Ethic, Measure, Causal,
Statistical, Group, Individual, Counterfactual, Interventional.

The query was constructed using boolean operators to refine search results and ensure relevance to
our objectives. Furthermore, the search was conducted across prominent databases including Scopus,
ACM Digital Library, IEEE Xplore, and Google Scholar, focusing on publications from the past five
years in the field of computer science. The final query is the following:

(fair* OR discriminat* OR unfair* OR bias*) AND (causal* OR statistic* OR
individual* OR group* OR counterfact* OR intervention* OR parity*) AND (metric*
OR measur* OR defin* OR solut* OR mitigat*) AND ((machine learning) OR data* OR
ethic* OR (artificial intelligence))



Figure 1: Literature collection process

The search provided a significant number of results: Scopus 5,270, ACM Digital Library 910, IEEE
Xplore 2,335, Google Scholar 16,800.

For the selection strategy, we present the inclusion and exclusion criteria utilized during the selection
process for identifying relevant literature. These criteria serve as guidelines to ensure the systematic
and targeted inclusion of papers that align with our objectives while excluding those that do not meet
the specified thematic requirements. The Inclusion Criteria are:

• Article or Paper: Articles, conference papers, or research papers that contribute to the discourse
on fairness in ML.

• More than 5 citations: Papers cited more than five times, indicating the paper’s impact and
relevance.

• Discussion on fairness: This includes any study that addresses fairness in the context of ML,
covering both theoretical and practical aspects.

• New mitigation technique: Studies that suggest methods to reduce or eliminate biases in ML
models.

• Tool: Studies that introduce software or tools designed to assess, measure, or enhance fairness in
ML models.

• New perspective: Papers that provide innovative viewpoints or conceptual frameworks for
understanding fairness.

• New fairness metric: Studies that develop and validate new metrics for evaluating fairness in
ML.

The Exclusion Criteria are:

• Theses or reports: Academic theses and technical reports, as these often serve as preliminary or
non-peer-reviewed documents.

• Surveys: Summary of existing research rather than contributing new findings or perspectives.
• Papers that primarily focus on techniques without discussing fairness: Studies focusing
on techniques or algorithms without addressing their fairness implications.

• Papers not written in English: Studies written in languages other than English.

Through the selection process based on inclusion and exclusion criteria, a total of 26 papers were
initially identified as relevant. Subsequently, employing a snowballing technique to expand the pool of
selected papers, an additional 3 papers were incorporated, bringing the total number of selected papers
to 29. Snowballing technique, also known as snowball sampling or iterative citation searching [19], is
a technique commonly used in research to identify additional relevant studies beyond those initially
retrieved. It involves reviewing the reference lists of selected papers to identify additional sources that



may not have been captured in the initial search by examining the references of retrieved papers and
identifying relevant citations. Thus, the incorporation of additional papers through snowballing enriches
the research process by capturing potentially overlooked or lesser-known studies that contribute to a
more comprehensive understanding of the subject matter. Finally, the paper analysis is designed to
collect all the information to address the research questions from the selected papers.

4. Results of Literature Analysis

The following data were systematically collected from the papers found (besides paper’s title, authors,
year of publication, venue and URL/DOI):

• Fairness Metrics (Causal or Not or Both): Whether the paper discusses causal fairness metrics
or statistical fairness metrics or both.

• Analysis Type: The type of analysis conducted in the paper: Classification, Evaluation, Definition,
or Solution Proposal (a new tool, perspective or algorithm).

• Content: The paper’s main findings and contributions.
• Context: The specific domain or application area of the research.
• Experimental Datasets: The datasets used in the paper, if any.
• Methods: Mitigation techniques type, if pre-, in- or post-processing.

This comprehensive data collection approach ensures that each paper’s relevant information is
captured accurately and thoroughly, facilitating further analysis and synthesis of findings in subsequent
stages of the research process. A portion of our findings is encapsulated in Table 1.

4.1. Answering RQ1-RQ2

In this section, we are going to address the research questions RQ1 and RQ2 by analyzing the selected
papers. The distribution of causal and non-causal papers among selected papers is: 70% focus on causal
fairness metrics and 30% on statistical fairness metrics.

RQ1: What are themain concepts and differences between statistical-based and causal-based
fairness?

Statistical-based fairness metrics are grounded in ensuring that the observed outcomes of a machine-
learning model are distributed equitably. These metrics focus on the fairness of the model’s predictions
without delving into the underlying causal mechanisms that generate the data. Causal-based fairness
metrics, in contrast, emphasize the importance of understanding and addressing the causal relationships
between variables. These metrics, including Counterfactual fairness and Interventional fairness, seek to
identify and mitigate biases that arise from the causal influence of protected attributes on the outcomes.
By examining the causal pathways, thus, causal fairness metrics aim to ensure that decisions are not
only fair in an observational sense but also in a causal sense, addressing deeper, more systemic biases.

To summarize, the fundamental difference between statistical and causal fairness lies in their approach.
While statistical fairness focuses on the distribution of outcomes, causal fairness delves into the root
causes of biases, examining how and why these biases occur.

Q2: Which datasets are most commonly used in fairness research, and are there differences
between those used in causal-based and statistical-based studies?

The visualization in Figure 2 provides the number of datasets used across papers and shows a detailed
comparison of the frequency of dataset usage in these studies. From the chart, it is evident that the
Adult dataset [41] is predominantly used in both causal and statistical studies, highlighting its relevance
and utility in fairness research, given its rich demographic features and applicability to numerous
fairness metrics. The Compas [3] dataset is widely used in causal studies, which underscores the
necessity of understanding fairness within specific domains, such as criminal justice, where biases can
have significant societal implications. Similarly, the German Credit dataset [42] is commonly used
in statistical studies to evaluate fairness in financial decision-making, such as credit scoring models,



REF. FAIRNESS ANALYSIS DATE DATASETS METHODS

[14] Causal Perspective 2017 / /
[15] Causal Definition 2017 Law School /
[20] Both Tool 2017 Adult, German Pre, Post
[21] Causal Perspective 2018 Berkeley admissions /
[22] Causal Definition 2018 Adult, Compas Pre

[23] Not Causal Tool 2018
Criminal Justice, Public Health,
Public Safety and Policing

In

[7] Both Classification 2018 German /

[10] Causal Definition 2019
Synthetic, Adult, NYC Stop and
Frisk

Pre

[24] Causal Algorithm 2019 Adult, Compas Pre, Post
[12] Causal Algorithm 2019 Adult, Dutch Pre
[25] Causal Tool 2019 Law school, NHS Pre, Post
[11] Causal Algorithm 2019 Synthetic, Adult Post
[26] Causal Tool 2020 Adult, Berkeley Pre, Post
[27] Causal Tool 2020 Dunnhumby Pre
[18] Causal Definition 2020 Adult /
[28] Causal Perspective 2020 BlogCatalog, Flickr Pre, Post
[29] Not Causal Classification 2020 German /
[30] Not Causal Algorithm 2020 ML-20M In
[31] Both Classification 2020 Adult, Compas Pre, Post
[32] Both Tool 2020 / Pre, In, Post
[33] Causal Algorithm 2021 Adult, Credit Approval Pre

[34] Causal Algorithm 2021
Synthetic, Adult, COMPAS, Nutri-
tion

Pre

[35] Causal Evaluation 2021 / /
[36] Causal Perspective 2021 MovieLens, Insurance Pre, Post
[37] Not Causal Classification 2021 Adult, Compas Pre, In, Post
[38] Causal Definition 2022 Synthetic, Bail, Credit defaulter Pre
[39] Both Classification 2022 / /
[40] Not Causal Evaluation 2023 Adult, Folk, Credit, Heart /
[8] Not Causal Classification 2023 German /

Table 1
Summary Table with papers on statistical and causal fairness

where use reflects the importance of ensuring equitable treatment in financial services, an important
area where biases can impact individuals’ economic opportunities. The chart also highlights the use of
synthetic datasets in causal studies, which are artificially created by researchers, and they are essential
for testing causal metrics because they allow researchers to design experiments that can isolate and
examine the effects of specific variables on fairness, providing insights that might not be possible with
real-world data.

5. Fairness Decision Tree

In this section, we are going to present our new fairness decision tree (Figure 3), which aims to extend
and update the original proposal by Baresi et al. [8]. Our goal is to assist people in selecting the most
appropriate fairness definitions for their machine learning (ML) systems by combining both statistical
and causal fairness metrics. The proposed decision tree is open and can further be extended if new
needs and definitions arise.

First, we will provide a detailed summary of the original decision tree, covering nodes A to F and
metrics 1 to 12. Following that, we will introduce the new causal part of the tree (nodes G, H, I, L, M,
and metrics 13 to 19), which is the original contribution of this work.

The tree begins with the question, ”Is past knowledge relevant?” (A). If the answer is yes, the tree



Figure 2: Number of utilized datasets for experiment across causal and statistical papers

helps experts decide about the importance of past decisions compared to new predictions. If the answer
is no, the focus shifts to predictions and legitimate attributes (B). Based on the responses, the tree
suggests different statistical fairness definitions. When past knowledge is relevant, the next question
(C) asks which type of predictions the expert is interested in: wrong, correct, or both. If the focus is on
wrong predictions, the tree further asks whether the interest is in negative or positive predictions (D)
and how conservative the decisions should be (E). Based on the responses, the tree suggests specific
statistical fairness definitions. If the expert is interested in correct predictions, the next question (F)
asks how to balance predictions and past decisions, leading to other three possible statistical definitions.

The introduction of causal fairness metrics expands the tree with new questions (G, H, I, L, M).
These additions address the limitations of purely statistical approaches by also considering the causal
relationships. The new causal fairness metrics section starts with the question, ”Are you interested in
modifying the predictions?” (G). This question is important because modifying predictions involves
engaging with causal relationships, it suggests an interest in not just observing what is but also in
altering and understanding the causal relationships that lead to specific outcomes. If the answer is
no, we move on (C), returning to the statistical part of the tree. If the answer is yes, the tree explores
the possibility of adding or modifying the cause-effect relationships through the question ”Do you
want to add or modify cause-effect relations?” (H). Here, it is essential to distinguish between two
paths that follow from the response to this question. This leads to two different nodes depending on
whether the expert chooses to add (Counterfactual fairness metrics) or modify (Interventional fairness
metrics) cause-effect relationships. In both cases, the decision tree differentiates between analyzing
by group or by individual with the question ”Do you want to analyze by group or by individual?” (I),
which separates the path into group-level and individual-level analysis. This distinction is significant
as it acknowledges that fairness can be assessed by considering the overall impact on groups, where
the focus is on collective fairness, or by individual circumstances, which demands a more granular,
personalized assessment of fairness.

In the counterfactual case (ADD), if the interest is in the group analysis, we suggest using the Unre-
solved Discrimination [7] (13). This metric captures any discrimination that remains after accounting for
all known causal pathways. For those interested in individual analysis, the Counterfactual fairness [15]
(14) is proposed. This metric assesses fairness by comparing the actual outcome with the outcome that
would have occurred in a counterfactual world where the protected attribute is different.
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In the Interventional case (MODIFY), for group analysis, if the interest is on modifying the overall
impact of the causal relationships, the decision tree guides the expert to consider the Total Causal
Effect [11] (15). This metric quantifies the total influence of a protected attribute on the outcome, con-
sidering all possible pathways. If the interest is in indirect influences, the No Proxy Discrimination [14]
(16) metric is recommended. This metric ensures that the protected attribute does not influence the
outcome indirectly through proxy variables. For those interested in specific causal pathways, the
Path-Specific Effect [11] (17) is highlighted. This metric allows experts to dissect the causal graph
and analyze the effect of the protected attribute through specific pathways. And when the analysis
is at the individual level, the tree distinguishes between actions and similarities (L). This bifurcation
addresses two different dimensions of individual-level fairness. Actions refer to the behaviors or efforts
that individuals must undertake to achieve certain outcomes. For instance, the Equality of Effort [18]
(18) metric is recommended. This metric assesses fairness by evaluating the level of effort required by
different individuals to attain the same result, focusing on the processes or actions rather than just
the outcomes. On the other hand, similarities refer to the comparison between individuals who have
similar attributes. Here, the Individual Direct Discrimination [16] (19) metric is presented. This metric
compares individuals with similar attributes (nodes) to ensure that decisions are not biased against
similar individuals.

5.1. Answering RQ3-RQ4

This integration of causal and statistical fairness metrics into a unique fairness decision tree answers
the following research questions.

RQ3: Is it possible to have a common vision between causal and statistical fairness?
While statistical fairness and causal fairness each take a different approach, they share a common

vision of fairness in ML models. Both approaches recognize biases and inequities that may exist in the
models that process data, but they address these issues from different angles: statistical metrics assess
the fairness of a model by comparing observed data using conditional probabilities and conditional
expectations, focusing on the distribution of model outputs and ensuring that the outcomes are equitable.
Causal ones, instead, delve into the underlying causal relationships that drive model decisions. This
approach is more concerned with understanding and eliminating the effects of sensitive attributes on
model outputs through causal pathways. Thus, it provides a deeper analysis by examining how changes
in a protected attribute causally influence the outcome, considering both direct and indirect effects.
Despite their different methodologies, both statistical and causal fairness strive to achieve the same
goal: reducing unfairness in ML models. Therefore, it is possible and also beneficial to have a common
vision between causal and statistical fairness, as they complement each other in addressing different
facets of bias and discrimination in ML.

RQ4: How to choose the most suitable metric considering both perspectives?
Choosing the most suitable fairness metric requires an approach that balances insights from both

statistical and causal perspectives. This decision is complex and context-dependent, necessitating a
thorough understanding of the dataset, the model, and the specific fairness goals of the application.
The fairness decision tree framework presented in this chapter provides a method for navigating these
choices. Here is a detailed approach to selecting the most appropriate metric.

• Deeper Understanding of the Current Dataset and Model: The first step is to analyze the
features and attributes contained in the dataset. It is crucial to focus on protected attributes that
might trigger inequality, such as race, gender, and age. Understanding the distribution of these
attributes is essential for selecting appropriate metrics, as it helps identify potential sources of
bias.

• Choose the Appropriate Fairness Metrics: Use the fairness decision tree as a guide to navigate
through various fairness metrics. The definition of fairness can vary depending on the context.
Thus, it is also crucial to clarify the specific fairness objectives to align the choice of metrics with
the desired outcomes.



• Comprehensive Assessment and Comparison: Use a combination of multiple metrics to
perform a comprehensive assessment. Comparing the results of different metrics can provide a
better understanding of fairness. Additionally, it is beneficial to compare the chosen metrics with
those used in other studies to ensure consistency and validity.

This approach ensures a deeper understanding and mitigation of underlying biases, considering both
perspectives.

6. Conclusions

We investigate the topic of fairness in machine learning (ML), with a focus on the difference between
statistical and causal fairness metrics, in particular, the possibility to incorporate them into a common
vision. Our approach was motivated by the need to investigate, understand, and unify existing fairness
metrics, which usually concentrate solely on statistical outcomes or delve into causal mechanisms
without considering both perspectives. We introduced the fairness decision tree, a novel solution that
integrates the causal fairness metrics into the original tree proposed by Baresi et al. [8], offering a
comprehensive view for evaluating fairness in ML models. This tree guides users through a structured
process to select the most suitable fairness metrics based on the specific context of their application. This
solution also shows that the statistical-based and causal-based fairness metrics could have a common
vision since both perspectives have the same goal: reducing unfairness in ML models, although they
address different facets of bias.

6.1. Limitations and Future Work

One limitation of this work is that the fairness decision tree framework has yet to be validated and
thoroughly tested in real-world scenarios. This validation could be achieved through user testing,
surveys, or field experiments to determine its practicality and effectiveness in a variety of applications.
Another limitation is that the reviewed literature covers only the last seven years, potentially excluding
older but still relevant studies. Thus, expanding the time frame to include earlier work could provide a
more comprehensive understanding of how fairness metrics have evolved over time. Furthermore, the
fairness decision tree may need refinement when applied to various contexts, as real-world applications
could present challenges not fully anticipated by the current framework.

Future research may improve the findings of this work in a variety of ways. One direction could be
the application of the tree to various datasets, potentially through experiments involving real-world
scenarios or user interactions to validate its utility and robustness across different domains. Furthermore,
as fairness in ML evolves, new metrics and perspectives are likely to emerge. Thus, future research
should be adaptive, incorporating these advancements while continuing to investigate the relationships
between various fairness perspectives.
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