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Abstract

The increasing urgency to understand, predict, and mitigate the impact of climate change requires the integration
of advanced Earth system modeling with computational and data science tools. Earth System Models (ESMs) are
fundamental to this attempt, providing integrated models to simulate the interconnected behavior of atmospheric
systems, oceans, hydrosphere, cryosphere, biosphere. However, the growing complexity, resolution, and compu-
tational intensity of these models require robust support from hybrid HPC systems and digital infrastructures
capable of handling exascale data volumes and simulation demands. This paper highlights the work carried out
within the context of the Earth & Climate spoke of the Italian National Centre on High Performance Computing,
Big Data and Quantum Computing (ICSC). In particular, it describes the software infrastructure that underpins
the development of Climate Data IT, which is the first attempt to create a petascale-order data platform for
climate scientists. This platform serves major community experiments such as CORDEX and CMIP. According to
a co-design approach, it brings together infrastructure and technology providers, as well as modeling groups, at a
national level.
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1. Introduction

Climate change and its impacts on countless sectors of society have enormously increased the demand
for comprehensive scientifically robust, timely and reliable climate data for decision making to inform
adaptation and mitigation policies [1]. In this context, the continued development and implementation of
Earth System Models (ESMs) is key to address the complex challenges facing society in a changing climate.
ESMs allow to simulate the cycling of energy, water and major geochemical elements (e.g. carbon,
macronutrients) across different components of the Earth System (atmosphere, ocean, hydrosphere,
cryosphere, biosphere), taking into account their major feedback mechanisms and related non-linear
processes. Such approach is also useful to: i) ease the possibility to address and quantify uncertainties
and errors in model parameterization that are inherent and impossible to fix in single-component
approaches, and ii) improve the predictive capabilities of models, also in relationship to parameters
of specific components. ESMs cover a wide range of timescales and computation requirements set
by time constraints for the solution, simulation length, spatial and temporal resolution and increased
complexity of the represented processes and interactions/feedbacks within the climate system. These
challenges can be met only with the advanced hybrid computational systems at pre- and full exascale.

In such a scientific context the National Centre on HPC, Big Data and Quantum Computing (ICSC),
provides a pivotal opportunity for the Italian scientific, industrial and economical system to address cur-
rent and upcoming scientific and societal challenges, strengthening and expanding existing competences
and infrastructural resources.

In particular, the Earth & Climate spoke (i.e., Spoke4) within ICSC aims to implement a digital infras-
tructure integrated in the ICSC SuperComputing facilities to: (i) assess and store robust, high—quality
climatic data; (ii) facilitate the development and sharing of ESM components (e.g., models of the atmo-
sphere, oceans, biogeochemistry, sea-ice, land-surface, vegetation, etc.); (iii) facilitate the production and
management of numerical simulations; (iv) be a national asset available to the entire Italian community
engaged in research, education and operational activities in the field of climate predictions and climate
change, positioning our country at the forefront of climate research.

A key outcome of the project is the deployment of the Spoke4 digital infrastructure software stack
on the ICSC Supercomputing facility hosted at CINECA. This activity is currently ongoing and will
result in the set up of a national data hub for climate Science, known as Climate Data IT.

Such an effort brings together large-scale infrastructure capacity, scientific software, and big climate
datasets. Most notably it provides a national hub for the entire Italian scientific community working in
the climate domain.

This paper presents the main activities contributing to the implementation of the Climate Data IT
national data hub. The remainder of this paper is organized as it follows: Section 2 introduces the
Climate Data IT working group. Section 3 presents the general end-to-end climate scientific workflow
considered in the Spoke4, whereas Section 4 deals in details with the relevant pillars of the digital
infrastructure software stack, namely the Big Data Science and learning environment (Section 4.1)
Workflow and provenance (Section 4.2) and Software lifecycle management services (Section 4.3). Section
5 draws the conclusions of this work.

2. Climate Data IT Working Group

The initial activity around the Climate Data IT project began with the formation of a working group
comprising all the relevant national-level stakeholders: infrastructure providers, technology providers,
and modeling groups. Throughout the project, the working group has met regularly to define require-
ments, discuss needs, set objectives and prioritise simulations and data delivery. A key result has been a
detailed list of simulations and a related calendar delivered by the modeling groups. These cover a total
of 2 Pb across 2025-2026, relating to the expected contributions for CMIP and CORDEX at the national
level. It is important to note that this document has been crucial in planning many data management
activities, particularly with regard to capacity planning for the storage infrastructure at CINECA.



3. End-to-End Climate Scientific Workflow

From a high-level perspective, the general climate scientific workflow that has been captured during
the design stage of the Climate Data IT consists of the following three major steps:

« Earth System Modelling: climate models are based on well-documented physical processes to
simulate the transfer of energy and materials through the climate system. Building and running
a climate model is a complex process of identifying and quantifying Earth system processes,
representing them with mathematical equations, setting variables to represent initial conditions
and subsequent changes in climate forcing, and repeatedly solving the equations using powerful
supercomputers. This step is typically related to the classical HPC community in terms of
developing and running parallel ESM simulations on large-scale supercomputers. It requires a
strong software stack for HPC modelling. As a result of the current extreme spatio-temporal
scales, climate models simulations generate an enormous and unprecedented amount of data.

« Big Data processing: this step is mostly related to the processing of the big climate datasets
generated during or at the end of the simulation(s) performed in the first step. It can be mostly
considered as a data engineering task, where big data technologies and High Performance Data
Analytics (HPDA) solutions are exploited to pre-process, transform, reduce and summarise the
data. This step is at the intersection of HPC and Big data and brings advanced tools to ease the
management of large datasets.

« Data Science and learning: this step is towards the end users, and it relates to knowledge
extraction, interactive and exploratory data analysis, better understanding of the data. It leverages
advanced programming tools and software ecosystems. At this stage activities are performed at
the intersection of HPC, Big Data and AL

Besides the three steps described before, it should be noted that workflow automation tools are
key to enable seamless execution of big data pipelines, climate simulations and Al workflows; yet, a
FAIR provenance management can track the lineage information throughout the whole end-to-end
workflow, thus expanding metadata collection over the different steps and paving the way towards
more advanced scenarios (i.e., computational reproducibility).

4. Main Pillars of Climate Data IT

The following subsections deal with all the relevant pillars of the Climate Data IT digital infrastructure.
In particular the following topics are covered in detail:

+ Big Data Science and learning environment;
« Workflow and provenance;
« Software lifecycle management services.

4.1. Big Data Science and learning environment

Over the last few years, the set of solutions for handling and processing climate data has greatly
increased, providing a wider range of possibilities for supporting the study of climate change. Some
solutions from the Python ecosystem targeting High Performance Data Analytics include: Xarray [2], a
Python package providing support for domain specific data formats and data processing operations, Iris
[3], a format-agnostic package for analysis and visualisation of Earth system data, and PyOphidia [4], the
Python bindings for the Ophidia framework, targeting scalable analysis of scientific multi-dimensional
data. In the meantime, Machine Learning (ML) approaches also became more common in climate
applications [5]. Being able to exploit novel tools and HPC systems is key for supporting data science
and scientific discoveries in climate sciences. However, the large availability of data analytics and ML
solutions, together with the increasing size and complexity of HPC systems, poses also challenges in
terms of efficient deployment and use of the software and computing infrastructure.



A software environment integrating HPC and data infrastructures together with cutting-edge libraries
and tools can provide the means for simplifying scientists’ workflow and increase their productivity for
the implementation of large-scale data science and scientific artificial intelligence applications.

As an added value, a common data science and learning environment can foster a more collaborative
approach and increase portability of the analysis through the use of user-friendly and self-contained
documents like Jupyter Notebooks. Graphic User Interfaces (GUIs), such as the software provided by
the Jupyter project, can simplify climate scientists’ interactions with the computing infrastructure and
represent, thus, the virtual research environment front-end for data science and learning applications
in climate science.

Virtual research environments based on Jupyter project components have been explored as entry
points to HPC systems, in several scientific domains, including astronomy, bioinformatics, and of course
climate and Earth sciences [6, 7, 8, 9, 10, 11].

4.1.1. Architectural design

In our work, two key requirements have been considered during the design and implementation of the
system:

« User-friendly environment for the development, execution and sharing of climate data science
and learning applications;

« Transparent interaction with the HPC infrastructure, both in terms of authentication and resources
access.

The resulting design provides a high-level overview of a climate data science and learning environment
that can be customized in different ways according to the infrastructure setup and available computing
capabilities. The system implementation integrates domain-specific and community-based tools and
frameworks to properly address users’ needs. The following diagram (Figure 1) shows the architectural
design taking into account these requirements and specializing the set of technologies to those used in
the climate domain.

Components from the Jupyter project and the Conda package manager can be considered capstone so-
lutions for addressing the requirements since these allow to set up an easy-to-use software environment
and simplify collaboration and sharing of the results and software configuration. The Jupyter project
supports different software components for interactive analysis, data science applications development
and deployment of the software on different infrastructures (both cloud and HPC). Relevant to this work
is the JupyterHub, a multi-user version of the Notebook service. It represents a highly customisable
component supporting different methods for user authentication and authorization (e.g., PAM, OAuth,
LDAP, Kerberos, etc.) and different spawner processes for deploying the Jupyter Notebook/JupyterLab
server on different infrastructures (e.g., Kubernetes, Docker, Slurm, LSF, etc.).

4.1.2. Infrastructural setup

During the project lifetime, different configurations have been tested at CMCC and UNITN with the
main goal of developing the proper knowledge to easily replicate such a deployment on the target
infrastructure of the ICSC Hub (i.e., CINECA).

Figure 2 shows a high-level view of the architecture diagram of the environment set up on the Juno
SuperComputer at CMCC . Juno has a computing power (theoretical peak performance) of about
1.1PFlops. It is a hybrid cluster based on CPUs and GPUs, composed of 170 dual-processor nodes with a
total of 12,240 cores and 87 TB of main memory. The parallel file system provides around 23PB of space.

The JupyterHub instance represents the entry point to the environment and it is configured to exploit
the same authentication method already used for accessing the cluster via a terminal. Jupyter servers
are deployed on one of the cluster compute nodes on-demand according to user’s requirements. The
JupyterHub BatchSpawner, customised for the HPC environment, is used to deploy the Jupyter servers

'https://www.cmcc.it/what-we-do/high-performance-computing-center-hpce
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Figure 1: General architecture design of the climate data science and learning infrastructure

on the compute nodes. In order to support various workloads and applications, different profiles are
available and can be selected at the start-up of the Jupyter service. Conda environments have been
pre-configured targeting some common data science and learning modules; furthermore, users can
exploit one of their existing Conda envs through the ipykernel module

The main advantage of such architecture is that users can run their Jupyter Notebooks directly on
the HPC nodes of the cluster, exploiting the full computing and memory capacities. Users can also
exploit solutions like Dask [12] for scaling processing over a large set of compute nodes, if needed. The
Jupyter deployment has been operating on the Juno SuperComputer since the beginning of 2024.

In order to improve the user experience a set of extensions to the JupyterLab interface have been
integrated, to support: (i) processing with a HPDA python framework, i.e. Dask, and the related
extension for Dask clusters deployment and monitoring via a dashboard ° and (ii) easy access to content

(e.g., notebooks or Python code) from GitHub via another extension *.

4.2. Workflow and provenance

Workflow and provenance play crucial roles in the experiments of climate scientists. Workflow man-
agement systems coordinate the execution of computational and data tasks on the infrastructure, while
provenance involves gathering and managing the associated lineage metadata. The next subsections
highlight the Climate Data I'T contribution in this area, in particular, a new provenance software ecosys-
tem developed within the project, which includes: a provenance service (Section 4.2.1), a provenance
library for Al processes (Section 4.2.2), another one for provenance in workflows (Section 4.2.3) and
finally a GUI to explore and navigate provenance documents (Section 4.2.4).

%jpykernel: https://ipython.readthedocs.io/en/5.x/install/kernel_install.html
*Dask JupyterLab Extension: https://github.com/dask/dask-labextension
JupyterLab GitHub: https://github.com/jupyterlab/jupyterlab-github
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Figure 2: High-level architecture of the climate data science and learning software infrastructure deployed at
CMCC

4.2.1. Provenance Service

One of the main component developed in the context of the Climate Data IT is the provenance service,
which mainly provides provenance store (I/0O) capabilities [13]. Its architecture adopts a straightforward
web service paradigm and consists of three main components:

« a Web Service front-end, built with Python using the Flask microframework, which enables
rapid development of RESTful web services and provides a robust in-memory representation of
provenance documents utilizing the PROV Python library;

« the Command Line Interface (CLI), which offers a set of commands that serve as a wrapper for
the RESTful API calls;

« the Graph database engine back-end, to store and query the graph elements.

The provenance service has been developed following the principles of RESTful architecture.

Five categories of resources have been identified: document, entity, activity, agent, and relation.
The document represents the overall provenance information linked to a workflow, with each abstract
document being associated one-to-one with a graph database. Entity, activity, and agent are sub-
resources of the document resource, facilitating CRUD operations on the three types of elements stored
in a provenance graph based on the W3C PROV data model. This ensures precise control over each
node stored in the graph database. Similarly, the relation resource enables actions on each individual
relationship within the graph.

4.2.2. Provenance Data Collection for Al Tasks

It is not a novel concept anymore that the field of machine learning has experienced an exponential
speedup in both the development and publishing of new works. While this rapid pace of research
has undoubtedly brought many benefits, it has also led to an increasing amount of work that is
conducted with little rigor and in a superficial manner. Undocumented code and non-reproducible
results inevitably lead to confusion among researchers and an environment where trust is not at the



core of the work being proposed. Keeping a detailed record of the entire design process is essential for
fully reproducing experiments and avoiding unproven results. In addition to these difficulties, there is
no straightforward method for determining the value of the many hyperparameters used in the training
of machine learning models. By collecting multiple sets of experiments, users could look at similar goals
and identify hyperparameter values that might be ideal for their application. Another problem with
hyperparameter tuning is the repeated attempts to train the optimal model. When the same process is
repeated several times, a significant amount of computational resources are wasted. Given the large
size of many machine learning models, this paradigm quickly becomes unsustainable, especially when
dealing with architectures consisting of billions of parameters. To this end, the yProv4ML® library [14]
exposes logging utilities providing a recognisable interface for storing provenance data. It collects three
main categories of information: artifacts, parameters and metrics, of which, the latter identifies any file
or output that may be used later in the next phases of the workflow. For machine learning processes,
these typically include model versions, checkpoints and source code material. Parameters, on the other
hand, are one-time recorded values used during training. Some examples are the learning rate, model
size or width, and the optimizer used. The last category contains information that is updated during
the training process. These metrics include losses and program execution statistics such as energy
efficiency, power consumption and GPU usage. Once information about a single run is stored, it is also
possible to compare the results of successive, related executions. This allows a better understanding of
the impact of hyperparameters and model configurations, while keeping track of any changes to the
overall script. yProv4ML implements an ad hoc data model to store all the information collected during
program execution in a memory-efficient manner. In particular a caching system automatically decides
when it is more opportune to empty the values stored in RAM memory, avoiding slowdowns of the
training process. The library is also capable of constructing a provenance graph, which contains all
the data that has been stored during the execution of the program, both in dot and in svg format. The
usefulness of yProv4ML can be apparent when monitoring processes with high energy consumption,
where a preliminary testing phase could be used to understand which part of the program causes the
most impact, and consequently reduce the overall consumption when the real training phase is run.
The ability to log multiple versions of the same experiment is also critical to understanding which
hyperparameters work better with the current execution, and to avoid repeating the same errors across
multiple runs. The importance of applying provenance tracking is demonstrated by the broad number
of tools developed by the community in recent years, tools whose purpose is to collect information
during the execution of a training workflow and then present it to the user, allowing analysis and
considerations on the results and the process that led to their generation. The W3C has developed a
standard, called PROV, for collecting provenance information of generic systems without referring to
specific cases of Machine Learning; precisely because of this generality, specific language expansions
for ML have been proposed [15]. However, the tools that produce a PROV representation manage the
entire learning process, making it necessary to revolutionize the entire workflow if one decides to adopt
them, thereby discouraging the adoption itself and, in general, the change of tools. This situation opens
up space for new tools capable of converting a native representation into a PROV representation in a
transparent manner for the user. The JSON format is a widely used one for representing data, and being
a text format, makes writing, modifying and reading easier. For this reason, the yProv4ML library was
designed to save information in JSON format [16], and allows for the creation of a provenance graph
and its visual representation.

To validate the functionalities of yProv4ML, we set to benchmark Prithvi-EO [17], a vision transformer-
based foundation model, for image reconstruction. Accurate reconstruction of finer scale earth surface
features from coarse-resolution data is a critical challenge in geoscientific modeling, as well as a
benchmark for understanding the performance of environmental models. We implemented the Prithvi-
EO 300M parameter architecture, trained on 4.2M time series samples from Sentinel 2 [18], and run
fine-tuning on the Moderate Resolution Imaging Spectroradiometer (MODIS) dataset [19], for masked
image reconstruction. We fine-tune the model on a subset of 25.000 128x128 patches and validate its

>https://github.com/HPCI-Lab/yProvML
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Figure 3: Quantitative metrics: Peak Noise to Signal Ratio and Structural Similarity Index Measure comparison
for SR-CNN (left) and Prithvi-EO (right).
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the first one the first six bands of the MODIS dataset.

output on MODIS tiles. Subsequently we fully train a set of super-resolution CNN based ML models
[20], whose metrics are shown in Figure 4, on the same input and output domain, to mirror the approach
on the ViT architecture, and the results both from a performance and energy perspective are compared.
Both the models are trained with DDP strategy [21] on 4 nodes of the Frontier supercomputer, each
equpped with 8 GPUs. We focused on DDP since both models fit entirely on one node, and as it is easier
to have them converge on limited data.

Our aim is to highlight the discrepancy in performance between the ad-hoc solution and the gen-
eral purpose foundation model. The energy requirements of foundation models, shown in Figure 3,
specifically in the pre-training phase, is compared with simpler architectures, which may offer similar
performance but at a fraction of the cost. Even when passing more data to the Prithvi-EO model, up to



80000 samples for 5 epochs, the resulting PSNR raises only to ~ 0.7 and SSIM to ~ 0.65, indicating a lack
of compute time and data. It remains clear, from the results shown, that foundation models guarantee
better generalization and adaptability to data domains beyond the pretraining distribution, and that
they tend to be much more energy efficient when having to scale to large use cases. It is however also
apparent, that a smaller, ad-hoc solution is still to be preferred in situations where the use cases is not
excessively complex.

4.2.3. Provenance service for workflow management systems

End-to-end ESMs workflows often consist of numerous tasks executed across heterogeneous computing
environments, such as running ESM models on high-performance computing (HPC) clusters, artificial
intelligence (AI) tasks on GPU-based systems, and data analytics on cloud infrastructures. In such
contexts, tracking provenance in large-scale computational workflows is essential to ensure the re-
producibility and reliability of research. Scientific experiments, especially those involving complex
simulations and large datasets, require thorough documentation of every phase, from data acquisition
to simulation execution and result analysis. Following an initial phase of technology scouting and
preliminary analysis of integrated workflow-provenance scenarios, development efforts have been
directed toward implementing a specific library, called yProv4dWFs and designed to enable provenance
tracking within Workflow Management Systems (WfMSs) [22] [23]. According to the outcomes of
an initial end users consultation, Streamflow [24] and Cylc [25] have been elected as the first two
candidates to be studied and integrated in yProvdWFs. Cylc is a general purpose workflow engine
optimized for orchestrating cycling systems. Widely used in operational weather, climate and environ-
mental forecasting on HPC platforms, it is domain-agnostic and capable of automatically executing
tasks based on defined schedules and dependencies. In Cylc workflows, each step typically corresponds
to a script or application that performs a discrete computational task. StreamFlow is an innovative
approach to workflow execution that combines workflow graphs with the description of potentially
complex execution environments that do not necessarily share a common data space. Based on the
Common Workflow Language (CWL) standard, it supports concurrent task execution in multi-agent,
multi-container ecosystems. The yProv4WFs library is a key part of the yProv software ecosystem [26],
designed to address the challenges of managing multi-level provenance and ensuring reproducibility
in end-to-end scientific workflows. It serves as a third-party tool for tracking data provenance across
various WEMSs. By providing a standardised and shareable provenance framework, yProv4WFs enables
users from different systems, working on the same project, to understand and utilise provenance data
without requiring deep knowledge of each other’s workflows. This facilitates better collaboration,
transparency, and reproducibility across multiple platforms. yProv4WFs adheres to the W3C PROV
standards, ensuring that the provenance data it generates is consistent with globally recognized norms.
Compliance with W3C PROV not only enhances the utility and flexibility of provenance data, but also
ensures compatibility with other tools and systems supporting the same standards, thereby extending
its relevance, FAIRness and usefulness over time. Table 1 highlights the connection between the W3C
PROV standard and the yProv4WFs library. Each row of the table corresponds to a term from the
PROV-O ontology and identifies its counterpart or equivalent in the yProv4WFs model. This alignment
demonstrates both conformity to established standards and the capacity of yProv4WFs to represent the
complexity of the provenance of scientific workflows with greater precision. The library is capable of
tracking both simple (pipeline) and complex constructs (cycles) that adapt to the needs of sophisticated,
large-scale workflows.

4.2.4. Provenance Explorer

Our contribution fills the gap between existing libraries and services and an application designed to
increase the final user experience. To do this, it has been implemented the yProvExplorer, a Scientific
Gateway that addresses the user’s need to navigate complex provenance documents, providing a nicely
organized representation of all the interconnected provenance elements. All such elements are arranged



Table 1
How yProv4WFs components map to and integrate W3C PROV-O standards

W3C PROV-0O yProv4WFs
Node
prov:Activity Workflow
Task
prov:Entity Data
prov:Agent Agent
prov:startedAtTime _start_time — attribute class Node
prov:endedAtTime _end_time — attribute class Node
prov:used add_input() — method class Workflow, Task

prov:wasGeneratedBy

add_input() — method class Workflow, Task

set_consumer() — method class Data

prov:wasDerivedFrom
(represents the dependencies output — input)

set_consumer() — method class Data
set_producer() — method class Data

prov:waslnformedBy
(dependencies next_task — wasInformedBy — task)

set_prev() — method class Node
set_next() — method class Node

prov:actedOnBehalfOf

set_acted_for() — method class Agent

prov:wasAssociatedWith
(from prov:Activity to prov:Agent)

set_agent() — method class Node
associated_with — list class Agent

prov:wasAttributedTo

set_agent() — method class Data

(from prov:Entity to prov:Agent) attributed_to — list class Agent

in a 2-dimensional space using a force-directed graph drawing algorithm®, provided by the library
D3js’. The yProvExplorer consists of a self-contained web application implemented in React® that can
be easily deployed through Docker’. It nicely integrates with the yProv ecosystem, therefore, allowing
to load the documents directly from yProv storage service, in addition to open document directly from
the local device. The tool guides the user in navigating the graph through links to the parent and child
nodes, allowing to easily move toward the source data or toward the final data. Figure 5 illustrates the
yProvExplorer, which visualizes the provenance output generated during the execution of a complex
workflow in Cylc. Through the yProvExplorer interface, a JSON file can be uploaded to display the
corresponding provenance graph.

4.3. Software lifecycle management services

The software lifecycle provides a structured approach to improving the development process of software,
ensuring the implementation, maintenance, replacement, and enhancement of specific components.
Version control is a core best practice in modern software development. While it has not yet achieved
universal adoption in scientific coding, its usage has grown substantially in recent years.

In the context of Spoke4, following an initial exploratory phase, the decision was made to set up a
managed service leveraging GitHub’s functionalities and the concept of GitHub Organisations. This
workspace has been instrumental in delivering the software counterpart, the Climate Software Hub'’, of
the Climate Data IT. This activity has fostered the use of these collaborative tools and best practices in
the community for software development; it has strongly contributed to a better sharing of software and
software development process; it has created a central repository at national level as well as a reference

Shttps://en.wikipedia.org/wiki/Force-directed graph drawing
D3 https://d3js.org/

®https://react.dev/

*https://www.docker.com/
1Ohttps://github.com/ICSC-CN-HPC-Spoke-4-Earth-Climate.
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Figure 5: Visualization of a provenance graph generated during the execution of a complex workflow in Cylc

software hub for climate scientists.

5. Conclusions

The National Centre on HPC, Big Data and Quantum Computing (ICSC), through its Earth & Climate
spoke, offers a digital infrastructure to support large-scale simulations and to manage the rapidly
growing volumes of climate data. The ICSC also supports the climate research community by providing
a flexible, modular, and interoperable software ecosystem for simulation and data analysis. A digital
infrastructure for climate Science integrates HPC systems, data infrastructures, and data science
libraries, supporting reproducibility, enhancing portability, and fostering collaborative workspaces has
been set up. Provenance tracking systems have been proposed, ensuring traceability, reproducibility,
and transparency of scientific experiments by managing computational tasks and preserving detailed
metadata on their execution. The development of such a comprehensive provenance ecosystem (a
dedicated provenance service, libraries for Al processes and workflows, and a GUI-based exploration tool)
represents a significant step forward in the management of scientific workflows. Furthermore, modern
software development practices, such as the use of structured software lifecycles and version control
systems like GitHub, have been adopted to improve code quality, facilitate collaboration, and ensure
long-term maintainability, while also enabling coordinated contributions across distributed teams and
projects. Taken all these efforts together, Climate Data IT represents a significant advancement in the
scientific, technological, and collaborative capacity of Italy’s climate research ecosystem. The integrated
approach presented in the paper improves the capacity to deliver actionable climate intelligence for
societal adaptation and resilience in the face of ongoing and future climate change challenges.
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