CEUR-WS.org/Vol-4152/short79.pdf

CEUR
E Workshop
Proceedings

published 2026-01-16

A Secure Al-enabled Platform to Support the Automated
Alzheimer’s Disease Diagnosis

Claudio A. Ardagna®?, Veronica Buttaro®', Michelangelo Ceci®*?, Marco Luzzaral,
Antonio Pellicani®**", Gianvito Pio?® and Antongiacomo Polimeno!

'Dept. of Computer Science, University of Milan, Via Celoria 18 , Milan, 20133, Italy

Dept. of Computer Science, University of Bari, Via Orabona 4, Bari, 70125, Italy

3Data Science Laboratory, National Interuniversity Consortium for Informatics (CINI), Via Volturno 58, Roma, 00185, Italy
‘Department of Knowledge Technologies, JozZef Stefan Institute, Jamova 39, Ljubljana, 1000, Slovenia

Abstract

This paper presents the BA-PHERD platform, a secure Al-enabled platform for automated Alzheimer’s disease
diagnosis using microRNA expression data. The BA-PHERD platform employs a cloud-edge architecture with
secure data ingestion, governance-compliant storage, and role-based access control to ensure privacy protection.
From a machine learning viewpoint, the platform also introduces a novel patient embedding method that captures
regulatory relationships between miRNAs through a correlation network, integrating expression patterns with
RNABERT sequence features and miRNA expression values. Unlike traditional approaches treating miRNAs
independently, our method constructs a correlation network and applies a GraphSAGE-based approach to generate
comprehensive patient representations. Experimental validation on a dataset comprising 1,256 subjects (300
controls, 115 MCI, and 841 AD patients) demonstrates significant improvements, achieving F1-score of 0.66 and
an accuracy value of 0.76, over competitor methods.
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1. Introduction

Machine Learning (ML) techniques have been increasingly applied to analyze biological data, and, in
particular, microRNA (miRNA) expression values. These small non-coding RNA molecules regulate
post-transcriptional gene expression [1] and have emerged as potential disease biomarkers due to
their stability in biological fluids and distinctive expression patterns in conditions such as Alzheimer’s
disease [2], Parkinson’s disease [3], and various cancers [4, 5]. The advancement of high-throughput
sequencing technologies [6] has significantly accelerated miRNA discovery, with findings systematically
documented in public repositories, such as miRBase [7]. This huge amount of data enabled researchers
to employ ML algorithms to identify complex expression patterns for disease diagnosis, and to generate
more accurate biological hypotheses that can be validated through in-vitro experiments [8, 9].
Despite these advances, applying computational approaches to miRNA data raises significant chal-
lenges: i) the limited availability of high-quality data often results in small sample sizes, leading to
overfitting issues and poor generalization capabilities; ii) most datasets exhibit the curse of dimension-
ality”, since they collect expression values of numerous miRNAs (features) compared with relatively
few patients (instances), that introduces the need of feature extraction/reduction techniques [10]; iii)
traditional ML approaches [11, 12] frequently treat miRNA expression levels as independent vari-
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ables, overlooking complex biological interrelationships that could potentially enhance both predictive
accuracy and biological interpretability of the resulting models.

Beyond methodological aspects, the development of systems to effectively gather and manage
miRNA expression data introduces additional challenges, mostly related to data governance. Indeed,
ensuring both data quality and patient privacy protection requires frameworks that comply with specific
regulations, while maintaining the integrity of the collected data. The sensitive nature of patient-derived
miRNA data requires stringent data protection protocols, particularly when integrated with other clinical
information for disease profiling. These governance considerations become increasingly important as
miRNA-based diagnostic approaches move toward clinical implementation.

To address these challenges, the project PRIN 2022 - BA-PHERD (Big Data Analytics Pipeline for
the Identification of Heterogeneous Extracellular non-coding RNAs as Disease Biomarkers) proposes a
comprehensive pipeline that enables healthcare practitioners to securely collect, manage, and analyze
patient miRNA data while providing automated diagnostic insights to support clinical decision-making.

The BA-PHERD pipeline provides end-to-end functionality, from secure data collection and compli-
ant data storage, to advanced analytical capabilities. The BA-PHERD pipeline includes an Al-based
diagnosis module based on a novel patient embedding method that creates patient representations by
modeling their miRNA expression profiles as a correlation network, leveraging the underlying biolog-
ical relationships between these molecules. This network-based approach captures both individual
miRNA expression patterns and inter-miRNA interactions to characterize each patient within a unified
representation. The proposed embedding approach integrates data-driven statistical measures with
structural information derived from the pre-trained model RNABERT [13], providing a comprehensive
characterization of patient-specific miRNA activities in disease contexts. The constructed patient
representations can be subsequently adopted for any downstream tasks, including disease diagnosis
and biomarker discovery.

We evaluate the proposed approach for diagnosis purposes, using clinical miRNA expression datasets
from the GEO repository, with a particular focus on Alzheimer’s disease (AD). This neurodegenerative
disease exhibits distinct diagnostic challenges for physicians, including the fact that initial symptoms
are often mistakenly attributed to normal cognitive aging, and the limitations of existing diagnostic
procedures, that are invasive, costly, and labor-intensive [14]. The considered dataset includes subjects
with Alzheimer’s disease (AD), Mild Cognitive Impairment (MCI), and healthy controls (CN). Particular
attention is given to the MCI category, as it represents a critical transitional phase that could provide
key insights into early detection and intervention [15].

The remainder of the paper is organized as follows: Section 2 describes the BA-PHERD platform;
Section 3 presents the experimental setup and discusses the results; Section 4 draws some conclusions
and highlight possible future work.

2. The BA-PHERD platform

In this section, we introduce the BA-PHERD platform. In particular, we first provide a brief overview of
the technological architecture. Subsequently, we describe our Al-based diagnosis module, including the
novel patient embedding strategy.

2.1. Architecture Overview

In the context under consideration, it is important to note that clinicians and researchers may operate
at different paces: clinicians mostly focus on immediate patient care, while researchers work on an
extended timeline, requiring longer periods for data analysis and model development. In addition,
healthcare facilities often lack the computational infrastructure necessary for complex miRNA analysis,
requiring data to be processed in external data centers or specialized facilities. This scenario creates
a critical need for secure data transfer and processing that supports strict privacy requirements, as
sensitive patient information possibly need to cross organizational boundaries.
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Figure 1: High level architecture overview of the BA-PHERD platform.

To address these challenges, we propose a digital platform that enables secure data sharing between
clinical sites and research teams. The platform employs a flexible anonymization approach to safeguard
patient privacy throughout the entire pipeline and data life cycle. Initially, clinical sites anonymize
patients’ data, for instance, by replacing patient identifiers with persistent unique codes, ensuring that
sensitive information remains under the control of the healthcare provider. Subsequently, each access
to patients’ data is mediated by access control mechanisms that enforce anonymization policies based
on user roles and permissions. For instance, when a researcher requests access to sensitive data, the
system applies additional anonymization measures tailored to the researcher’s access rights.

Figure 1 shows a high-level overview of the platform architecture, illustrating the division of respon-
sibilities between the edge and cloud components. The proposed solution is structured around five
essential components, designed to address specific challenges of analyzing miRNA expression data:

i) Ingestion component. It enables the ingestion of miRNA expression data from clinical sources.

ii) Secure queue. It serves as the communication backbone, ensuring reliable transfer of data and
intermediate processing results while maintaining workflow coordination. Its event-driven
architecture allows the edge and cloud components to independently scale and evolve.

iii) Data Warehouse. It provides governance-compliant management of raw and processed data,
supporting storage and structured queries for data retrieval and analysis.

iv) Access control system. It regulates data access through preconfigured roles and permissions, using
a dual approach: resource-based access control (RBAC) that leverages database table structures,
and attribute-based access control (ABAC) that uses metadata tags to enforce detailed access
policies.

v) Al-based diagnosis module. It analyzes miRNA expression profiles exploiting our novel patient
embedding strategy for diagnosis purposes (see Section 2.2 for a detailed description).

The diagram in Figure 1 emphasizes the interaction flow among the five core components of the system.
It highlights how these components collaborate to support machine learning tasks, from secure data
ingestion at the edge to scalable processing and controlled access in the cloud environment.

The platform is designed to accommodate distinct user roles, each with specific responsibilities and
permissions. In a representative real-world usage scenario, specialist doctors and researchers interact
within the platform as follows.

Specialist doctors are responsible for uploading patients’ data to the platform, that will ingested
and stored in the Data Warehouse. During this process, they specify the intended scope of the data,
either for training or predictive purposes. The former builds or updates a model using newly acquired
data, while the latter generates diagnostic predictions based on the latest version of the model. Data



accessed from these tasks are filtered and modified by data protection policies, enforced through the
Access Control system. The Data Warehouse automatically applies anonymization strategies, based on
the roles/groups of the user who initiated the task. Two main mechanisms are employed: row-level
filtering, which ensures that users view only records associated with their own group, and column-Ilevel
masking, which anonymizes specific fields depending on the user’s role. For example, the Access Control
system masks personally identifiable information (PII) columns when accessed by a researcher, whereas
it grants full data access to a specialist doctor.

The results of both types of task are accessible through the platform for a predefined duration,
ensuring timely availability while adhering to data retention policies.

The proposed approach is based on containerized software architecture, making it compatible with
complex orchestration systems such as Kubernetes, which enables scalable computational power to
handle intensive machine learning workloads. This integrated platform bridges the gap between clinical
data collection and research analysis, while ensuring appropriate privacy safeguards and supporting
the distinct workflows of both clinical and research environments.

2.2. Al-based diagnosis module

After acquiring and managing the patient data, the BA-PHERD pipeline proceeds to perform automatic
disease diagnosis exploiting a novel patient embedding approach that leverages miRNA correlation
networks and machine learning techniques.

The first step involves the construction of a correlation network that captures the regulatory relation-
ships among miRNAs. This network representation serves as the foundation for deriving meaningful
embeddings that reflect both individual miRNA expression patterns and their functional associations.
More specifically, given a dataset of p patients and n miRNAs represented as a matrix X € RP", we
compute a correlation matrix C € R where each element Cj; represents the Pearson correlation
coeflicient between miRNAs i and j. We then assess the statistical significance of each correlation using
the Pearson correlation test, transforming C into an adjacency matrix B where only statistically signifi-
cant correlations (p-value < 0.05) are retained. The resulting adjacency matrix B defines our miRNA
correlation network G = (V, E), where each vertex represents a miRNA and edges represent significant
correlations between pairs of miRNAs. Furthermore, to enrich each node with biological features,
we utilize RNABERT [13], a pre-trained transformer model designed for RNA sequence embedding.
Specifically, for each miRNA i € V, we adopt RNABERT to generate a feature vector f; that captures
complex nucleotide patterns and contextual information within the miRNA sequence.

Focusing on the obtained correlation network, it is worth noting that we can find negatively correlated
miRNA pairs. These negative correlations are biologically meaningful, and may provide biological
insights into miRNA regulatory mechanisms. To better handle these correlations, we implement a
dedicated transformation phase. Specifically, we define a new matrix A starting from B and adding, for
each pair (i, j) with significant negative correlation A;; < 0, complementary nodes i and j with feature
vectors located, in the embedding space, specularly with respect to the center, namely:

flf =1-fi
. (1)
f] =1- fj
We then establish two new positive connections in the adjacency matrix A, specifically:
A;;= 1By @)
A7 . = |Bi,j

Lj

Notably, this transformation preserves negative relationships while maintaining a coherent network
structure that can be processed by downstream graph-based algorithms.

After creating the miRNA correlation network, a key step is to obtain a suitable patient representa-
tion that can be used for automated diagnosis. For this purpose, we start by generating informative
embeddings for each miRNA in the correlation network, employing a variant of GraphSAGE [16], an



inductive learning algorithm for node embeddings. Specifically, since we lack node-level labels for
miRNAs, we adopt a self-supervised training approach that aims to predict the existing links in the
network, formulating the objective function as:

L= loglo®l-h)~ Y. log(1—o(hL k) 3)

(WV)EDyos (UV)EDyeq

where &, is the set of nodes that are connected by edges in E or co-occur within a fixed-length
random walk, P, is a set of randomly sampled disconnected nodes, 1, and h,, are the embeddings for
nodes u and v, respectively, and ¢ is the sigmoid function.

GraphSAGE generates node embeddings through iterative neighborhood aggregation, where each
node’s representation is updated by combining information from its local neighborhood structure. For
each node v € V, the k-th layer update is computed as:

hgk) _ O'(W(k) ] AGG(k) ({hgk—l)} U {h,gk_l)w I ./V(V)})) (4)

where W®) is the learnable weight matrix at layer k, o is an activation function, and ./#'(v) denotes the
neighborhood of node v. To effectively capture the varying importance of correlations in our miRNA
network, we implement a weighted mean aggregator that accounts for correlation strengths rather than
treating all neighbors equally:

(k=1) (k=1)

+ Zue./V(v) Ayy - hu
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(5)

where A, represents the correlation strength between miRNAs vand u, ensuring that strongly correlated
miRNAs contribute more significantly to the embedding update.

Starting with RNABERT features as initial node representations (hﬁo) = f,), we apply two GraphSAGE
layers to progressively capture both direct neighborhood correlations and extended two-hop miRNA
relationships within the correlation network. Then, after completing the self-supervised training
process, we systematically discard the complementary nodes i and j that were introduced to handle
negative correlations, while their learned representations have already influenced the embeddings of
the original miRNA nodes through the neighborhood aggregation process. This approach ensures
that the biological insights from negative correlations are preserved in the final embeddings without
artificially expanding the feature space. This process results in an embedding matrix H € R™4, where
each row h; represents the learned embedding for miRNA i, and d is the embedding dimension that
captures both sequence-based features and network topology information.

Finally, to generate patient-level embeddings that effectively capture individual disease signatures,
we first normalize each row of the original expression matrix X to account for varying sequencing
depths and total RNA content across patients:

- Xij
Xi= ———
] n
D=1 Xik
This row-wise normalization ensures that each patient’s expression profile sums to unity, effectively
controlling for technical variations in total expression magnitude. Subsequently, we project each patient

into the learned miRNA embedding space through a weighted linear combination that leverages both
the patient’s expression profile and the network-informed miRNA representations:

(6)

P=X-H (7)

where each element P;; represents the contribution of miRNA embedding dimension j to patient i’s
representation, weighted by the patient’s normalized expression levels.

The resulting patient embedding matrix P € RP*4 contains representations for all p patients, effec-
tively integrating three key sources of information: individual patient expression patterns, miRNA



sequence characteristics from RNABERT, and topological relationships captured from the correlation net-
work structure. Furthermore, to enhance diagnostic accuracy and create a more comprehensive patient
representation, we integrate these embeddings with relevant clinical variables, including demographic
data (age and sex) and Apolipoprotein E (ApoE) genotype values. ApoE variants are well-established
biomarkers associated with various neurodegenerative and cardiovascular conditions, making them
particularly valuable for complete disease characterization.

For the final diagnostic classification, we employ a Random Forest (RF) classifier [17] with the
Gini impurity heuristic. RF can naturally handle the integration of heterogeneous features (through
concatenation) from both embeddings and clinical variables, without requiring extensive preprocessing
or feature scaling steps. This ensemble method is particularly well-suited, as it can effectively capture
complex interactions between miRNA-derived features and clinical indicators.

In summary, this module integrated in the BA-PHERD platform offers several key advantages over
conventional miRNA-based diagnostic approaches: (1) it captures the complex regulatory relationships
between miRNAs, rather than treating them as independent features, (2) it integrates expression-based
and sequence-derived information, providing a more comprehensive representation of miRNA biology,
and (3) it seamlessly combines molecular data with clinical variables for enhanced diagnostic accuracy.

3. Experiments

To evaluate the performance of the BA-PHERD platform, we conducted some experiments using a dataset
obtained from NCBI Gene Expression Omnibus (GEO)', a comprehensive repository for microarray and
RNA-seq experimental data. The considered dataset contains different AD studies, namely GSE120584,
GSE150693 and GSE242923. The selected studies include 300 control subjects (CN), 115 patients with
mild cognitive impairment (MCI), and 841 patients with Alzheimer’s disease (AD). Inconsistencies in
microRNA identifiers across different studies needed some standardization steps to guarantee a reliable
analysis: i) eliminating duplicate identifiers within each dataset to ensure unique representation of
microRNAs, ii) removing whitespaces to maintain consistent formatting, iii) truncating version-specific
suffixes (e.g., v2 from miR-123a-3p-v2); and iv) mapping all identifiers to the latest version as reported
in the miRBase repository.

We evaluated model performance through a stratified 5-fold cross-validation on the integrated dataset,
ensuring that each fold preserves the original class proportions of the diagnostic categories (CN, MCI,
AD). For each fold, we collected precision, recall, and F1-score measures for individual classes, then
computed the overall performance by averaging these metrics across folds and classes. To ensure equal
importance is given to all diagnostic categories regardless of class size, we report macro-averaged
results, which prevents the larger AD group from dominating the performance evaluation.

For the automated disease diagnosis, we employed a Random Forest classifier with 100 trees using
the scikit-learn 1.4 implementation. To comprehensively evaluate the contribution of each view of the
patients, we performed experiments across multiple combinations of the following features sets:

« the original miRNA expression data (henceforth denoted as expr);

+ patient metadata, that contain clinical information, namely, age, sex and ApoE (henceforth
denoted as meta);

+ the features identified through the embedding approach we propose in Section 2.2 - Equation (7)
(henceforth denoted as emb).

All the considered combinations include the emb view, since it is the core of the proposed method. On
the other hand, we compare the obtained results with those achieved by the approach proposed in [18],
which is mainly based on the adoption of a Random Forest (RF) or a Multi-Layer Perceptron (MLP) on
the concatenation of the views expr and meta.

'https://www.ncbi.nlm.nih.gov/geo/



Method Views Prec. Rec. F1 Acc.

expr 078 045 048 0.72

RF [18] meta 0.57 047 047 0.72
expr-meta 0.78 0.44 047 0.71

expr 0.62 050 045 0.55

MLP [18] meta 0.46 040 038 0.70
expr-meta 0.69 049 048 0.64

emb 0.76 057 061 0.73

) expr-emb 0.82 058 0.63 0.75
BA-PHERD meta-emb 0.80 0.60 0.65 0.75

expr-meta-emb  0.84 059 0.64 0.76

Table 1
Results obtained by the BA-PHERD platform and its competitors, through stratified 5-fold cross validation.

3.1. Results and Discussion

In Table 1 we show the obtained results. From the table, we can observe that the competitor based on
RF achieves a maximum F1-score of 0.48 with the expr view, while the MLP variant obtains the same
result when also including the meta view. Both variants suffer from low average recall (0.44-0.47 for RF,
0.40-0.50 for MLP). On the other hand, the embedding strategy implemented in the BA-PHERD platform
demonstrates substantial improvements over the competitors. Indeed, the emb view alone significantly
outperforms all the results obtained by competitors, achieving an F1-score of 0.61 and an accuracy value
of 0.73, representing a 27% improvement in F1-score compared to the best result obtained by competitors
(0.48). The combination of multiple views in our approach leads to even superior performance, with
the expr-meta-emb combination achieving the highest F1-score of 0.64 and an accuracy value of 0.76,
outperforming the F1-score of the best competitor by 33%. The meta-emb combination (F1: 0.65, Acc:
0.75) demonstrates that clinical metadata and the features extracted through our embedding strategy
can already reach the best performances in the diagnosis of AD. This is somehow expected because
expression data are exploited in the computation of the final feature set (see Equation (7)). It is important
to note that, with these two combinations (meta-emb and expr-meta-emb), performances in terms of
precision and recall appear balanced (precision in the interval 0.80-0.84, recall in the interval 0.59-0.60),
suggesting potential clinical utility.

The consistent improvement observed when including the emb view highlights the value of the pro-
posed patient embedding approach that captures expression patterns through i) the original miRNA ex-
pression values, ii) regulatory relationships via correlation-based miRNA interactions, and iii) sequence-
level information through the features extracted by RNABERT.

4. Conclusions

In this paper, we presented the BA-PHERD platform, a result of the PRIN 2022 project BA-PHERD -
Big Data Analytics Pipeline for the Identification of Heterogeneous Extracellular non-coding RNAs as
Disease Biomarkers. This framework addresses the critical need for accurate and early diagnosis of
Alzheimer’s disease through the integration of biological data, a novel patient embedding approach and
machine learning techniques.

Our approach uniquely captures expression patterns through the original miRNA expression data, reg-
ulatory relationships via correlation-based miRNA interactions, and sequence-level information through
the RNABERT method. The proposed methodology achieves significant performance improvements,
demonstrating a substantial enhancement in F1-score compared to existing methods.

The complete framework encompasses end-to-end capabilities for gathering, managing, processing,
and analyzing both miRNA expression and clinical data, while maintaining strict compliance with



patient privacy criteria and regulatory requirements. We are currently working on validating the
whole platform, involving actual clinicians, researchers and new patients, whose data are collected and
processed directly in the hospitals. For future work, we plan to incorporate explainability approaches
to identify candidate miRNA biomarkers that contribute most significantly to Alzheimer’s disease
diagnosis, that will be subsequently validated through in-lab experiments.
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