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Abstract
Public health data are essential for understanding population health, monitoring trends, and informing evidence-
based decision-making. Traditional Data Warehouses (DWs) have been central in standardizing and analyzing
large-scale datasets, yet they struggle with fragmented sources, heterogeneous formats, and limited adaptability.
Multimodal hEalth Data lakehouse for ITAly (MEDITA) is a proof-of-concept platform built around the
Data Lakehouse paradigm, combining the governance and reliability of DWs with the flexibility of Data Lakes.
MEDITA ingests both tabular and textual data from Italian public health sources through an Extract-Transform-
Load-Model-Deploy (ETLMD) pipeline, harmonizing schemas and enabling statistical and predictive analysis.
The platform integrates interactive dashboards, time-series forecasting modules, and a Retrieval-Augmented
Generation (RAG) chatbot that supports natural-language queries in Italian. By offering a unified and user-
friendly analytical environment, MEDITA improves accessibility for researchers and citizens, reducing barriers to
evidence-based insight and public engagement. Future extensions include support for additional modalities such
as audio, video, and electronic health records, further advancing multimodal analytics in public health.
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1. Introduction

Public health data provide a critical foundation for population surveillance and policy evaluation.
However, their integration remains challenging due to fragmentation, structural heterogeneity, and
limited interactivity across existing infrastructures.

Data Warehouses (DWs) have historically addressed part of this challenge by providing “subject-
oriented, integrated, time-dependent, non-volatile, and non-normalized” repositories [1]. They consol-
idate information across organizations [2, 3, 4] and enable reporting, interoperability, and historical
analysis. However, DWs rely on rigid schema-on-write architectures, require costly development, and
involve complex Extract-Transform-Load (ETL) processes [5, 6]. These limitations are particularly acute
in healthcare, where multimodal inputs and rapidly evolving schemas are the norm [7].

Data Lakes (DLs) were later introduced to improve scalability and flexibility through schema-on-read
ingestion [8]. Despite their adaptability, DLs frequently degrade into “data swamps” due to insufficient
governance, lack of harmonization, and weak support for advanced analytics [9, 10]. More recently,
the Data Lakehouse paradigm has emerged, combining the reliability and governance of DWs with the
scalability of DLs [11, 12, 13]. Data Lakehouse maintain open formats, enforce consistency, and support
machine learning workloads without sacrificing flexibility.

Alongside integration and governance, democratizing access to health data requires new interaction
paradigms. Large Language Model (LLM)-based conversational agents are one such avenue, translating
natural language queries into actionable insights. While LLMs are increasingly used in personal health,
their application to public health remains rare. A key challenge across all domains is the risk of
hallucinations, essentially defined as factually incorrect or unverifiable outputs [14, 15, 16]. Retrieval-
Augmented Generation (RAG) has shown promise in mitigating this risk by grounding answers in
external knowledge [17].
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The relevance of an infrastructure that combines interoperability with accessibility is underscored by
international initiatives such as the World Health Organization (WHO) Health for All database [18]
and the European Health Data Space (EHDS)1. In Italy, valuable datasets are published by the Ministry
of Health2 and the Italian National Institute of Statistics (ISTAT)3, yet they often lack harmonization
and integrated analytical support [19]. Existing aggregators like DatiOpen4 and the national open
data portal5 mainly offer download-based exploration and provide no predictive analytics or natural
language querying.

This paper introduces the Multimodal hEalth Data lakehouse for ITAly (MEDITA), a prototype
platform that operationalizes the Data Lakehouse design for public health. MEDITA ingests both
structured and unstructured sources through an end-to-end Extract–Transform–Load–Model–Deploy
(ETLMD) pipeline. It applies schema-on-read classification, attribute harmonization, and record stan-
dardization to ensure interoperability across heterogeneous datasets. Beyond integration, it embeds a
modeling stage that supports statistical analysis, time-series forecasting, and conversational querying
through the Health Advisor for Needs and Knowledge (HANK), a domain-specific RAG chatbot in
Italian.

By combining structured governance, multimodal ingestion, and AI-powered interactivity, MEDITA
addresses persistent gaps in the Italian context, where open health data are increasingly available but
remain fragmented and difficult to exploit. This architecture aligns with the FAIR (Findable, Accessible,
Interoperable, and Reusable) principles [20] and offers a unified interface for researchers and the general
public. To the best of my knowledge, no current platform combines multimodal integration, Artificial
Intelligence (AI)-powered analytics, and natural language interaction in this way.

The contributions of this paper are threefold. First, it advances the Data Lakehouse paradigm by
introducing adaptive transformation routines, including: (i) a typology for mapping heterogeneous
inputs, (ii) fuzzy matching to resolve attribute inconsistencies, and (iii) record harmonization through
standardized geographic codes and deduplication. Second, it extends classical analytics by embedding
statistical modeling and predictive capabilities within the same environment, accessible through inter-
active dashboards. Third, it integrates HANK, a domain-specific RAG chatbot for Italian public health
data, enabling natural language queries for both researchers and citizens. Together, these features
demonstrate MEDITA as a proof-of-concept platform that unifies heterogeneous data integration,
governance, and AI-powered interactivity into a web-based infrastructure.

The remainder of the paper is structured as follows: Section 2 reviews related work; Section 3 outlines
data sources; Section 4 details the methodology; Section 5 presents experimental results; and Section 6
concludes with implications and future directions.

2. Related Works

Existing research in health data management, ETL processes, web-based health interfaces, and con-
versational agents provides the foundation for MEDITA’s design. In this section, I highlight prior
contributions and outline the specific gaps this work aims to address.

2.1. Health Data Management

Health data infrastructures have traditionally relied on DWs, whose implementation varies widely
between countries, shaped by governance models, technological infrastructure, and regulatory envi-
ronments. Core challenges, such as data fragmentation, system complexity, privacy, and scalability,
influence three main dimensions: strategic governance, architecture, and integrative capacity.

1For details, https://health.ec.europa.eu/ehealth-digital-health-and-care/european-health-data-space-regulation-ehds_en.
2For details, https://www.dati.salute.gov.it/dati/homeDataset.jsp.
3For details, https://www.istat.it/it/archivio/14562.
4For details, http://www.datiopen.it/.
5For details, https://www.dati.gov.it/.
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Several studies evaluate national and regional health data systems for research and clinical use. Burgun
et al. [21] highlight how decentralization in Italy and France inhibits data reuse, citing bureaucratic
obstacles in France and fragmented infrastructure in Italy. By contrast, centralized registries in Nordic
countries facilitate cross-institutional access and data sharing. In the United States, Campion Jr et al.
[22] point to coordination and staffing challenges in Enterprise DWs for Research, underscoring the
resource demands of scalable infrastructure.

Architecture strongly influences adaptability. Examples include Unified Modeling Language (UML)-
based schema standardization [23], health data cubes supporting Online Analytical Processing (OLAP)-
style queries [24], and iterative DWs for communicable disease monitoring at the BC Centre for
Disease Control [25]. In resource-limited or data-rich contexts, integration and scalability are essential.
Bangladesh’s national DW facilitates remote healthcare monitoring [26], while the Dutch system
integrates millions of records across providers [27]. HRADIS [28] improves accessibility using Microsoft
SQL Server’s analytics layer.

Despite these advances, most infrastructures are tied to classical DW paradigms, optimized for
internal or institutional research rather than multimodal public health analytics. They often lack
mechanisms for unstructured data ingestion or AI-based interactivity, motivating hybrid approaches
such as Data Lakehouses.

MEDITA addresses this gap by contributing a modular, scalable Data Lakehouse proof-of-concept
tailored for Italy, harmonizing multimodal public health data and boosting both researchers and citizen
knowledge.

2.2. Data Integration in Public Health

Data integration traditionally relies on the ETL paradigm, originally conceived for relational databases
and later extended to health infrastructures. Early developments were driven by enterprise database
systems [29, 30, 31, 32], logical rule languages [33, 34], and schema modeling standards [35, 36].

Over time, ETL practices were adapted to meet the specific requirements of healthcare, where
interoperability standards such as HL7 FHIR6 have become key drivers of innovation. For example,
Gruendner et al. [19] store FHIR resources in JavaScript Object Notation (JSON), while Hong et al.
[37] propose NLP2FHIR for extracting structured content from clinical notes. At the national level,
India implements cloud-based ETL for real-time analytics [38], while Germany translates HL7 into
Observational Medical Outcomes Partnership (OMOP) Common Data Model to support interoperability
[39].

Yet, healthcare ETL frameworks continue to face persistent challenges of fragmentation, heterogeneity,
and privacy [40]. These limitations have accelerated the shift toward architectures that unify ingestion,
harmonization, and modeling. Recent proposals for Data Lakehouse architectures show how these
stages can be integrated within a single pipeline [11, 41, 10].

Within this domain, the relevance of Data Lakes and Data Lakehouses is increasingly evident. Aziz
[42] propose an Open Data Lake Framework that combines flexible ingestion with strong governance
to support advanced analytics and AI workloads. Similarly, Begoli et al. [12] describe a Data Lakehouse
for biomedical research and mega-biobanks, emphasizing privacy, FAIR compliance, and multimodal
integration of genomic and clinical data. These studies demonstrate how adaptability and governance
can be effectively combined to manage heterogeneous health data, offering concrete evidence of their
suitability for health ecosystems.

Building on these principles, MEDITA contributes a proof-of-concept Data Lakehouse through an
ETLMD pipeline that embeds schema harmonization, modeling, and deployment as native stages,
enabling integration of heterogeneous Italian public health data.

6FHIR is a standard developed by HL7 for exchanging healthcare data: https://www.hl7.org/index.cfm.
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2.3. Web-Based Interfaces in Healthcare

While data ingestion frameworks shape internal data flow, front-end interfaces define how users engage
with health data. Web-based platforms have emerged as essential tools for clinical decision support,
research, education, and public health planning.

At the patient level, systems like MyHealthPortal [43] offer real-time self-care tools by integrating
wearables with symptom tracking. Interoperability with electronic health records improves longitudinal
care but requires robust privacy safeguards.

For researchers, platforms such as BMI Investigator support multimodal queries across genomic,
imaging, and clinical data [44], while Hadoop-based systems demonstrate scalability for hospital disease
detection [45]. Visualization dashboards are also prominent: Chen et al. [46] use Uniform Manifold
Approximation and Projection (UMAP) to explore rare diseases, and Geoportal integrates geospatial
and health indicators via OLAP [47].

Public health platforms often operate at macro level. GIS-based dashboards track accessibility [48],
while Hawaii’s IBIS-PH centralizes surveillance indicators [49]. The COVID-19 pandemic accelerated
demand for timely data: Covid-Warehouse aggregates Italian regional metrics for crisis response [50],
while Turcan and Peker [51] propose a multidimensional DW for pandemic monitoring.

Nevertheless, most interfaces are siloed by domain and rarely integrate multimodal data or advanced
analytics. MEDITA addresses this gap by coupling interactive dashboards with predictive modeling
and conversational AI, making public health data usable across heterogeneous users.

2.4. User-Agent Chatbots

Conversational agents in healthcare have evolved from rule-based systems to machine learning and,
more recently, LLM-powered chatbots. Early systems supported reminders or triage but offered limited
contextual reasoning. Recent work demonstrates broader potential, showing their effectiveness for
patient engagement and diagnostics [52], multimodal interaction combining text, voice, and images
[53], and supervised assistants such as MEDIC [54] and Medibot [55].

Generative models are now reshaping the field. Med-PaLM achieves expert-level performance on
USMLE-style questions [56], while MultiMedQA benchmarks reasoning and factuality across multiple
medical tasks [57].

Nonetheless, many chatbots remain domain-specific or ungrounded, raising risks of misinformation.
LLMs often display overconfidence [58], failing to recognize when they lack sufficient knowledge and
generating hallucinations [14, 16], which pose significant risks in clinical use.

These limitations underscore the importance of grounding strategies. This work contributes HANK, a
retrieval-augmented medical chatbot designed for Italian public health, which anchors responses in cu-
rated evidence and abstains when context is insufficient. This approach aims to minimize hallucinations
and enhance transparency, supporting safe, data-grounded interaction at national scale.

3. Data Sources

MEDITA integrates structured and unstructured open-access health data to support multimodal analysis
of Italy’s healthcare landscape. These datasets enable longitudinal, socio-economic, and thematic
analyses across various domains, providing a representative foundation for public health insight
spanning policy, service delivery, and population behavior.

Structured data is sourced from three national institutions and covers 12 public health domains,
including hospital care, pharmaceuticals, nutrition, mental health, demographics, and socio-economic
factors. Indicators were selected for their relevance to public health monitoring and for their consis-
tency across institutional datasets. Specifically, the Ministry of Health provides national and regional
healthcare records, the Italian National Institute of Statistics (ISTAT) supplies health, demographic, and
socio-economic data, and the Italian Medicines Agency (AIFA) contributes pharmaceutical datasets on
drug consumption and pricing. All structured data is released under national open data licenses.



Unstructured textual data consists of Italian-language health news articles covering policy, research,
service delivery, and epidemics. This corpus enriches the semantic context and powers the natural
language querying features of the platform within the HANK chatbot, enhancing both the quality of
interaction and the relevance of responses.

4. Proposed Architecture

MEDITA adopts a five-stage ETLMD (Extract, Transform, Load, Model, Deploy) pipeline to manage the
full data lifecycle with modularity, automation, and interoperability. As shown in Figure 1, the workflow
integrates data ingestion, harmonization, AI-based modeling, and deployment. Key methodological
innovations occur in the Transform and Model stages.
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Figure 1: MEDITA Pipeline

The Extract stage acquires raw data from heterogeneous sources while preserving structural integrity.
Metadata mapping is guided by operational flags; when enabled, the system parses source feeds, extracts
schema information, and generates structured JSON metadata to inform downstream transformation
routines. A system logger monitors all pipeline activity and records events at multiple severity levels.

In the Transform phase, data are cleaned, normalized, and harmonized using format-aware routines.
Transformation logic includes schema detection, fuzzy attribute matching, record harmonization, and
data standardization, as described in detail in Section 4.1.

The Load stage persists processed data into a structured relational database. A custom wrapper
built on SQLAlchemy connects to a local SQLite instance through Object-Relational Mapping (ORM),
enabling efficient Create, Read, Update, and Delete (CRUD) operations and ensuring alignment between
the database schema and the application codebase [59, 60, 61].

The Model stage integrates both statistical modeling and conversational AI. Time-series forecasting
and regression analysis are supported natively, while a zero-shot prompt engineering template anchors
the RAG framework for natural language interaction with the data. The design and evaluation of the
user-agent chatbot are detailed in Sections 4.2.1–4.2.2.

The Deploy phase manages reproducibility and accessibility. Git-based automation [62] supports
continuous integration and version control, while the Streamlit interface is deployed on Streamlit Cloud,



making the prototype globally accessible without dedicated infrastructure.

4.1. Transform Phase

The Transform phase prepares extracted data for integration through format-aware routines applied
dynamically according to input type. Its purpose is to resolve inconsistencies and align variable
semantics across datasets using a reproducible, rule-based approach.

Textual sources are processed using lightweight cleaning modules tailored for downstream trans-
formermodels. Preprocessing includes removal of HTML tags and non-semantic tokenswhile preserving
linguistic context to retain meaning.

Tabular data requires more extensive normalization due to inconsistencies in delimiters, quoting
conventions, nested structures, and encodings. Inputs may be delivered in plaintext, CSV, or XML-based
objects, with numeric formats varying by locale. All outputs are standardized as pipe-delimited files
with UK-style formatting, consistent headers, and sanitized characters to ensure compatibility with
modeling tools and databases.

The Transform phase comprises four core steps: (i) Indicator Structure Mapping identifies, for each
indicator within a domain, the full topology of source objects and embedded tables that must be
ingested together, and detects hierarchical subtypes within the same indicator; (ii) Attributes Fuzzy
Matching resolves inconsistencies by aligning attribute names across instances of the same indicator
using approximate string-matching techniques; (iii) Records Harmonization standardizes geographic
and categorical variables in accordance with European NUTS standards, and derives a superkey to
uniquely identify records while preserving data granularity; and (iv) Data Standardization enforces
schema consistency and formatting rules to ensure cross-dataset uniformity. Together, these procedures
support the robust integration of heterogeneous health data into a unified analytical framework.

4.1.1. Indicator Structure Mapping

A key challenge in standardizing input data is determining the number and layout of tables within each
object associated with target indicators, especially in the absence of prior schema knowledge. While
plain-text formats typically represent a single table structure, binary and Open XML formats often
contain multiple tables embedded within a single file. In XML-based formats, each table is encapsulated
as a separate object within a compressed archive and may exhibit hierarchical relationships.

Such hierarchies are typically structured around a general indicator with associated subtypes. For
instance, a Personnel indicator may include subtypes such as Doctors and Nurses, linked via shared
attributes. To address this, MEDITA introduces a classification framework that uses a flag-based system
to detect and map object–table structures per indicator. This ensures reliable schema identification and
supports harmonization across heterogeneous formats.

Formally, let ℱ = {𝑓1, 𝑓2, … , 𝑓𝑚} denote the set of data objects, where each object 𝑓 ∈ ℱ contains a
set of tables 𝒮𝑓 = {𝑠1, 𝑠2, … , 𝑠𝑛}, and |𝒮𝑓| is its cardinality. Let ℐ = {𝑖1, 𝑖2, … , 𝑖𝑝} be the set of indicators,
where each 𝑖 ∈ ℐ may include a main type and one or more subtypes. Each indicator 𝑖 is associated
with a subset ℱ𝑖 ⊆ ℱ, where relevant data are distributed across objects and tables. Subtypes represent
more granular components of an indicator and may appear within a single object or be distributed
across instances.

To support schema harmonization, I define a classification function 𝛿 over object–table pair (𝑠, 𝑓 ) as
follows:

𝛿(𝑠, 𝑓 ) =

⎧
⎪

⎨
⎪
⎩

𝛿𝑆𝑆 if 𝑓 = 1 ∧ 𝑠 = 1,
𝛿𝑆𝑀 if 𝑓 = 1 ∧ 𝑠 > 1,
𝛿𝑀𝑆 if 𝑓 > 1 ∧ 𝑠 = 1 ∀𝑓 ∈ ℱ𝑖,
𝛿𝑀𝑀 if 𝑓 > 1 ∧ ∃𝑓 ∈ ℱ𝑖 ∶ 𝑠 > 1.

(1)

This yields four structural categories: Single–Single (SS), Single–Multi (SM), Multi–Single (MS), and
Multi–Multi (MM). The classification supports adaptive transformation and automatic subtype detection
as new table configurations appear, enhancing the flexibility and robustness of the integration pipeline.



Table 1
Examples of Indicator Structure Mapping

Source / Indicator Input Format Analysis Outcome
Hospital Admissions Single CSV file with one ta-

ble
Ingested as a single standardized
table

SS

Semi-residential Mental
Health Services

Multiple CSV files Merged longitudinally into one har-
monized table

MS

Healthcare Workforce XML-based workbook with
multiple tables

Multiple tables with hierarchical
subtypes (e.g., Doctors, Nurses), re-
sulting in two distinct tables harmo-
nized under common keys

MM

To illustrate, Table 1 presents real-world cases of indicator structure mapping applied to data. Cases
of SM were not present in the current release of MEDITA and are therefore not illustrated.

4.1.2. Attributes Fuzzy Matching

When structural configurations such as MS or MM are encountered, inconsistencies often arise across
tables belonging to the same indicator. These include slight changes, additions, or removals of attributes,
which hinder interoperability. To resolve this, MEDITA applies fuzzy string matching to align attributes
across all instances of an indicator.

Formally, let 𝒯𝑖 = {𝑡1, 𝑡2, … , 𝑡𝑚} denote the set of tables associated with a given indicator 𝑖. Each table
𝑡𝑗 has a set of attributes 𝒞𝑗 = {𝑐𝑗1, 𝑐

𝑗
2, … , 𝑐𝑗𝑛}. The pairwise similarity between any two attribute names

𝑐𝑗𝑎 ∈ 𝒞𝑗 and 𝑐𝑘𝑏 ∈ 𝒞𝑘 is computed using the normalized Levenshtein distance:

Similarity(𝑐𝑗𝑎, 𝑐𝑘𝑏 ) = (1 −
𝑑(𝑐𝑗𝑎, 𝑐𝑘𝑏 )

max(|𝑐𝑗𝑎|, |𝑐𝑘𝑏 |)
) × 100 (2)

Attribute alignment between 𝑡𝑗 and 𝑡𝑘 is accepted when Similarity(𝑐𝑗𝑎, 𝑐𝑘𝑏 ) ≥ 90. The threshold has
been empirically tuned through testing to optimize matching accuracy across heterogeneous tables.
The optimization objective minimizes cumulative dissimilarity across all attribute pairs of the indicator:

min
𝑚−1
∑
𝑗=1

𝑚
∑

𝑘=𝑗+1
∑
𝑐𝑗𝑎∈𝒞𝑗

∑
𝑐𝑘𝑏∈𝒞𝑘

(100 − Similarity(𝑐𝑗𝑎, 𝑐𝑘𝑏 )) (3)

The Levenshtein distance is zero for identical strings and bounded by the maximum string length.
For equal-length strings, it is upper bounded by the Hamming distance [63]. It also satisfies the triangle
inequality, ensuring consistent approximate matching [64]. This enables robust attribute alignment
across heterogeneous schemas representing the same indicator.

In practice, fuzzy matching is particularly valuable for handling temporal or typographic variations
that would otherwise fragment schemas. For example, yearly workforce tables labeled Doctors_2021,
Doctors_2022, etc., are automatically recognized as belonging to the same attribute family. Likewise,
inconsistencies such as pluralization or typographical errors are resolved through approximate string
similarity.

4.1.3. Records Harmonization

The harmonization step ensures consistency in geographic and categorical attributes across indicators.
A key distinction is made between statistical units (e.g., regions) and administrative units (e.g., Provincia
Autonoma di Bolzano, Trento), which is critical when analyses require both regional aggregation and



administrative specificity. For example, hospital admissions may be aggregated at the regional level for
comparability, while workforce allocation is often managed at the provincial level.

Region names are standardized, and codes are aligned with the NUTS level 2 classification7. Indicators
are labeled as geographic if they include regional identifiers, or as registry-based otherwise, guiding the
transformation routines accordingly.

To prevent information loss during aggregation—such as collapsing distinct categories when grouping
by region—each harmonized indicator table is assigned a superkey, the minimal set of attributes uniquely
identifying each row. Formally, given a dataset 𝐷 ∈ ℝ𝑚×𝑛 with attributes 𝐶, the superkey is defined as
the smallest subset 𝐶sub ⊆ 𝐶 such that:

min
𝐶sub⊆𝐶

|𝐶sub| subject to 𝑟𝑖 ≠ 𝑟𝑗 ∀𝑖 ≠ 𝑗, where 𝑟𝑖, 𝑟𝑗 ∈ 𝐷[𝐶sub]. (4)

If no such subset exists, the procedure returns ∅. This routine is applied automatically, enabling
fine-grained analysis while avoiding aggregation bias.

4.1.4. Data Standardization

The final step addresses technical inconsistencies across heterogeneous datasets, such as delimiters,
encodings, numerical formats, and XML structures. MEDITA implements adaptive parsing utilities
that dynamically adjust to the format of each input source, ensuring that all indicators are transformed
under a common framework.

Schema consistency is enforced through operations such as removing empty rows, correcting mis-
aligned indices, trimming whitespace, and normalizing attribute names. Data type integrity is also
standardized: locale-dependent number formats (e.g., commas as decimal separators) are converted
into a consistent style, leading-zero identifiers are stored as strings, and integer-like values (e.g., 2020)
are explicitly cast as integers.

This automated normalization framework produces schema-compliant, analysis-ready datasets
aligned with relational database best practices. By minimizing manual intervention while preserving
data fidelity, it provides the foundation for reproducible, multidimensional analysis in later stages of
the pipeline.

4.2. Model Phase

Generative models alone often struggle with factuality and verifiability, issues that are particularly
critical in healthcare. To address this, the Model phase of MEDITA integrates HANK, a domain-specific
chatbot based on RAG, into the ETLMD pipeline. HANK delivers context-aware, Italian-language
responses grounded in a curated healthcare corpus. A key element of its reliability is the use of structured
prompt templates that constrain answers to retrieved evidence, thereby minimizing hallucinations and
reducing reliance on model priors.

The underlying framework is developed in a companion study [65], which focuses on benchmarking
generative models for public health question answering. Here we summarize the components of this
setup and refer the reader to prior work for further details.

The modeling workflow comprises three core components. First, a dense vector store is constructed
from Italian health-related news articles. Documents are segmented into chunks of 512 tokens with a 64-
token overlap and embedded into high-dimensional space using the Paraphrase Multilingual MiniLM L12
Sentence Transformer [66, 67], which balances retrieval accuracy and efficiency. Second, user queries
are parsed and transformed into a zero-shot prompt engineering template that restricts responses to
retrieved evidence. Third, the retriever identifies the most relevant documents, which are then passed
to a generator to synthesize answers.

For the generation stage, HANK relies on Gemma-2 [68], integrated within MEDITA as the default
language model8. Performance is evaluated using standard metrics such as Exact Match (EM), ROUGE
7See: https://ec.europa.eu/eurostat/web/nuts for details.
8See Priola [65] for a broader evaluation of alternative models.
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[69], BLEU [70], METEOR [71], and BERTScore [72], alongside the Negative Missing Information
Scoring System (NMISS) [65], which focuses on contextual completeness and spurious hallucination
detection.

To reduce memory footprint and latency during inference, HANK employs post-training quantization,
converting both model weights and activations to lower-precision representations. Quantization
significantly accelerates inference and reduces resource demands while maintaining accuracy [73].

By combining quantization with retrieval and controlled prompting, this efficiency-oriented design
ensures that HANK produces responses that are both computationally efficient and grounded in Italian
public health data, extending beyond the limitations of conventional generative models.

4.2.1. Retrieval-Augmented Generation

The RAG framework consists of two components: a retriever that identifies relevant documents 𝑐 for a
given query 𝑞, and a generator that produces the response 𝑟 token by token, conditioned on 𝑞 and 𝑐.
Italian-language news articles are embedded using Sentence Transformers [74], enabling high-quality
semantic retrieval.

This work adopts the RAG-Sequence variant, which conditions the entire response on a fixed
retrieved document set. Let 𝒫𝜂(𝑐 ∣ 𝑞) denote the retriever and 𝒫𝜃(𝑟𝑖 ∣ 𝑞, 𝑐, 𝑟1∶𝑖−1) the generator. The full
generation objective is:

𝒫RAG(𝑟 ∣ 𝑞) = ∑
𝑐∈top-𝑘(𝒫𝜂(𝑐∣𝑞))

𝒫𝜂(𝑐 ∣ 𝑞)
𝑁
∏
𝑖=1

𝒫𝜃 (𝑟𝑖 ∣ 𝑞, 𝑐, 𝑟1∶𝑖−1) (5)

where 𝑟 = (𝑟1, 𝑟2, … , 𝑟𝑁) is the output sequence.
To ensure factual accuracy, MEDITA uses a prompting scheme in which user queries are embedded

within structured instructions. The structure and rationale for these prompts are described next.

4.2.2. Prompt Engineering Template

Prompt engineering refers to the process of crafting input instructions that guide a language model to
perform a specific task. As noted by Liu et al. [75], the structure and wording of prompts significantly
influence both model behavior and performance. In healthcare contexts, carefully designed prompts
help reduce hallucinations and improve factual accuracy [76, 77]. Manual prompts have shown strong
empirical results across a range of tasks, including question answering and reasoning [78].

The structured prompt adopted by HANK follows a simple question–answer format anchored to the
retrieved context illustrated in Table 2. This zero-shot design relies on pretrained knowledge while
enforcing contextual grounding [79, 80].

Table 2
Prompt engineering template

Component Example

Instruction You are a chatbot that loves helping people! Given the following context section,
answer the question using only the provided context. If you are unsure and the
answer is not explicitly written in the documentation, respond by saying, ’I’m sorry,
I can’t help you based on the information I have.’

User [User Question Here]

Context [Context Retrieved Here]

System [System Answer here]



4.3. Implementation Stack

MEDITA follows a layered design that balances reproducibility and ease of deployment. At the storage
layer, the platform uses SQLite as a lightweight relational backend, enabling rapid ingestion and query
without server overhead, appropriate for a proof-of-concept Data Lakehouse.

The data ingestion and preparation process is handled by an ETLMD pipeline written entirely in
Python. This combines widely used libraries such as pandas and SQLAlchemy for tabular manipulation,
Dask, Multiprocessing for parallelization, and fuzzywuzzy for fuzzy logic, together with utilities like
BeautifulSoup for parsing semi-structured formats and JSON metadata for schema-on-read structural
classification. This design enables heterogeneous file formats to be harmonized under a consistent
framework.

Analytical functionality combines classical statistics and machine learning models. Econometric
models are provided via statsmodels, while scikit-learn supports supervised learning and diagnostics.
For embedding and neural components, the stack uses HuggingFace, Transformers and Keras.

The conversational interaction uses Sentence-BERT embeddings via Langchain and a vector store
built with Chroma backed by FAISS indexing. Generation uses HuggingFace Transformers, with 4-bit
quantization through BitsAndBytesConfig to reduce latency and memory usage during inference. This
RAG stack is integrated end-to-end within the pipeline.

The user interface is implemented as a Streamlit web application, combining lightweight deployment
with interactivity. Visualizations are produced using Plotly, while authentication and access control are
managed through YAML-based configuration files.

Finally, deployment is realized on Streamlit Cloud, which provides global accessibility in the absence
of a dedicated infrastructure. More advanced scenarios, such as Docker-based containerization or
cloud-native deployments, are left for future extensions.

4.4. Target Users and Use Cases

MEDITA is designed to serve two main communities of users: researchers, who require reproducible
access to harmonized indicators for analysis, and citizens, who benefit from simplified interaction with
public health information.

For researchers, the platform provides tools to consolidate fragmented datasets and conduct compar-
ative analyses across time and geography. A researcher can search for indicators by keyword, inspect
metadata, and filter attributes much like in a search engine. Once selected, the system automatically
checks for missing values, data integrity, and historical consistency. Indicators of interest can then be
subjected to diagnostic statistical tests and used in forecasting models. For example, an epidemiologist
studying cardiovascular disease may merge hospitalization data with demographic indicators, validate
the combined dataset, and forecast future admissions. The FAIR principle of Findability is ensured be-
cause every indicator remains traceable back to its official source, with standardized metadata reporting
the structure of the dataset.

Beyond expert users, MEDITA also democratizes access for citizens, who often find open datasets
technically available but practically inaccessible. Through HANK, non-specialists can query the system
in natural language—for instance, asking “What is Asperger syndrome?” and receive grounded responses.
Citizens may also explore health indicators across regions without requiring statistical expertise, making
public health evidence both transparent and actionable.

5. Experimental Results

5.1. Data Collection

The structured corpus comprises 1,403 features distributed across 12 public health domains, as shown
in Table 3. After harmonization, these were consolidated into 110 integrated indicators, totaling nearly
half a billion observations.



Table 3
Topic Distribution Statistics

Topic No. Features No. Obs No. Records NAs (%)

Education and Disability 36 9,216 528 5.99
Food 106 116,674,075 8,869,732 4.00
Health and Mortality 185 178,960,360 8,070,354 2.36
Hospital Data 111 4,450,239 199,814 2.56
Medical Devices 141 61,473,812 6,484,224 27.07
Mental Health 109 472,707 41,450 0.46
NSS Personnel 153 1,135,756 58,855 0.23
National Health System 136 305,919 23,277 7.48
Pharmaceuticals 265 42,725,248 3,083,274 17.82
Social Security 54 165,528 9,196 -
Sociodemographic Indicators 69 11,371,407 520,260 7.93
Violence 38 43,472 1,144 -

Total 1,403 417,787,739 27,362,108 15.27
Note: This table summarizes data showing the total number of attributes, records, observations, and ratio of missing data percentages.

Overall missingness averages about 8% across variables, although the total reported in Table 3 is
higher (15.3%) due to the concentration of gaps in domains such as Medical Devices and Pharmaceuticals.
In contrast, domains such as Mental Health, Social Security, and Violence are nearly complete. Data
complexity is uneven: some domains exceed 150 features, while others remain under 40.

The dataset includes a diverse range of attribute types, such as boolean, categorical, date, numerical,
and free-text. This heterogeneity reflects the richness of Italian public health data but also highlights
the need for rigorous harmonization procedures. Prioritizing the reduction of missing values in critical
domains will further enhance overall dataset quality.

The temporal distribution shown in Figure 2 illustrates observation counts across domains for the
indicators with temporal granularity. The top contributors by volume include Health and Mortality,
Medical Devices and Pharmaceuticals. Several indicators exhibit fluctuating reporting intensity over
time, reflecting shifts in institutional priorities, policy interventions, or changes in reporting standards.

In parallel, 126,470 Italian-language health news articles were collected from 2010 to 2024. A prepro-
cessing step removed HTML tags and artifacts. Articles average 348 tokens (SD = 264), with lengths
ranging from 6 to 5,594 tokens. The median length is 284 tokens, with an interquartile range of 195–421,
indicating considerable variation in reporting styles—a factor that complicates downstream semantic
retrieval.

The news corpus spans a broad set of themes, as shown in Figure 3. The most represented is regional
affairs and governance (25%), followed by biomedicine (20%), media commentary (13%), national health
governance (13%), and health professions (12%). Furthermore, 11% of the articles are uncategorized due
to missing metadata rather than the lack of thematic classification. The least represented categories
include topics such as COVID-19 and Local health governance. This thematic diversity supports future
classification, topic modeling, and retrieval tasks.

5.2. ETL Pipeline Performance

To evaluate efficiency, I benchmark the ETL pipeline during ingestion and harmonization. All
experiments were conducted on a 12th Gen Intel(R) Core(TM) i7-12700H CPU 2.70 GHz, with 14 cores,
20 logical processors, and 16 GB of DDR4 RAM.

Overall, the system processed the 12 thematic domains described in Section 5.1, resolving more than
600 attribute mismatches and 1,100 inconsistencies across a total of 268 input tables. Examples include
the harmonization of misaligned headers and the automatic detection of malformed rows.
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Figure 3: News Topic Distribution Over Time

For structured data, the extraction phase required a total of 1 hour 29 minutes, with durations
ranging from about 15 seconds for AIFA, to roughly 35 minutes for MINIS, and nearly 1 hour for ISTAT.
Transformation consumed in total 1 hour and 37 minutes, varying from about 4 minutes (AIFA), to
nearly 24 minutes (MINIS), and more than 1 hour for ISTAT. For unstructured sources, each news article
requires 0.09 seconds to be ingested and transformed. The loading phase required about 9 minutes
overall.



5.3. User-Agent Chatbot

HANK combines semantic search with transformer-based response generation, ensuring both factual
accuracy and contextual relevance. It supports user-centered exploration across a broad spectrum of
general health topics, offering concise answers grounded in publicly available sources. Table 4 presents
illustrative examples of HANK’s behavior across different query types.

Table 4
Examples of Context-Grounded Responses Generated by HANK

Question Retrieved Context (excerpt) Chatbot Response

What are the new findings
about the gut microbiome?

“Gut microbiota varies by diet, environ-
ment, and health. Some microorgan-
isms, like Bacteroidetes, are linked to obe-
sity. Metagenomics targets gut-related dis-
eases.”

Metagenomics enables sequencing of
gut microorganisms to study diseases
like liver cirrhosis and IBD, offering in-
sights into microbiome-related condi-
tions.

How can epigenetics help us
understand diseases?

“Results can support protocols for preci-
sion medicine, adapting to patient charac-
teristics.”

I am sorry, I cannot help you based on
the information I have.

Note: Retriever extracts content chunks; Generator uses these to compose answers using the RAG framework.

The examples show how HANK synthesizes retrieved content into informative responses when
evidence is sufficient, and abstains when it is not. In the second case, for instance, the model refrains
from answering because the retrieved documents lack content relevant to the user’s query.

To evaluate HANK within the MEDITA platform, I rely on a benchmark of 100 general health
questions stratified by complexity (low, mid and high), as well as multiple evaluation metrics. Reference
answers are first manually drafted, then validated by a domain expert. Model responses are annotated
with a binary label to indicate the presence or absence of hallucinations. NMISS is applied specifically
to non-hallucinated responses and further restricted to borderline cases, thereby filtering out trivial
matches or complete failures. This ensures NMISS targets semantically context-sensitive answers where
classical metrics often fall short.

Outperformance under NMISS indicates cases where classical metrics assign lower scores to non-
hallucinated answers that remain semantically faithful but diverge lexically from the reference. In
such instances, NMISS successfully captures contextual adequacy that classical token-based metrics
underestimate due to their surface-level overlap criteria. The full breakdown of results across levels
and annotation protocol is detailed in Priola [65].

Across classical metrics, Gemma-2 demonstrates strong and stable performance. Under NMISS,
Gemma-2 achieves major gains in more than 80% of valid BLEU and ROUGE-1 cases, with additional
improvements under ROUGE-L, confirming its tendency to generate semantically faithful but lexically
divergent responses.

Table 5
Performance of Gemma-2

ROUGE-1 ROUGE-2 ROUGE-L BLEU METEOR EM BERTScore

Gemma-2 0.722 (82.51) 0.663 (5.59) 0.698 (45.45) 0.607 (82.43) 0.702 (12.14) 0.370 0.880

Note. Values outside parentheses are averages across all question levels (low, medium, high) under classical metrics.
Numbers in parentheses indicate the percentage of valid cases where NMISS outperformed the corresponding metric.
NMISS is not applicable to EM and BERTScore.

Given its strong performance in both standard and hallucination-sensitive evaluation, Gemma-2 is
adopted as the default generation model in MEDITA. It offers the best balance between factual accuracy,
contextual relevance, and efficiency.



5.4. Statistical and Multidimensional Analysis

MEDITA enables interactive statistical analysis, supporting tasks such as exploratory data analysis,
predictive modeling, and diagnostic validation. Users can select numerical variables and apply
standard checks, including stationarity [81], multicollinearity, and heteroscedasticity [82]. Supported
regression models include OLS, GLS, ARIMAX, and SARIMAX [83]; Logistic Regression is available
for classification. The system automatically handles missing data and flags issues such as high null
rates or low sample-to-feature ratios. Results are returned with diagnostic summaries and interactive
visualizations, using standard metrics such as MAE, MSE, and 𝑅2 for regression, or accuracy, precision,
recall, F1, and ROC-AUC for classification.

Beyond statistical models, MEDITA structures health data according to OLAP-inspired principles,
though without implementing a full cube engine. Temporal and geographical filters enable slice
operations, while combining multiple conditions supports dice-like subsetting. Forecasting modules
perform a system-driven roll-up of time series to the yearly level. This is a design choice, since
annual reporting represents the most consistent level of granularity across Italian public health
datasets. While some indicators exist at monthly resolution, they are not consistent across sources.
Conversely, drill-down below the regional (NUTS-2) level is intentionally disabled, as subregional data
are not systematically available. These restrictions preserve interoperability and comparability across
indicators in this proof-of-concept release.

In this setting, facts correspond to quantitative indicators, while measures are basic computations
such as totals, averages, or medians. Dimensions define the axes of analysis, currently restricted to
temporal and geographical attributes. Predictions generated by forecasting modules can also be treated
as new facts, linking descriptive exploration with predictive analytics and moving the platform beyond
static reporting toward proactive decision support. Table 6 summarizes how these OLAP-inspired
operations are implemented in the platform.

Table 6
Mapping of OLAP-inspired operations

Operation Platform Layer Implementation in MEDITA

Slice Data Explorer Temporal and geographical filters restricting the
scope of analysis.

Dice Data Explorer | Forecaster Multiple combined filters (dataset, time period,
attributes) to extract analytical subcubes.

Roll-up Forecaster Automatic aggregation of temporal series to the
yearly level, ensuring interoperability.

Drill-down — Not supported: regional (NUTS-2) level is the low-
est consistent granularity; finer detail is left for
future work.

5.5. Web Application Interface

The MEDITA platform features an intuitive, Streamlit-based dashboard9, designed to guide users
through the analytical workflow via dedicated pages for data exploration, modeling, and assistance.
The interface prioritizes usability and accessibility, with Figure 4a illustrating the homepage.

Users begin with the Infographics section (Figure 4b), which provides aggregated summaries by
year, topic, or region to support initial exploration. The Data Explorer (Figure 4c) enables deeper
investigation through interactive visualizations, variable-level details, and dynamic querying.

9https://docs.streamlit.io/



(a) Homepage snapshot (b) Infographics snapshot

(c) Explorer snapshot (d) HANK snapshot

Figure 4: User interface of the MEDITA platform

Next, the HANK Chatbot (Figure 4d) offers natural language access to health-related insights,
assisting non-technical users with contextualized responses grounded in the platform’s knowledge
base. The Forecast Generator enables predictive modeling of selected trends, supporting scenario
analysis and decision-making. Additional sections include Help, offering practical guidance and FAQs,
and About, outlining platform objectives and references.

6. Conclusions

The growing complexity of healthcare data demands infrastructures that integrate, harmonize, and
analyze heterogeneous sources at scale. While Data Warehouses offer governance and Data Lakes
flexibility, only the emerging Data Lakehouse paradigm reconciles these trade-offs. Existing institutional
platforms for public health, however, remain mostly limited to query-based dashboards or filter-based
access to static structured data, offering little in terms of harmonization, interactivity, or predictive
modeling.

This paper introduces the Multimodal Health Data lakehouse for ITAly (MEDITA), the first
Italian proof-of-concept of a Data Lakehouse for public health. By combining a five-stage ETLMD
pipeline with schema harmonization, advanced analytics, and a Retrieval-Augmented Generation
chatbot, MEDITA enables both researchers and citizens to interact with multimodal health data through
reproducible, FAIR-aligned workflows.

Looking forward, this work aims to extend the prototype to additional modalities such as electronic
health records, audio, and video, and to explore cloud-native deployment for scalability. Interactivity
will also be enhanced by adding notebook-style environments, enabling advanced users to directly
experiment with data and models within the same ecosystem.

In this way, the platform is positioned to evolve into a next-generation framework for public health



intelligence, supporting scientific inquiry and evidence-based policy.
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