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Abstract
Identifying green, digital, and twin-transition patents is essential for tracking innovation and assessing policy
impact, yet existing code-based and machine-learning approaches often yield non-overlapping results, undermin-
ing comparability and reproducibility. This study introduces a scalable framework that combines configurable
keyword and technology rules for candidate identification, a rule-guided seed and antiseed definition, and bidi-
rectional citation expansion. Patent texts are encoded with a domain-specific transformer, and final selection is
achieved through topic-guided pruning based on a contrastive cosine rule applied to topic-level representations.
Validation against proxy labels on a held-out split indicates high precision under a conservative threshold and
balanced performance under a data-driven threshold. The workflow is automated, largely unsupervised, and
tractable at the scale of millions of patent families, with results robust to sensible hyperparameter choices and
threshold selection, thereby improving transparency and comparability for patent landscaping in the green and
digital domains.
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1. Introduction

Identifying patents at the intersection of environmental and digital technologies (“twin patents”) is
pivotal for tracking innovation dynamics and evaluating policies that foster sustainability and digital-
ization. Yet current approaches—ranging from examiner- or expert-selected technological codes and
curated keywords, to citation-based heuristics and machine-learning pipelines—often select markedly
different sets of documents [1], hampering comparability across studies and policy evaluations. Overlaps
between sets built with different methods are very low—with observed Jaccard indices below random
expectation, as reported in Table 3—underscoring the need for transparent, reproducible pipelines.

To address fragmentation while preserving transparency and scalability, this work introduces an
automated workflow that minimizes manual intervention and combines rule-guided seed construction,
two-level bidirectional citation expansion of the candidates, and topic-guided semantic pruning with
patent-specific transformer embeddings.

First, candidate “twin” patents are identified by systematically crossing green selection strategies from
the literature—namely the Cooperative Patent Classification (CPC) code Y02 and targeted sustainability
keywords—with digital strategies (CPC Y04, selected technological groups from the International Patent
Classification (IPC), and digital/AI keywords). This Candidates set is then used to automatically derive
three working sets: (i) the seed set, comprising high-precision exemplars of twin patents; a family enters
the Seed if it is flagged by more than two independent modules (i.e., at least three; strict voting rule); (ii)
the expansion set, obtained by expanding the Candidates via forward and backward family-level citations
in two waves to collect plausibly related families; and (iii) the antiseed set, a size-matched control
sampled outside both the Seed and the Expansion, designed to include mostly random non-twin patents
and a 10% share of hard negatives. These hard-to-classify negatives are sampled from patents tagged
as green or digital through Y02 and Y04 CPC codes, but not classified as jointly green-and-digital by
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any method (see Section 3.2). A patent-tailored encoder (PaECTER, [2]), built on Bidirectional Encoder
Representations from Transformers (BERT), is used to obtain text embeddings, and a BERT-based topic
model (BERTopic, [3]) projects documents into topic space. The expansion set is then pruned via a
topic-guided criterion based on maximum cosine similarity to seed versus antiseed topics. Unsupervised
diagnostics indicate clearer topic separation and a rightward shift in cosine-similarity densities toward
seed topics after pruning. Finally, a pseudo-labeled evaluation set based on CPC Y02∩Y04 codes—used
as an expert-curated proxy for twin patents—is constructed for validation and for selecting a robust
operating point by maximizing the Matthews correlation coefficient (MCC) on a stratified held-out
split. On the same pseudo-labeled set, supervised-style metrics (precision, recall, F1, MCC) remain high
under both a conservative threshold (𝜏 = 0) and the MCC-maximizing threshold. A hyperparameter
sensitivity study across the topic-discovery pipeline—including the text representation, low-dimensional
projection, and density-based clustering stages—indicates that selection performance is insensitive to
reasonable variation in these settings. At scale, the pipeline runs on PATSTAT Autumn 2024, leveraging
structured metadata (technological codes, citations, abstracts and titles) from approximatively 47M
patent families with an English abstract. Simple patent families, grouping patent applications and
publications sharing the same priority, are used as unit of analysis.

This article (i) proposes a reproducible, weakly-unsupervised seed definition procedure that integrates
different sets of conditions derived from the literature, with a strict voting rule to balance breadth and
precision; (ii) develops a citation-network aware expansion and matched random antiseed construction
to enable unsupervised, contrastive pruning at scale; (iii) introduces a topic-guided semantic pruning
strategy that couples domain-specific patent embeddings (PaECTER) with BERTopic topic distributions
and a seed-vs-antiseed cosine decision rule, yielding cleaner, more coherent landscapes; and (iv) delivers
a scalable, transparent pipeline with practical diagnostics and an accompanying Python implementation
for researchers and policy analysts.

Section 2 reviews related methods and the overlap problem; Section 3 details seed rules, expansion,
and topic-guided pruning; Section 4 describes data; Section 5 reports diagnostics; Section 5.5 presents
the pseudo-label evaluation and robustness; Section 6 discusses limitations and future directions; Section
7 concludes.

2. Literature Review: Existing Methods, Potential and Limitations

The classification and identification of green and digital technologies have become central to under-
standing innovation dynamics in the context of the “twin transition”, which couples sustainability
objectives with digital transformation [4]. Patents are widely used as proxies for innovation because
they contain detailed technical descriptions and structured classification codes [5]. However, accurately
identifying relevant patents—especially those that simultaneously address environmental and digital
domains—remains methodologically challenging.

One group of approaches relies primarily on classification codes such as the International Patent Clas-
sification (IPC) or the Cooperative Patent Classification (CPC). These codes are assigned by examiners
and enable systematic, replicable searches [6, 7]. While effective in principle, code-based methods often
misalign with industrial categories and fragment technologies across classes, limiting their precision
[5, 8].

Keyword-based searches offer a more flexible alternative, capable of capturing emerging or cross-
cutting technologies [9, 1]. However, this flexibility introduces challenges, including linguistic variability,
ambiguity, and potential biases in terminology that evolve over time or differ across jurisdictions [1].
Keyword methods also depend heavily on expert input to construct comprehensive queries, and can
suffer from endogeneity when used in combination with machine learning [9].

Citation-based techniques leverage references among patents to identify related inventions and trace
knowledge flows [10]. While citations can reveal important technological linkages, they are also shaped
by examiner practices and strategic applicant behavior, leading to noise and incomplete coverage [11].

Recent work has increasingly combined these strategies. Integrated approaches, such as those



underpinning the IPC Green Inventory or ENV-TECH classification systems, attempt to blend the
strengths of codes, keywords, and expert rules to improve recall and precision [12, 4]. However,
evidence suggests that even these comprehensive frameworks often yield low overlap across methods,
which limits their comparability and robustness [4].

Finally, advances in machine learning have introduced new possibilities for automating patent
classification. Supervised and semi-supervised models trained on expert-labeled seed sets can extend
coverage and reduce manual effort [10, 8]. Yet, the performance of these models depends critically on the
quality and representativeness of the training data [13]. Further, computational resource requirements
remain significant, particularly for models based on large transformer architectures such as BERT
-Bidirectional Encoder Representations from Transformers [14] and its domain-adapted variants [2];
[15]; [16].

No single approach fully resolves coverage, accuracy, and scalability. This fragmentation, together
with low overlap across methods, motivates integrated, open, and reproducible pipelines such as the
one proposed here.

3. Methodology: towards an integrated approach

This study builds on prior semi-supervised patent landscaping methods [10, 8, 13, 2] and introduces
several adaptations designed to improve replicability while minimizing human intervention. The
proposed framework substitutes manual seed and antiseed selection with rule-based criteria, integrates
bidirectional citation expansion, and applies transformer-based embeddings in combination with topic
modeling and a pruning strategy based on the cosine similarity [17, 18] of topic-probability distributions.
This design seeks to balance coverage, scalability, and semantic coherence in patent identification.

Earlier approaches typically relied on human-curated seeds and antiseeds [10], followed by expan-
sions targeting overrepresented technological classes and citation networks. Subsequent classification
models, trained on these curated examples, distinguished relevant patents based on semantic features.
While effective, this process remained labor-intensive and sensitive to subjective decisions. To address
these limitations, a generalizable rule-based approach for both seed and antiseed selection is adopted.
A further improvement concerns the text classification model. Prior work often used static embeddings
(e.g., Word2Vec), which struggled with ambiguity and polysemy. [8] tested alternative architectures—in-
cluding MLP, CNN, and BERT— and identified BERT Transformers as the most consistent performers.
Building on [2], the proposed method relies on PaECTER, a transformer optimized for patent texts and
citations.

Finally, given the heterogeneity of twin patents combining digital and sustainability-related technolo-
gies, novel unsupervised methods are introduced to test the adherence of the expanded set to the seed.
Specifically, BERTopic modeling [3]is applied to the seed, antiseed and expansion set texts (abstract and
title), and expansion candidates are pruned based on cosine similarity to topic distribution vectors. The
following sections describe each step in detail, while an overview of the method is shown in Figure 1.The
replication code to run this pipeline is available at https://github.com/GhinamiF/TwinPatentLandscape,
release v1.0.

3.1. Rule based seed selection

The seed set forms the foundation of the patent landscape, making its composition critical to ensure
both accuracy and representativeness. To reduce reliance on manual curation and enhance replicability,
a rule-based approach inspired by the strategy proposed by [4] is applied.

In their method, patents are identified as “twin” if they combine digital and green characteristics, based
on CPC codes and keyword presence. Specifically, they apply six selection rules that combine Y02 (green
technologies) and Y04 CPC codes (digital technologies), with keywords. Additionally, IPC codes are used
to capture relevant groups and subclasses. Given the comprehensive nature of this framework1, their

1Details of the keyword and code lists are reported in Table 1.

https://github.com/GhinamiF/TwinPatentLandscape
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Figure 1: Flow chart of the proposed method: rule-based seed, two-level bidirectional citation expansion,
random and augmented antiseed, topic modeling, topic-guided pruning by cosine similarity, and testing.

method is adopted and extended to allow broader generalization to other technological domains. Unlike
the original formulation, which applied a fixed set of combinations, here an adaptation is suggested to
systematically combine any green identification strategy with any digital strategy in all possible pairings.
This means that every sustainability-related rule (e.g., Y02 codes or green keywords) was crossed with
every digital or AI-related rule (e.g., Y04 codes, digital IPC codes, or digital keywords), generating an
expanded and more granular set of inclusion criteria. This ensures a balanced and comprehensive
coverage of patents that may reflect diverse configurations of digital and green technologies. A patent
was thus included in the initial candidate pool if it matched any of these combined rules. To improve
precision and avoid reliance on any single identification method, a stringent inclusion criterion is
applied: only patents identified as twin by more than two of the resulting combinations were retained
in the seed set. This procedure yielded a final set of 9,847 unique patent families. These patents were
considered sufficiently diverse and representative of the target technological intersection for subsequent
expansion and pruning phases.

3.2. Expansion

The expansion methodology implemented in this study largely follows the approach outlined by Abood
and Feltenberger (2018), which involves a two-tiered expansion process. However, the first level of
expansion based on the most relevant CPC codes is here excluded, to mitigate the risk of over-relying
on this information, as CPC codes are already incorporated as a rule in the definition of seed patents.

The first level of expansion (Level 1) involves identifying patents related to seed patents through
backward and forward citations. This level includes all patents that cite the seed patents or are cited by
them. Moreover, it is augmented by all the patents identified by any of the candidate selection method,
but not included in the seed. The second level of expansion (Level 2) further extends this network by
including patents that are related to the patents identified in Level 1 through their own backward and
forward citations.

The antiseed set, serving as negative examples for later semantic comparison, was generated by
randomly sampling an equal number of patent families not included in either the seed or expansion
sets.

3.3. Transformer-based embeddings

In patent classification and pruning, models can be trained from scratch or adapted from domain-specific
encoders. Training from scratch offers flexibility but typically requires substantial compute. A practical
alternative is a pre-trained model tailored to patents. This study uses the PaECTER encoder [2], as



Table 1
Keywords, CPC, and IPCs codes used in the seed twin patents identification step [4].

Digital keywords/AI key-
words

3D print,adaptive robotic, augmented reality, autonomous, big data, blockchain,
business analytic, chip technolog, cloud comput, cyber, data analytic, data trans-
mission, data-based, digital, digitization, distributed comput, ebanking, ecom-
merce, ehealth, elearning, e-banking, e-commerce, e-health, e-learning, fog com-
put, industry 4.0, information system, intelligence, intelligent, internet, machine
learning, mobile comput, natural language processing, quantum comput, smart,
software, traffic optimi, virtual
adaboost, artific intelligen, bayes network, bayesian belief networks, bayesian-
network, bio-inspired approach, bio-inspired comput, biologically inspired comput,
chatbot, classification tree, collaborative systems, computation intelligen, com-
puter vision, connectionis, crowdsourcing and human computation, data mining,
decision making, decision model, decision tree, Decision tree learn, deep learn,
deep structured learn, description logistic, expert system, fuzzy logic, genetic algo-
rithm, gradient tree boosting, graphical model, hidden markov model, hierarchical
learn, humanoid robotics, image alignment, image grammars, image matching,
inductive logic programm, instance-based learn, knowledge representation and
reasoning, latent dirichlet allocation, latent represent, latent semantic analysis,
layered control systems, learning algorithm, learning model, Logic Programming,
logic theorist, logical learn, logistic regression, machine intelligen, machine learn,
memory-based learn, multi-agent system, multilayer perceptron, multitask learn,
natural language, neural network, neuromorphic computing, ontology engineer,
optimal search, pattern analysis, pattern recognition, physical symbol system,
probabilistic graphical model, probabilistic reason, probabil logic, random forest,
rankboost, regression tree, reinforcement learn, relational learn, robot, robot sys-
tems, Rule induction, rule learn, semi-supervised learn, semi-supervised train,
sensor data fusion, sensor network, stochastic gradient descent, structured proba-
bilistic model, supervised learn, supervised train, support vector machin, support
vector network, swarm intelligen, symbol processing, symbolic error analysis,
symbolic reasoning, systems and control theory, task learn, transfer learning,
xgboost

Green Keywords air polluti, biodiversity, biofuel, carbon footprint, circular economy, clean energy,
clean fuel, climate change, climate disaster, CO2 emission, CO2 level, eco-friend,
electric vehicle, energy consumption reduc, environmental protect, environmental-
friendly, environmentally-friendly, food waste, pollution control, pollution de-
tect, GHG reduc, green energy, recycling, renewable energy, resource efficien,
resource-efficien, green cit, smart farming, solid waste, sustainability, waste man-
agement, water efficiency, water leakage, water management, water scarcity,
water treatment, greenhouse gas, reduction, carbon emission, pollution, resource
consumption

Digital CPC codes Y04
Green CPC codes Y02
Digital IPC 5 digits codes
(groups)

G02F 7, H03M 1, H03H 17, G06J 3, G06T 19, G06J 1, B33Y 50, G05B 15, G16H 80,
G08C 17, G16H 40, H02J 13, H03L 9, G08B 19, H04H 60, G05B 17, G09C 5, F24F
130, G16H 20, G16H 15, G06F 9, G06F 8, G16H 50, G06T 17, H03H 21, H04L 12,
G06F 21, F24F 120, G01R 13, G06Q 30, H04L 9, G06T 13, G06Q 20, G16H 30, H04L
1, G06Q 50, G09B 9, H04W 12, G06Q 10, G06T 15, G05D 1, G06F 15, G06E 1

BERT-based encoders have shown strong and consistent performance in patent analytics [8], and
PaECTER, in particular, is reported as a top-performing patent-specific transformer [2]. As described in
[2], PaECTER is trained on a patent-focused vocabulary and fine-tuned using a citation graph over a
large corpus of English-language patent families (PATSTAT 2023 Spring).

Documents in the Seed, Antiseed, and Expansion sets—formed by concatenating title and abstract2—are

2All numerals are removed and text is lowercased.



encoded jointly with PaECTER to obtain a shared embedding space that enables comparable topic
modeling and pruning. They are then organized with BERTopic [3], which combines UMAP [19]
and HDBSCAN [20, 21] to produce a topic-probability vector 𝑝𝑖 ∈ [0, 1]𝐾 for each document. As a
starting point, commonly used defaults are adopted—UMAP 𝑛neighbors=15, min_dist=0.1, 𝑛components=5;
HDBSCAN min_cluster_size=10, min_samples=None; BERTopic’s default vectorizer—and robustness
is assessed in sensitivity checks.

The BERTopic mapping serves two roles: (i) it enables unsupervised diagnostics via topic-level
metrics (Section 3.5); and (ii) it provides the representation on which the topic-guided pruning operates
(Section 3.4 below).

3.4. Topic-guided pruning via a multi-prototype contrast

Prior work [8, 10] commonly prunes expansion sets with a global cosine-similarity rule (e.g., keep items
sufficiently close to a seed centroid). For twin-transition patents—topically heterogeneous and lexically
overlapping with near domains—such global rules can drop legitimate variants and retain marginal
cases; empirically, seed and antiseed embedding distributions are only weakly separated.

To select relevant documents from a large, noisy expansion set in an unsupervised manner, we
apply a topic-guided pruning strategy inspired by weak supervision and semi-supervised learning
[22, 23, 24]. Two reference groups are considered: seeds 𝒮 (twin exemplars) and antiseeds 𝒜. To
capture sub-themes, multiple prototypes are learned by clustering seed and antiseed topic vectors into
𝐾𝑆 and 𝐾𝐴 groups (MiniBatch 𝑘-means [25, 26]), yielding L2-normalized centers Θ𝑆 = {𝜃(𝑆)1 , … , 𝜃(𝑆)𝐾𝑆

} and

Θ𝐴 = {𝜃(𝐴)1 , … , 𝜃(𝐴)𝐾𝐴
}. Each document 𝑑𝑖 is represented by its topic-probability vector p𝑖; let p̃𝑖 = p𝑖/‖p𝑖‖2

denote its L2-normalized version so that cosine similarity reduces to a dot product.
The pruning score is a best-seed vs. best-antiseed cosine margin:

Δ𝑠(𝑖) = max
𝑘≤𝐾𝑆

⟨p̃𝑖, 𝜃
(𝑆)
𝑘 ⟩

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
closest seed prototype

− max
ℓ≤𝐾𝐴

⟨p̃𝑖, 𝜃
(𝐴)
ℓ ⟩

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
closest antiseed prototype

.

A document is retained when Δ𝑠(𝑖) ≥ 𝜏. The primary operating point on the unlabeled corpus is the
zero-contrast rule (𝜏=0), which keeps a document when it is at least as similar to seed prototypes as to
antiseed prototypes. This choice is parameter-light, interpretable, and does not require labels.

3.5. Evaluation: semantic coherence, separation, and dispersion

We evaluate pruning within the BERTopic framework using established topic-model diagnostics. First,
an intertopic distance map projects topic representations into two dimensions to visualize distinctiveness
and dispersion, assessing whether pruning improves semantic coherence and separation [27, 3]. Second,
to assess document-level alignment, we plot kernel density estimates of cosine similarity between
expansion documents with respect to seed and antiseed prototypes in topic space, examining whether
pruning increases alignment with seeds and reduces overlap with antiseeds [28, 29]. Together, these
analyses provide global (topic structure) and local (document–prototype alignment) perspectives on
pruning quality in high-dimensional, embedding-based topic models.

This approach combines the high recall of unsupervised expansion with the precision gains of
topic-guided selection, and builds on guided topic discovery [23], weakly supervised labeling [24], and
zero-/few-shot cross-domain classification [22].

3.6. Validation and robustness

In the absence of costly and hard-to-replicate human annotation, we validate our topic-guided pruning
against a proxy gold standard derived from CPC Y02/Y04 codes. These codes are curated jointly by
two patent authorities, the European Patent Office (EPO) and the United States Patent and Trademark
Office (USPTO), and assigned by trained examiners, providing a practical proxy for human labels.



The evaluation pool comprises 29,032 patent families tagged with both Y02 and Y04 (treated as
positives) and 9,847 antiseed families (treated as negatives, by construction a mix of random non-twins
and hard negatives). We report standard retrieval metrics: precision (the fraction of selected patents
that are true twins), recall (the fraction of true twins that are selected), and F1 (the harmonic mean of
precision and recall, summarizing the precision–recall trade-off).

The evaluation pool also allows us to fine-tune and test different thresholds for pruning.

Threshold selection on a pseudo-labeled evaluation set. For quantitative assessment, a pseudo-
labeled evaluation pool is built as Y02∩Y04 CPC families (positives) together with antiseeds (negatives).
A single 75/25 stratified train–test split is drawn from the pseudo-labeled evaluation pool. Thresholds
are selected by maximizing MCC on the train split; all metrics are reported on the held-out test split.

On the training split, an MCC-optimal operating point is selected by

𝜏Δ𝑠MCC ∈ argmax
𝜏

MCC(𝑦, 𝟙{Δ𝑠 ≥ 𝜏}),

and all supervised-style metrics (precision, recall, F1, MCC, accuracy, Jaccard and the confusion matrix)
are reported for both 𝜏=0 and 𝜏Δ𝑠MCC.

Baseline for comparison (TF–IDF margin). As a robustness check, a sparse lexical baseline
is included that operates at the individual-document level in TF–IDF space [30]. Let x𝑑 be the L2-
normalized TF–IDF vector of document 𝑑 (built on seeds∪antiseeds). The TF–IDF margin scorer
is

𝑚(𝑑) = max
𝑠∈𝒮

cos(x𝑑,x𝑠)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
closest seed doc

− max
𝑎∈𝒜

cos(x𝑑,x𝑎)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
closest antiseed doc

, retain if 𝑚(𝑑) ≥ 𝜏 .

On the same training split, 𝜏TF–IDF
MCC is obtained by maximizing MCC, and test metrics are reported at 𝜏=0

and 𝜏TF–IDF
MCC . Because TF–IDF compares documents directly at the lexical level, it commonly achieves

slightly higher supervised metrics on the evaluation split; however, Δ𝑠 remains the preferred primary
scorer for the full unlabeled corpus, as it enables unsupervised diagnostics, topic-level interpretability,
and a principled 𝜏=0 operating point independent of labels, with both 𝜏Δ𝑠MCC and the TF–IDF baseline
serving as robustness checks.

4. Data

The empirical analysis is conducted using the Patstat Autumn 2024 database [31], a comprehensive
dataset of global patent records maintained by the European Patent Office (EPO). This database includes
detailed bibliographic information, classification codes, citation linkages, and legal status for millions
of patent families worldwide. The database comprises 85,195,446 patent applications grouped into
66,798,016 DOCDB simple families, 47,068,344 of which include an English abstract. We restrict our
analysis to these families to enable text-based semantic analysis. In Patstat 2024 [32], every patent
application is assigned to a simple family, also known as the DOCDB family, which links applications
that share exactly the same priority [32]. This differs from the extended family (INPADOC family),
which links applications sharing a priority either directly or indirectly through a third application. The
choice of using the simple family as unit of analysis offers several advantages. It avoids the issue of
over-representation of seed inventions that are published under multiple IDs in different jurisdictions,
ensuring a more accurate representation of the related patents in the expansion set. Additionally, it
allows for the identification of all citation linkages, ensuring that the citation network is fully captured.
According to the EPO’s Data Catalog [32], simple family citations encompass both citations to patent
publications and applications.

An example of the data collected is shown in Table 2.



Table 2
Example of collected Patstat data, for a patent drawn from the seed set.

Field Value

Title (title_text) CHARGING STATION MONITORING SYSTEM
Abstract (abstract_text) A charging station monitoring system comprising: a sensing device, a digital camera and a

communication device which are arranged at a charging apparatus of a charging station, the
sensing device and the digital camera each having a sensing range covering a parking lot associated
with the charging apparatus and an area around the parking lot; and a controller configured to
determine an occupation state of the parking lot and/or detect and record an action of a third party
or foreign object based on sensed information from the sensing device and the digital camera.

Application id (appln_id) 521014361
Publication id (pat_publn_id) 530024524
Simple family id (docdb_family_id) 68461712
Filing date (earliest_filing_date) 2018-11-20
Citations (cited_docdb_family_id) 43031012, 46705595, 51896513, 53544075, 54767462, 55201075, 55396976, 56309691, 57758888,

57906422, 59333789, 61477574, 62481294, 63917493
CPC codes (cpc_class_symbol) B60L 53/30, B60L 53/60, B60L 53/68, G06V 10/95, G06V 20/52, H01M 10/44, H02J 7/0013, H02J

7/007192, H04N 7/18, Y02E 60/10, Y02T 10/70, Y02T 10/7072, Y02T 90/12, Y02T 90/16, Y02T 90/167,
Y04S 30/12

IPC codes (ipc_class_symbol) B60L 53/30, B60L 53/60, B60L 53/68, G06K 9/00, G06T 1/00

5. Results

5.1. Candidates selection methods

As an initial analysis, the identification strategies proposed by [4] are replicated. Using their modules,
it is possible to classify a total of 238,717 patent families as ‘twin’ by at least one module. However, as it
can be shown, there is minimal to no overlap among the patent sets identified by their different methods.
This highlights a challenge regarding the representativeness of the resulting seed set. To address this,
the strategies detailed in Section 3 are proposed, which combine the same set of information, reported
in Table 1, using alternative configurations. As reported in Table 3 This procedure yields 223,575 unique
patent families classified as twin by at least one method. The low overlap across methods remains, as
shown by the average Jaccard metric computed for all methods (0.064) which is lower than the random
assignment one (obtained through same set sizes and 3,000 repetitions).

5.2. Seed,anti-seed and expansion set analysis

Applying the most stringent criterion —requiring identification bymore than twomethods to be included
in the seed— results in a final set of 9,847 unique seed patent families, which can be considered as the
most representative and thus suitable for a robust seed definition. By expanding the candidates set
twice through bidirectional citations, an expansion set comprising 1,918,509 unique patent families is
derived.

5.3. Topic modeling results

After preprocessing (lowercasing and removing numerals), the seed, antiseed, and expansion documents
are encoded and modeled with BERTopic. The model yields 86 topics for the overall set (Figure 2).
The intertopic distance visualization (Figure 2, panel (a)) provides an overview of the topics generated
by the BERTopic model for the overall set of seed, expansion and antiseed documents. Each point on
the visualization represents a topic, with its position determined by the model’s learned embeddings.
Topics that are close to one another on the map suggest similar themes, while those that are farther
apart indicate distinct conceptual areas. This visualization revealed a well-structured topic space, with
several clusters of topics grouped around core themes relevant to the twin patent corpus.

Overall, the BERTopic model’s initial output provides a coherent representation of the twin patent
data’s thematic landscape. The visualizations demonstrates a structured topic space with clear thematic
areas and revealed areas for further refinement in the subsequent pruning phase, where the expansion
set would be filtered based on cosine similarity to seed topics.



Table 3
Twin patents identification methods revised.

M Description of identification digital/AI green N. patent
families

𝐽𝑀1

1 Patents tagged with both Y04 and Y02 CPC(Y04) CPC(Y02) 38,519 -
2 Patents with at least one digital+AI and one sustainability

keyword in title or abstract
Keywords Keywords 37,764 0.012

3 Patents with at least one digital/AI keyword in title or
abstract and classified under Y02 code

Keywords CPC(Y02) 112,435 0.078

4 Patents tagged with CPC(Y04) and at least one sustain-
ability keyword in title or abstract

CPC(Y04) Keywords 4,203 0.099

5 Patents classified in at least one digital IPC group (5
digits) and under Y02 code

IPC group CPC(Y02) 87,311 0.249

6 Patents classified in at least one considered digital IPC
group (5 digits) and containing one sustainability-related
keyword

IPC group Keywords 15,234 0.024

# Total (unique, in english) 223,575
Jaccard: 𝐽obs=0.064; 𝐽rand=0.083

(a) Overall set: (b) Expansion set: (c) Pruned set:
1,939,206 families 1,918,509 families, 575,441 families,

86 topics 156 topics 147 topics

Figure 2: Intertopic distance graphs

5.4. Pruning results

By applying the pruning strategy described in Section 3.3 to the expansion set, 575,441 patent families
are retained.

To assess the impact of the pruning strategy in an unsupervised setting, id est in absence of labeling
that hinders the use of recall and precision analysis, a number of tests can be performed. First, the
topic analysis on the whole and pruned expansion set can be repeated, in order to compare the
Intertopic Distance Map [27] before and after pruning. Pre-pruning, topics appeared more crowded and
overlapped substantially, suggesting semantic redundancy and poor topic separation. After pruning,
the 2D projection revealed clearer topic dispersion, with reduced overlap and tighter clustering. This
suggests increased semantic distinctiveness and topical coherence, both indicators of a better-defined
topic space [3]. Highlighting this visually helps validate the pruning process not just by number
reduction but by structural improvement in the latent topic space. After pruning, topics appear tighter
and more coherent and, while more numerous than in the overall set (Figure 2), they are fewer than
in the expansion set (147 vs 156), indicating that pruning removes broader, disjointed topics while
preserving fine-grained themes.



Figure 3: Cosine Similarity to Assigned Seed Topics, for documents in the original and pruned expansion sets

Table 4
Test performance at 𝜏=0 and MCC–optimal thresholds learned on the training split, separately for the multi-
prototype margin Δ𝑠 and the TF–IDF margin.

Scorer Threshold P R F1 Acc. Jac.

Δ𝑠 (multi-proto) 𝜏=0 0.973 0.888 0.928 0.900 0.866
Δ𝑠 (multi-proto) 𝜏Δ𝑠MCC 0.932 0.981 0.956 0.934 0.915
TF-IDF 𝜏=0 1.000 0.878 0.935 0.911 0.878
TF-IDF 𝜏TF-IDFMCC 0.958 1.000 0.978 0.968 0.958

Finally, comparing the panels (b) and (c) in Figure 2, a greater average distance is found in the
expansion set compared to the pruned one, and that broader and disjointed topics were effectively
dropped.

Subsequently, to evaluate the semantic alignment of the expansion set with seed and antiseed topics,
the Kernel Density Estimation (KDE) plots of the maximum cosine similarity between each expansion
document and (i) seed topics and (ii) antiseed topics are produced. These plots provide a smooth
estimation of similarity density across the corpus [28]. As shown in Figure 3, after pruning, the KDE
curve shifted toward higher similarity with seed topics and away from antiseeds, indicating that retained
documents are more aligned with the intended thematic focus and less with undesired content. This is
consistent with effective filtering in vector space, aligning with known techniques in bias detection and
semantic drift analysis [29].

These diagnostics confirm that pruning was both selective and semantically discriminative, reducing
noise and enhancing alignment with the seed topics.

5.5. Validation against CPC pseudo-labels

In the first two rows of Table 4 we report validation of the baseline method—the multi-prototype
topic contrast Δ𝑠—at the conservative threshold 𝜏=0 and at a data-driven threshold 𝜏Δ𝑠MCC selected by
maximizing the Matthews correlation coefficient on a separate development split of the labeled pool.
At the conservative operating point (𝜏=0), Δ𝑠 attains Precision=0.973, F1=0.928, and Jaccard=0.866.
Using the data-driven threshold, Δ𝑠 improves to F1=0.956 with higher recall (Recall=0.981) and slightly
lower precision (Precision=0.932). This operating point typically increases recall (and overall F1) while
allowing a controlled rise in false positives. Although the tuned threshold is favored in terms of
precision, accuracy, and overlap, the conservative rule performs well and remains attractive when
labels are unavailable. Practitioners can choose the operating point that matches their objective: the
label-free 𝜏=0 rule when high precision and simplicity are paramount, or the MCC-selected threshold
when broader coverage (higher recall) is preferred, and labels are available.



a) Precision: Δ𝑠 vs. TF-IDF b) Recall: Δ𝑠 vs. TF-IDF c) F1: Δ𝑠 vs. TF-IDF

Figure 4: Precision, recall and F1 as functions of the pruning threshold 𝜏 for two scorers: a topic-space multi-
prototype contrast Δ𝑠 (blue) a TF–IDF max-margin (orange). Vertical dashed lines mark the conservative rule 𝜏
(black) and the data-driven thresholds (𝜏Δ𝑠MCC and 𝜏TF-IDFMCC ), selected separately for each scorer (colored).

The same table also reports test performance for a TF–IDF max-margin variant evaluated at 𝜏=0 and
at its own TF–IDF–specific MCC-selected threshold. Δ𝑠 operates in topic space to provide interpretable,
prototype-aligned pruning, whereas TF–IDF offers a document-space robustness baseline. At 𝜏=0, Δ𝑠
achieves high precision with slightly higher recall than TF–IDF (F1= 0.928 vs. 0.935). With a data-driven
threshold, Δ𝑠 improves to F1 = 0.956 with a strong recall gain, while TF–IDF reaches a higher balanced
score overall (F1 = 0.978).

Despite TF–IDF’s gain on this proxy-labeled test, we retain Δ𝑠 as the primary pruning rule because it
(i) operates in the same topic space that underpins our diagnostics, yielding interpretable prototype-level
decisions; (ii) reduces lexical leakage from seed phrasing and is less sensitive to vectorizer settings
and vocabulary drift; and (iii) provides a transparent, label-free 𝜏=0 policy that performs well on the
unlabeled corpus. We therefore report both scorers—using Δ𝑠 for the main selection and TF–IDF as a
robustness check—and include threshold-sensitivity curves in Figure 4 to make the trade-offs explicit.
Both scorers display the expected trade–off: as 𝜏 increases, precision rises while recall falls, and F1 peaks
on a broad plateau. The TF–IDF margin reaches the highest peak F1 and attains near–perfect precision
at more conservative 𝜏, dominating the upper–right region of the curves. The multi–prototype Δ𝑠
increases precision more gradually and preserves relatively higher recall near 𝜏=0, providing a smooth,
interpretable operating range aligned with the topic–space diagnostics. In practice, TF–IDF at its
data–driven 𝜏TF-IDF

MCC is preferable for balanced performance when labels (or proxy labels) are available,
whereas Δ𝑠 near 𝜏=0 is a well-behaved default for label–free, topic–aligned pruning. Both methods are
stable over a wide plateau of 𝜏 values, so small threshold shifts do not materially affect results.

5.6. Sensitivity analysis across BERTopic hyperparameters .

To assess how the pruning threshold 𝜏 in the topic–space contrast score Δ𝑠 = cos(p, s̄) − cos(p, ̄a)
affects retrieval quality—and how this behavior varies with modeling choices— the topic model is
refit over a grid spanning the three stages of the pipeline: (i) Text vectorization (bag–of–words with 𝑛-
grams), controlling vocabulary granularity via min_df ∈ {2, 5}; (ii) Low–dimensional projection (UMAP),
controlling local neighborhood size and layout via 𝑛neighbors ∈ {15, 30, 50} and min_dist ∈ {0.0, 0.1};
(iii) Density–based clustering (HDBSCAN), controlling cluster granularity and treatment of noise via
min_cluster_size ∈ {10, 30} and min_samples ∈ {None, 5}. For each configuration, topic probabilities
are obtained, the contrast score Δ𝑠 is recomputed, and 𝜏 is swept to trace precision/recall/F1 curves.
Across configurations, curves cluster tightly around 𝜏 = 0 and around a fixed 𝜏MCC (chosen once on
a default configuration by maximizing Matthews correlation on a held-out split), with only minor
dispersion. Peak F1 consistently occurs near 𝜏 ≈ 0–0.1; performance degrades only for large positive 𝜏
where recall collapses (a regime not used operationally). Overall, selection performance is insensitive
to reasonable variation in vectorizer, projection, and clustering hyperparameters, supporting 𝜏 = 0 as a
default operating point and 𝜏MCC as a robustness check.



a) Precision vs. threshold 𝜏. b) Recall vs. threshold 𝜏. c) 𝐹1 vs. threshold 𝜏.

Figure 5: Sensitivity of precision, recall, and F1 to the pruning threshold 𝜏 across BERTopic hyperparameters
(UMAP/HDBSCAN/vectorizer). Vertical lines mark 𝜏 = 0 and a fixed 𝜏MCC estimated once on a default configura-
tion. Curves cluster tightly around the operating region (𝜏 ≈ 0− 𝜏MCC), indicating robustness to hyperparameters.

6. Limitations and future direction of work

While the proposed pipeline demonstrates strong performance in identifying thematically coherent
and contextually relevant patents, several limitations open avenues for further enhancement. In the
expansion and pruning phases, citation networks were leveraged to build a semantically rich candidate
set. To avoid redundancy and overfitting, these same features were excluded from the classification
phase, opting instead for a single-input BERT architecture that processes concatenated abstracts and
titles. This design ensured that distinct sets of information were exploited in different phases, reducing
the risk of data leakage or circular logic.

However, treating all textual fields as a single input may dilute domain-specific signals, such as
those embedded in CPC codes or reference patterns. A multi-input BERT architecture, where each
modality (e.g., abstract, CPC, references) is processed independently before feature fusion, could better
preserve the structural and semantic nuances of each information type. For instance, recent work
by [13] demonstrates the effectiveness of such architectures in patent retrieval and classification tasks.
Future work could therefore explore the development of an unsupervised, multi-input BERT framework
tailored to the patent domain to test and capture domain-specific relevance more explicitly.

In the absence of human annotations, a pseudo-labeled set based on overlap with CPC codes is used.
While defensible as a proxy for human curation, these labels are not independent of the construction
rules; reported metrics should therefore be interpreted as upper-bound estimates. Future work will
validate beyond CPC proxies and explore multi-input models that fuse text, classification codes, and
citation structure.

7. Conclusions

This work introduces an automated, scalable framework for identifying twin (green ∩ digital) patents
that integrate green and digital technologies. By combining rule-based seed selection, bidirectional
citation expansion, transformer-based embeddings, and topic-guided pruning, the methodology ad-
dresses persistent limitations of earlier approaches, including limited coverage and overlap and lack of
reproducibility.

Empirical results indicate that the proposed framework yields patent sets with greater topical rele-
vance and improved semantic coherence, as shown by clearer intertopic separation and a KDE shift
toward seed topics after pruning. Specifically, the combination of PaECTER embeddings, BERTopic
modeling and topic-guided pruning, is shown to enable the effective filtering of heterogeneous patent
corpora while minimizing human intervention. Sensitivity analyses indicate small variation across
reasonable UMAP/HDBSCAN settings and cosine-similarity thresholds, suggesting a robust pruning
score.

Overall, this approach provides a scalable, transparent basis for monitoring innovation dynamics and
informing policy in the twin transition.
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