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Abstract

The growing integration of Artificial Intelligence (AI) into education has intensified the need for transparency
and interpretability. While hackathons have long served as agile environments for rapid Al prototyping, few have
directly addressed eXplainable AI (XAI) in real-world educational contexts. This paper presents a comprehensive
analysis of the XAI Challenge 2025, a hackathon-style competition jointly organized by Ho Chi Minh City
University of Technology (HCMUT) and the International Workshop on Trustworthiness and Reliability in
Neurosymbolic AI (TRNS-AI), held as part of the International Joint Conference on Neural Networks (JCNN
2025). The challenge tasked participants with building Question-Answering (QA) systems capable of answering
student queries about university policies while generating clear, logic-based natural language explanations. To
promote transparency and trustworthiness, solutions were required to use lightweight Large Language Models
(LLMs) or hybrid LLM-symbolic systems. A high-quality dataset was provided, constructed via logic-based
templates with Z3 validation and refined through expert student review to ensure alignment with real-world
academic scenarios. We describe the challenge’s motivation, structure, dataset construction, and evaluation
protocol. Situating the competition within the broader evolution of AT hackathons, we argue that it represents a
novel effort to bridge LLMs and symbolic reasoning in service of explainability. Our findings offer actionable
insights for future XAl-centered educational systems and competitive research initiatives.
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1. Introduction

Hackathons emerged in the late 1990s as intensive, time-constrained events where developers collabo-
rated to rapidly prototype functional solutions [1]. Initially focused on general-purpose programming,
these events gradually evolved into innovation incubators across diverse domains. By the early 2010s,
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hackathons had become increasingly integrated into educational contexts, offering informal yet im-
pactful environments for learners to connect theoretical understanding with real-world application [2].
They fostered creativity, collaboration, and technical fluency, which are essential skills in the rapidly
advancing field of Artificial Intelligence (Al). The mid-2010s marked a turning point, as breakthroughs in
machine learning and the rise of open-source frameworks such as TensorFlow' and PyTorch? enabled
hackathons to address more complex and data-driven problems [3]. In the early 2020s, the emergence
of Large Language Models (LLMs), including ChatGPT® and GitHub Copilot?, significantly enhanced
participants’ productivity, code quality, and learning outcomes. At the same time, these tools raised
concerns about academic integrity and over-reliance on automation, highlighting the need for clearer
ethical guidelines and responsible deployment [4, 5].

As LLMs became increasingly capable but remained difficult to interpret, eXplainable AI (XAI)
emerged as a crucial paradigm for promoting transparency. This need is especially pronounced in
educational settings, where students and educators often seek justifications for automated decisions
[6]. In parallel, symbolic Al has regained attention as a complementary approach to purely data-
driven methods. A notable milestone was the 2024 release of AlphaGeometry by Google DeepMind®, a
neuro-symbolic system that achieved gold medal-level performance at the International Mathematical
Olympiad. At its core lies a symbolic reasoning engine, which demonstrates the potential of logic-based
inference in addressing complex educational problems [7, 8]. In this broader landscape, Al competitions
have begun to incorporate educational and explainability-oriented goals. For example, EfficientQA [9]
and the Alexa Prize TaskBot® focused on answer accuracy and dialogue, but offered limited support for
interpretable outputs. Symbolic reasoning benchmarks such as the Abstraction and Reasoning Challenge
(ARC)” and Neuro-Symbolic ARC [10] emphasized structured reasoning but did not require natural
language (NL) explanations. Similarly, biomedical competitions such as the MIDRC mRALE Challenge®
targeted explainability in medical diagnostics, rather than educational domains.

To fill this gap, the XAI Challenge 2025° was introduced as part of the International Joint Conference on
Neural Networks (IJCNN 2025), co-organized by Ho Chi Minh City University of Technology (HCMUT) and
the International Workshop on Trustworthiness and Reliability in Neurosymbolic AI (TRNS-AI). Although
the challenge ran for three months, it was inspired by the spirit of hackathons, emphasizing rapid
iteration, interdisciplinary collaboration, and practical relevance. The competition was structured into
multiple phases, including dataset familiarization, system development, and explanation refinement.
Participants were asked to build educational Question-Answering (QA) systems that could respond
to student queries about academic regulations while providing logically grounded natural language
justifications. All solutions were required to use lightweight LLMs or hybrid LLM and symbolic
reasoning models, with an emphasis on transparency, verifiability, and alignment with human logic.
The challenge was supported by a carefully designed dataset grounded in real university policies. This
dataset was developed through a two-stage pipeline: (i) synthetic examples were generated using
logic-based templates and validated using the Z3 Solver [11], and (ii) these examples were refined and
validated by trained university students to ensure clarity, factual accuracy, and educational relevance.

This paper presents a comprehensive overview of the XAI Challenge 2025, including its motivation,
structure, dataset design, evaluation methodology, and participant outcomes. By situating the challenge
within the broader evolution of Al competitions, we argue that it represents a new class of explainability-
focused systems aligned with educational values. In particular, we emphasize how the challenge
brings together the strengths of LLMs and symbolic reasoning, establishing a practical benchmark for
trustworthy and pedagogically sound Al in education.

'https://www.tensorflow.org/

*https://pytorch.org/

*https://openai.com/index/chatgpt/

*https://github.com/features/copilot
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2. Positioning Within the Landscape of Al Competitions

In recent years, Al competitions have proliferated not only as benchmarks for measuring technical
progress but also as collaborative platforms for exploring emerging paradigms such as LLMs, symbolic
reasoning, and explainability. These events cover a wide range of tasks, including open-domain QA,
task-oriented dialogue, program synthesis, and interpretable diagnostics. However, few competitions
explicitly integrate educational QA, symbolic reasoning, and explainability within a unified framework.
Table 1 provides a comparative overview of the XAI Challenge 2025 in relation to a selection of prominent
Al competitions.

Table 1
Comparison of XAl Challenge 2025 with other notable Al competitions

QA- Symbolic  NL Expla-

Competition Field Real-world Domain

focused Reasoning nation
EfficientQA [9] Open-domain QA X X X General knowledge
Alexa Prize TaskBot® Task-based dialogue X X X Household tasks
ARC’ / Neuro-Symbolic ARC [10]  Abstract reasoning X X X Synthetic puzzles
MIDRC XAl Challenge® Medical image diagnosis X X X X-ray diagnostics
XAl Hackathon Pisa' XAl prototyping X — — Mixed datasets
Explainable Fuzzy Al Challenge''  Fuzzy logic systems X X X Agent control
XAl Challenge Austin'? Coding + explanation — X - General Al tasks
Our XAl Challenge Educational QA X X X Academic policy
Legend: X= Fully addressed; X= Not addressed; — = Partial or optional inclusion

Our challenge introduces a unique combination of educational QA, symbolic reasoning, and logic-
based natural language explanation. This combination is rarely emphasized simultaneously in other
major competitions. Its requirement to use lightweight LLMs together with symbolic inference makes
it particularly suitable for student-facing applications where transparency and trust are essential. In
addition, the challenge’s structure encourages interdisciplinary collaboration, rapid prototyping, and
accountable system behavior. These qualities are often missing in leaderboard-driven competitions
that focus narrowly on accuracy. Taken together, these attributes establish the XAI Challenge 2025 as
a novel and practical benchmark for building explainable, trustworthy, and educationally aligned AI
systems.

3. The XAI Challenge 2025

3.1. Motivation and Objectives

The XAI Challenge 2025 was motivated by the limitations of conventional LLM-based QA systems
in educational settings. These systems often return concise answers with limited explanatory depth,
making it difficult for users to trace errors in reasoning or verify the correctness of responses. This lack
of transparency is particularly problematic in rule-based, high-stakes scenarios such as those involving
university policies. To address this issue, the competition promoted hybrid approaches that combine the
fluency of LLMs with the rigor of symbolic reasoning, with the goal of enhancing both interpretability
and trustworthiness in educational QA systems. The primary objectives of the challenge are as follows.

« O1. Encourage the development of QA systems that generate logic-grounded natural language
explanations for policy-related queries.
« 02. Promote hybrid architectures that integrate symbolic inference with LLM-based generation.

Ohttp://xai-hackathon.isti.cnr.it/
https://xfuzzycomp.github.io/XFC/
https://finch-mauve-rk3e.squarespace.com/xai-atx
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+ 03. Enhance the transparency and verifiability of automated responses in educational contexts.

« 04. Showecase real-world applications where explainability improves student comprehension and
learning outcomes.

« 05. Recognize outstanding solutions through academic dissemination, including presentations at
the TRNS-AI workshop and paper submissions to the 4™ Ttalian Conference on Big Data and Data
Science (ITADATA 2025).

3.2. Structure and Timeline

The event was structured to foster rapid prototyping, interdisciplinary collaboration, and real-world
impact. While inspired by the fast-paced spirit of traditional hackathons, the competition unfolded
across multiple phases over a three-month period, allowing participants to iteratively refine their
solutions. The complete timeline of the XAI Challenge 2025 is summarized in Table 2.

The challenge welcomed a diverse pool of participants, including high school and university students
as well as early-career researchers with interests in XAl. Teams of up to six members could register
between March 2 and April 25, 2025, with individuals without a team having the option to be matched
into groups by the organizers. To support effective system development, a virtual kickoff workshop
and dataset release were held on April 13. The main competition phase ran from April 14 to May
11, during which participants developed educational QA systems capable of answering university
policy-related questions while generating logically grounded natural language explanations. Evaluation
was conducted in two stages: (i) Phase 1 results were announced on May 12-13, followed by a brief
model refinement period on May 14-15; and (ii) Phase 2 results were released on May 1617, with final
rankings determined on May 18. On June 1, a public test day was held, during which all systems were
evaluated on a hidden test set. Each team also delivered a live presentation of their solution, followed
by a Q&A session with a panel of challenge chairs comprising renowned professors. Final rankings and
awards were officially announced at the end of the day.

To extend the competition’s impact beyond its runtime, the top three teams were invited to present at
the TRNS-AI Workshop (held as part of JCNN 2025) on July 5 and to submit a full paper to the ITADATA
Conference by June 30. These post-challenge activities were designed to encourage continued academic
dissemination and foster sustained community engagement.

Table 2
Timeline of the XAl Challenge 2025
Date(s) Event
March 2 — April 25 Team registration period
April 13 Kickoff workshop and dataset release
April 14 — May 11 Main competition phase
May 12-13 Phase 1 evaluation results
May 14-15 Model refinement period
May 16-17 Phase 2 evaluation results
May 18 Final ranking announcement
June 1 Public test day, solution presentations, and final result release
June 30 Paper submission (Top 3 teams, ITADATA Conference)
July 5 Presentation at TRNS-AI Workshop (IJCNN 2025)

3.3. Dataset

To align with the educational goals of the challenge, the dataset was carefully constructed to reflect
realistic, policy-based questions that students often face in academic settings. Each entry consists of a
collection of premises presented in both natural language and First-Order Logic (FOL), accompanied
by one or more questions and their corresponding ground truth answers. The content covers a wide
spectrum of university regulations, including course enrollment criteria, graduation requirements,



"premises-NL": [
"Every student enrolled in the course who completes at least 80% of the assignments passes the
course.",
"If a student attends all lectures, then they have a higher chance of passing the final exam.",

"If a student attends a tutoring session or completes extra practice problems, they are more
likely to improve their grades.",
"No student who fails to submit their research paper passes the course.",
"There exists a student who is on academic probation and later graduates with honors."
1,
"premises-FOL": [
"ForAll(x, (Student(x) AND Completed80PctAssignments(x)) -> PassCourse(x))",
"ForAll(x, AttendsAllLectures(x) -> HigherChancePassFinalExam(x))",
"ForAll(x, (AttendsTutoringSession(x) OR CompletesExtraPractice(x)) -> MoreLikelyImproveGrades
(CODR
"ForAll(x, NOT SubmitsResearchPaper(x) -> NOT PassCourse(x))",
"Exists(x, OnAcademicProbation(x) AND GraduatesWithHonors(x))"
1,

"questions": [

"Which statement can be inferred?\nA. ...\nB. If a student attends a tutoring session and
completes at least 80% of the assignments, they are more likely to improve their grades
and will pass the course.\nC. ...\nD. ...",

"Is this statement true?\nStatement: If a student attends all lectures but does not submit
their research paper, they still cannot pass the course even though they have a higher
chance of passing the final exam."

1o
"answers": [
X
"Yes"
1,
"idx": [

(1, 31,

(2, 4]

Ilo
"explanation": [

"Premise 3. states that attending tutoring (or doing extra practice) increases the likelihood
of grade improvement. Premise 1. says completing at least 80% of assignments guarantees
passing the course. Together, these two premises support option B.",

"Premise 2. says attending all lectures raises the chance of passing the final exam, but
Premise 4. says any student who fails to submit the research paper cannot pass the course.

Both conditions can hold simultaneously, so the statement is true."

Figure 1: Example record from the XAl Challenge 2025 dataset. Each item includes natural and formal premises,
natural language questions, indexed supporting evidence, and human-readable explanations.

credit thresholds, and exceptions for special circumstances. This design ensures that the dataset is both
logically rigorous and pedagogically relevant. Questions are divided into three main categories:

+ Yes/No/Uncertain: Binary evaluations of compound logical conditions (e.g., academic eligibility
or rule violations).

« Multiple-choice: Selecting the most logically entailed conclusion from a list of candidates.

« Numerical: Inferring specific quantities (e.g., credit totals or counts) from constraints embedded
in the premises.

Figure 1 illustrates a simple example from the dataset. Each record includes five core components:
(i) premises expressed in both natural language (premises-NL) and formal logic (premises-FOL); (ii)



one or more questions designed to test reasoning ability; (iii) ground truth answers; (iv) supporting
premise indices (idx) that identify which statements justify each answer; and (v) a natural language
explanation that outlines the reasoning steps in a transparent and verifiable manner. This structure
encourages systems to generate answers based on explicit logical evidence rather than statistical
approximation. Moreover, the data format is directly aligned with the challenge’s evaluation framework,
which emphasizes not only answer accuracy but also the clarity and traceability of the accompanying
explanations.

The dataset was built through a three-stage pipeline that combines symbolic reasoning, LLMs, and
expert validation. In the first stage, a custom logic engine built on top of the Z3 Solver was used to
generate logically consistent premises. The engine applied classical inference rules such as Modus
Ponens, Hypothetical Syllogism, and De Morgan’s Theorem to construct a diverse set of original,
derived, and unrelated statements. The full procedure is described in Algorithm 1, which outlines how
premises were sampled, validated, and assembled into complete records. In the second stage, each
validated FOL statement was translated into natural language using ChatGPT. These translations aimed
to preserve the original logical meaning while rendering the statements in fluent, readable English. In
the final stage, trained university students manually reviewed and refined the records to ensure clarity,
factual accuracy, and contextual relevance.

Algorithm 1: Premise Generation for XAI Challenge Dataset
Input :Number of steps s, number of chained premises ¢, number of derived premises d
Output:Dictionary {original, derived, unrelated} containing valid premises
1 Initialize empty sets: original, derived, unrelated;
2 Define logic variables (e.g., P, Q, R) and inference rules;

Step 1: Generate original premises;
fori < 1tosdo
Generate a premise using a random inference rule;
Validate with Z3;
if valid and unique then
L Add to original;

[N B N B

-]

Step 2: Derive new premises;
10 fori« 1toddo

11 Select two premises from original or derived;

12 Derive a new premise, e.g., using implication or conjunction;
13 Validate with Z3;

14 if valid and unique then

15 L Add to derived;

16 Step 3: Add unrelated premises;
17 fori < 1tos—cdo

18 Generate an unrelated premise using a random rule;
19 Validate with Z3;

20 if valid and unique then

21 L Add to unrelated;

22 return {original, derived, unrelated};

The finalized dataset consists of 481 training records and 50 test records. Each record combines
various types of premises and question formats, designed to assess both factual comprehension and
multi-step logical reasoning. Table 3 provides an overview of the dataset’s composition, including
statistics on premise length, question distribution, and reasoning depth.



Table 3
Dataset Statistics for the XAl Challenge 2025

Metric Training Set  Test Set
Total Records 481 50
Average Premise Count per Record 9.90 6.08
Average Premise Length (Words) 126.60 85.16
Yes/No/Uncertain Records 457 13
Multiple-Choice Records 403 21
Numerical Records 16 16
Maximum Inference Steps 20 6
Maximum Premises per Record 36 10

3.4. Rules and Constraints

To ensure transparency, fairness, and alignment with the goals of XAI, the challenge introduced a clear
set of modeling and technical constraints. Participants were required to build educational QA systems
that could answer university policy questions and generate natural language explanations grounded in
specific evidence. Each system received input in the form of a JSON object with two fields:

« question: a natural language question about academic policy,
« premises: a list of premises written in natural language.

The system was expected to return a JSON object with:

« answer: the predicted answer (e.g., Yes, No, Uncertain, a number, or a multiple-choice letter),
« idx: indices of the premises that support the answer, using one-based indexing,
+ explanation: a concise, human-readable justification derived from the cited premises.

To support fair comparison and prevent data leakage, participants were provided with only the training
portion of the dataset. The test set was kept private and used exclusively for final evaluation during the
competition. All models were required to operate strictly on the given set of premises. External retrieval
or lookup mechanisms were not allowed. To encourage transparency and discourage black box behavior,
participants were recommended to use interpretable reasoning methods. These included symbolic
solvers (such as Z3), lightweight open-source language models, or hybrid combinations. Regardless of
approach, each system had to identify which premises were used and explain the reasoning process
in a way that was understandable to non-expert users, especially students. In addition to modeling
guidelines, each submission had to satisfy technical requirements to ensure reproducibility, robustness,
and fairness during evaluation. Each system was deployed as an HTTP API and automatically tested
on both private and public test cases. Table 4 outlines the main rules applied to all submissions.

3.5. Evaluation Protocol

As outlined in Table 2, our challenge employed a multi-phase evaluation framework to assess participants’
systems through hosted API endpoints, using both private and public datasets. The evaluation focused
not only on answer accuracy but also on reasoning transparency and explanatory clarity. Each system
was assessed along three primary dimensions:

« Correctness of Answers (P;) — measured using Exact Match (EM) between the system’s output
and the ground-truth answer field.

+ Relevance of Premises (P,) — evaluated via EM with the ground-truth idx field (one-based
indexing), assessing whether the system selects the minimal correct subset of premises that
support the answer.

Bhttps://openai.com/index/openai-api/
Yhttps://platform.deepseek.com/
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Table 4
Summary of rules and constraints in the XAl Challenge 2025

Aspect Constraint

Model transparency Only open-source models with fewer than 8 billion parameters were allowed
without penalty. Submissions based entirely on proprietary models (e.g.,
GPT'3, DeepSeek'?) were ranked lower to encourage reproducibility.

Reasoning method Systems were required to generate natural language justifications grounded
in specific premises. The use of symbolic solvers, lightweight language models,
or hybrid systems was encouraged.

External data Any external data used for training, fine-tuning, or augmentation had to be
fully disclosed, including the source and intended use. Non-disclosure resulted
in disqualification.

API protocol Each system had to expose an APl accepting POST requests with a JSON input
containing a question and list of premises.

APl output The response had to include: (i) the predicted answer, (ii) one-based indices of
the supporting premises, and (iii) a concise, human-readable explanation.

Lookup tables Hardcoded or static responses were prohibited. All outputs had to be computed
dynamically.

Rate limit APIs were limited to 10 requests per second, with a maximum processing time
of 60 seconds per request.

Availability APlIs that were offline for more than 30 consecutive minutes or failed more

than 10% of test queries were disqualified.

- Explainability (P;) — evaluates the clarity and logical coherence of the generated natural lan-
guage explanation, which must be concise, faithful to the selected premises, and comprehensible
to human users. In the final round, P; was manually scored by the panel of professors based on a
rubric.

Each of Py, P,, and P; is computed per instance and normalized to the range [0, 1]. Since each question
in the dataset has exactly one correct answer and one minimal supporting set of premises (generated
via logic-based templates and validated with symbolic solvers), exact match is a reliable metric for P;
and P,. To ensure logical consistency, we enforce the constraint defined in Equation 1.

P, - P, =0 = score =0 (1)

Selection Round. This round consisted of two sub-phases. In each phase, systems were evaluated
on the same set of n = 50 private test cases using the same scoring scheme. For each instance, the score
s; was computed as shown in Equation 2.

Si=0.5'P1+0.5'P2 (2)

The total score for each phase, denoted S and @, was computed by summing over all test cases,
as defined in Equation 3.

50
s© =350 forke 1,23 (3)

i=1
After Phase 1, participants received feedback and had the opportunity to refine their systems before
re-submission in Phase 2. To further encourage a deep understanding of the dataset and its logical
structure, we also introduced a dataset feedback incentive. Specifically, a bonus score Sponus Was
awarded based on the number and quality of valid issues (e.g., annotation errors, ambiguous premises)
reported by each team. Although the dataset underwent rigorous validation, such community-driven
review helped further improve its quality before public release. The final selection score S; used to

determine advancement was computed as shown in Equation 4.

S, =0.6- (0.7 M 4 03.5W ) +04- (0.9 @4 01.5P? ) (4)

onus onus



The five teams with the highest S; scores were invited to the final round.

Final Round. In this round, each system was evaluated on n = 5 public test cases and a live
presentation session. For each test case, the instance-level score s; was computed as shown in Equation 5.

Si=0.5‘P1+0.3'P2+0.2'P3 (5)

The total model score S, was computed by summing over all test cases, as shown in Equation 6.

5
Sz = Z Si (6)
i=1

Each team also gave a live presentation, which was evaluated in two parts: a 7-minute technical
presentation and a Q&A session with a panel of professors. Each part was independently scored by the
judges using a 5-point Likert scale (1 = very poor, 5 = excellent), based on criteria such as clarity, content
depth, delivery quality, and responsiveness. Let Ryes and Rgg denote the average rubric scores for the
presentation and Q&A portions, respectively. The final presentation score S; was computed as shown
in Equation 7.

Rpres + RQ&A

S3 = — 10 (7)

The overall final score S used for ranking was computed as the average of model and presentation
components, defined in Equation 8.
520.5‘52+0.5'53 (8)

This composite score S determined the final team rankings and award decisions.

3.6. Participant Overview

The XAI Challenge 2025 attracted a diverse cohort of 107 participants, organized into 28 teams. Team
sizes ranged from individual participants to groups of up to six members, enabling a variety of collabo-
ration formats. This flexible structure allowed contributions from individuals across a broad spectrum
of backgrounds and experience levels, including undergraduate students, graduate students, and early-
career researchers. While most participants were based in Vietnam, the host country, and India, the
challenge also welcomed teams from other countries. This international participation underscored the
growing global relevance of XAl in education.

3.7. Results and Analysis

Table 5 reports the performance of the top five finalists across both sub-phases of the Selection Round.
Each system was evaluated on the same set of 50 private test cases per phase, following the scoring
procedure described in Section 3.5.

Table 5
Performance of top five finalists in the Selection Round (anonymized)
Team Phase 1 Score Phase 2 Score Final Selection Score Final Round Rank
Team A 19.90 21.00 20.34 2
Team B 19.10 22.05 20.28 1
Team C 13.85 25.80 18.63 4
Team D 17.60 18.45 17.94 5
Team E 18.45 16.65 17.73 3

Modest Scores Reflect the Task’s Inherent Difficulty.  Although each evaluation phase included
only 50 test cases, the absolute scores across all teams remained modest. The highest final selection score



barely surpassed 20, representing less than 50% of the maximum possible. This outcome highlights the
intrinsic complexity of the task, which required systems not only to produce correct answers, but also
to identify a minimal set of supporting premises and generate logically sound, human-understandable
explanations. The results underscore the broader challenge of developing Al systems capable of faithful
and interpretable reasoning over real-world educational policies.

Two-Phase Evaluation Facilitated Iterative Improvement. The two-phase structure gave teams
an opportunity to refine their systems under tight time constraints. Notably, Team C demonstrated
substantial improvement, raising its Phase 2 score by nearly 86% over Phase 1. This suggests that
meaningful progress was achievable through targeted model updates and deeper engagement with the
dataset. In contrast, Team E saw a decline in performance, showing that not all adjustments led to
better results and highlighting the risk of overfitting or ineffective tuning during rapid iteration.

Selection Scores Were Not Always Predictive of Final Rankings.  There was no strict correlation
between selection scores and final round outcomes. For instance, Team A, which led the Selection
Round, was ultimately overtaken by Team B in the Final Round. Meanwhile, Team E preserved its
selection rank but narrowed the gap with top teams. These shifts reflect the multifaceted nature of
the Final Round, where systems were evaluated not only on public test cases but also through live
presentations assessed by a panel of experts. As a result, final rankings depended not just on model
output, but also on a team’s ability to explain its design choices, reasoning strategies, and approach to
explainability. This underscores the comprehensive and demanding nature of the challenge.

4. Selected Approaches

This section highlights several representative systems developed during the XAI Challenge 2025. While
differing in architecture and methodology, these systems shared the common goal of producing accurate
answers accompanied by logically grounded and interpretable explanations. We summarize four notable
design paradigms that illustrate the diversity of strategies explored by the finalists.

Multi-Agent Systems with Symbolic Reasoning.  One top-performing team implemented a
modular multi-agent system that combined several lightweight open-source LLMs with symbolic
reasoning via the Z3 theorem prover. The system divided the QA pipeline into specialized components:
one agent parsed natural language premises, another applied logical inference using Z3, and a third
synthesized structured explanations. Intermediate outputs were passed between agents to ensure
modularity and traceability. This approach proved especially effective in handling complex queries
involving conditional rules and policy exceptions, contributing to the team’s first-place result.

Prompt-Based Learning with Task-Specific Templates. Several teams adopted prompt-based
learning, using carefully designed templates to guide lightweight LLMs in extracting relevant premises
and generating step-by-step explanations. Prompts were tailored to specific question types, such as
Yes/No/Uncertain, multiple-choice, or numerical answers. Some systems further employed Chain-of-
Thought (CoT) [12] prompting to encourage intermediate reasoning steps. This strategy offered a
lightweight and interpretable solution but remained constrained by the inherent opacity and prompt
sensitivity of black-box models.

Rule Retrieval with Symbolic Inference.  Another approach focused on rule retrieval and symbolic
logic. One team built a structured rulebase of educational policies in Python and used keyword or
semantic matching to identify candidate premises. These were then passed to the Z3 solver for formal
inference. Explanations were generated by mapping the solver’s logical steps to human-readable
justifications. This method performed well on regulation-heavy queries but showed limitations when
dealing with ambiguous or loosely structured inputs.

Multi-Task Fine-Tuning with a Mixture-of-Experts Architecture. A learning-based system fine-
tuned multiple lightweight LLMs on synthetic supervision for three distinct tasks: answer generation,
premise selection, and explanation construction. These tasks were routed through a Mixture-of-Experts



(MoE) [13] architecture, where each expert model specialized in one task and was activated based on
input type. While this approach benefited from task-specific learning and synthetic data control, it
lacked the interpretability of symbolic systems and remained reliant on black-box inference.

These approaches illustrate a range of trade-offs between transparency, flexibility, and performance.
Systems that integrated symbolic reasoning provided clear, verifiable explanations, while those based
on language models offered adaptability and linguistic fluency. The challenge encouraged exploration
across this design space, yielding valuable insights into the development of XAI systems for education
and policy domains.

5. Conclusion

The XAI Challenge 2025 highlighted the feasibility and significance of developing transparent QA
systems for educational contexts. By imposing constraints on model size and requiring verifiable
reasoning, the competition challenged participants to design solutions that balanced accuracy with
interpretability and trustworthiness.

The event drew a variety of approaches, including multi-agent architectures, prompt-based learning
pipelines, rule-driven retrieval systems, and multi-task fine-tuning strategies. Despite their differences,
these systems shared a common objective: to integrate natural language understanding with logical
inference in order to answer policy-related queries with clarity and justification. A key design constraint
was explainability, enforced through open-source implementation and the requirement to output explicit
reasoning chains. As a result, models were evaluated not only on the correctness of their answers but
also on their ability to select supporting premises and articulate coherent explanations.

Taken together, the outcomes of the challenge provide meaningful insights into the design of XAI
systems in high-stakes settings. The event demonstrates that bridging LLMs and symbolic reasoning is
not only possible, but can yield practical, interpretable solutions to real-world tasks such as educational QA.
This serves as a foundation for future research at the intersection of language understanding, reasoning,
and explainability.

Acknowledgments

We would like to express our sincere gratitude to the URA Research Group at Ho Chi Minh City
University of Technology (HCMUT), Vietnam, especially the undergraduate students who contributed
to building and reviewing the dataset. We also acknowledge Bao Gia Quach, Hung Canh Nguyen,
Nguyen Bao Le, Hieu Tran Hoang Nguyen, Hoang Huy Vu, Thuong Tran Anh Le, and Quynh Thi Nhu
Vo for their support in both technical coordination and team communication throughout the challenge.

Finally, we are grateful to Professor Akka Zemmari and Professor Pascal Desbarats from the University
of Bordeaux, France, for their visit to HCMUT and valuable discussions during the early proposal phase,
together with Professor Fabien Baldacci, co-author of this paper.

Declaration on Generative Al

The author(s) have not employed any Generative Al tools.

References

[1] G. Briscoe, Digital Innovation: The Hackathon Phenomenon, Technical Report, Creative Works,
Queen Mary University of London, 2014.

[2] J.Porras, A. Knutas, J. Ikonen, A. Happonen, J. Khakurel, A. Herala, Code camps and hackathons in
education — literature review and lessons learned, in: Proceedings of the 52nd Hawaii International
Conference on System Sciences (HICSS 2019), 2019, pp. 7750-7759.



[3] M. Kamariotou, F. Kitsios, Hackathons for Driving Service Innovation Strategies: The Evolution
of a Digital Platform-Based Ecosystem, Journal of Open Innovation: Technology, Market, and
Complexity 8 (2022) 111.

[4] C.Kooli, Chatbots in Education and Research: A Critical Examination of Ethical Implications and
Solutions, Sustainability 15 (2023).

[5] R. Sajja, C. E. Ramirez, Z. Li, B. Z. Demiray, Y. Sermet, I. Demir, Integrating Generative Al in
Hackathons: Opportunities, Challenges, and Educational Implications, Big Data and Cognitive
Computing 8 (2024).

[6] A.Adadi, M. Berrada, Peeking Inside the Black-Box: A Survey on Explainable Artificial Intelligence
(XAI), IEEE Access 6 (2018) 52138—52160.

[7] T. H. Trinh, Y. Wu, Q. V. Le, H. He, T. Luong, Solving olympiad geometry without human
demonstrations, Nature 625 (2024) 476—-482.

[8] M. Garnelo, M. Shanahan, Reconciling deep learning with symbolic artificial intelligence: repre-
senting objects and relations, Current Opinion in Behavioral Sciences 29 (2019) 17-23.

[9] S. Min, J. Boyd-Graber, C. Alberti, D. Chen, E. Choi, M. Collins, K. Guu, H. Hajishirzi, K. Lee,
J. Palomaki, C. Raffel, A. Roberts, T. Kwiatkowski, P. Lewis, Y. Wu, H. Kiittler, L. Liu, P. Minervini,
P. Stenetorp, S. Riedel, S. Yang, M. Seo, G. Izacard, F. Petroni, L. Hosseini, N. D. Cao, E. Grave,
I. Yamada, S. Shimaoka, M. Suzuki, S. Miyawaki, S. Sato, R. Takahashi, J. Suzuki, M. Fajcik,
M. Docekal, K. Ondrej, P. Smrz, H. Cheng, Y. Shen, X. Liu, P. He, W. Chen, J. Gao, B. Oguz, X. Chen,
V. Karpukhin, S. Peshterliev, D. Okhonko, M. Schlichtkrull, S. Gupta, Y. Mehdad, W.-t. Yih, NeurIPS
2020 EfficientQA Competition: Systems, Analyses and Lessons Learned, in: Proceedings of the
NeurIPS 2020 Competition and Demonstration Track, volume 133, 2021, pp. 86—-111.

[10] P. Batorski, J. Brinkmann, P. Swoboda, NSA: Neuro-symbolic ARC Challenge, 2025.

[11] L. de Moura, N. Bjgrner, Z3: An Efficient SMT Solver, in: C. R. Ramakrishnan, J. Rehof (Eds.),
Tools and Algorithms for the Construction and Analysis of Systems, 2008, pp. 337-340.

[12] J. Wei, X. Wang, D. Schuurmans, M. Bosma, b. ichter, F. Xia, E. Chi, Q. V. Le, D. Zhou, Chain-
of-Thought Prompting Elicits Reasoning in Large Language Models, in: Advances in Neural
Information Processing Systems 35 (NeurIPS 2022), volume 35, 2022, pp. 24824-24837.

[13] A.Q.Jiang, A. Sablayrolles, A. Roux, A. Mensch, B. Savary, C. Bamford, D. S. Chaplot, D. d. L. Casas,
E. B. Hanna, F. Bressand, et al., Mixtral of Experts, 2024.



	1 Introduction
	2 Positioning Within the Landscape of AI Competitions
	3 The XAI Challenge 2025
	3.1 Motivation and Objectives
	3.2 Structure and Timeline
	3.3 Dataset
	3.4 Rules and Constraints
	3.5 Evaluation Protocol 
	3.6 Participant Overview
	3.7 Results and Analysis

	4 Selected Approaches
	5 Conclusion

