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Abstract
Effective diabetes management is critical for reducing the risk of complications such as cardiovascular disease,
nephropathy, and neuropathy while enhancing patient quality of life. Contemporary technologies like continuous
glucose monitoring (CGM) and flash glucose monitoring (FGM) have improved clinical outcomes through real-
time data and personalized care. However, these devices’ high cost and invasive nature limit their accessibility
and acceptance, particularly among uninsured or underinsured populations. This study proposes a non-invasive,
cost-effective alternative by examining the relationship between heart rate and blood glucose levels in individuals
with type 1 diabetes (T1DM). Machine learning techniques were employed to analyze patient data, including
regression analysis, k-nearest neighbors (KNN), neural networks, ensemble bagged trees, and statistical methods
such as ANOVA and Tukey’s test. Results indicated that 96.3% of the cohort exhibited a statistically significant
correlation between heart rate and blood glucose levels, with pronounced variations observed at extreme glycemic
values. However, the heart rate was less responsive to moderate glucose fluctuations. These findings suggest that
heart rate monitoring may serve as a viable non-invasive proxy for detecting significant glycemic events, offering
a promising alternative to traditional blood glucose monitoring systems and potentially mitigating the economic
and physical burdens associated with current technologies.
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1. Introduction

Diabetes Mellitus (DM) is a chronic condition1 marked by high blood glucose and abnormal protein
and fat metabolism2. DM arises from impaired glucose digestion or insufficient insulin production.
There are three primary forms: Type 1 DM (T1DM), where autoimmune destruction of pancreatic beta
cells halts insulin production [1]; Type 2 DM (T2DM), where insulin resistance progressively reduces
insulin levels; and Type 3 (gestational diabetes), occurring during pregnancy and increasing maternal
and offspring health risks [2]. Symptoms like polyuria, polydipsia, and weight loss form the classical
triad [3], with polyuria (excessive urination) [4] and polydipsia (excessive thirst) [5] being key signs.
More serious is the DKA triad (ketoacidosis), defined by high blood glucose, elevated ketoacids, and
metabolic acidosis [6], occurring in 10–80% of diabetic emergencies [7].

Poor DM management risks severe complications. Hyperglycemia or hypoglycemia can cause organ
damage: overfeeding or inadequate insulin can induce DKA or severe hyperglycemia [8], while some
treatments may cause hypoglycemia [9]. Hyperglycemia (HYG) causes tissue damage via mitochondrial
superoxide overproduction, harming peripheral nerves, kidneys, and retina [10]. Hypoglycemia (HYP),
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although less frequent, can provoke dizziness, seizures, cardiac arrhythmias, and even death [11].
Maintaining glucose control (GC) is crucial to prevent complications like retinopathy, nephropathy, and
neuropathy [12].

Several glycemic control methods are available. Hemoglobin A1C Testing (H1T) measures average
glucose over 90 days but lacks real-time feedback [14]. Urine testing offers semiquantitative glucose
estimates from single voidings or 24-hour collections [15]. Self-monitoring of blood glucose (SMBG)
and Continuous Glucose Monitoring Systems (CGMs) enable real-time tracking and data sharing
[16]. SMBG, involving frequent finger pricks, correlates with improved HbA1c levels [17, 18]. CGMs,
using electromagnetic or ISF-based sensing, provide continuous glucose data, offering superior daily
monitoring compared to SMBG [19, 20]. However, BGC can feel invasive [21]. Frequent testing disrupts
routines and may cause anxiety [22]. SMBG may cause pain, while CGMs can lead to skin irritation
and privacy concerns [23, 24].

This work investigates noninvasive alternatives, relying on the hypothesis (WH1): “Changes in
ECG (Electrocardiogram) patterns are a proxy for glucose level or danger.” Preliminary results [25, 26]
support WH1. Higher glucose levels correlate with reduced heart rate variability (HRV) [26], and
distinct HR distributions appear before hypoglycemia episodes [25]. Together, these findings suggest
that heartbeat patterns reflect blood glucose trends.

Given the noninvasive nature of ECG wearables, heartbeat-based blood glucose monitoring (BCM)
could improve patient comfort over traditional BGC. This study aims to answer two questions: “Is it
possible to detect and discriminate between hypoglycemia or hyperglycemia events using ECG time
series? – RQ1”; “Is it possible to detect modification in a heartbeat and estimate HR trends using glucose
monitoring data time-series? – RQ2”.

2. Related works

This section discusses studies on the relationship between glycemic values and heart rate patterns. In
[29], the authors examined the relationship between glycemic states (hypoglycemia, hyperglycemia, and
normoglycemia) and ECG-derived features. They found a significant increase in heart rate when blood
glucose drops below 60 mg/dL (hypoglycemia), with a p-value < 0.0001, but no significant correlation
with hyperglycemia. In [30], a study of 148 type 1 diabetes patients revealed that higher HbA1c levels
(reflecting higher blood glucose) were associated with increased heart rate, supported by a p-value <
0.004. The study in [31] used data from 31 patients to predict hypoglycemia with machine learning
models using smartwatch and CGM data. The model correlated increased heart rate, reduced heart rate
variability, and heightened electrodermal activity with hypoglycemia, achieving an ROC AUC of 0.76 ±
0.07. In [32], data from 128 type 2 diabetes patients showed that higher age and blood glucose were
positively correlated. Increased parasympathetic activity also correlated with higher blood glucose
levels, suggesting that changes in blood glucose may proportionally affect heart rate.

3. Background

For experimentation, we used various pre-processing and statistical techniques.
A sliding window approach processed sequential data, with a moving mean calculated in each window

to smooth fluctuations, reveal trends, and improve stability. ANOVA assessed differences between
group means by partitioning variance. A high F-statistic and p-value<0.05 indicate significant group
differences. In order to identify specific groups, Tukey’s HSD test was applied post-ANOVA, comparing
all possible group pairs and controlling error rates. A p-value<0.05 denotes statistical significance. For
predictive modeling, using distance metrics like Euclidean or Manhattan, K-Nearest Neighbors (KNN)
estimated new instances based on the majority label or mean of K closest neighbors. Weighted K-Nearest
Neighbors (WKNN) improved accuracy by giving closer neighbors greater weight via inverse distance.
Finally, Ensemble-Bagging Trees (EBT) reduced variance by aggregating decision tree outputs trained



on bootstrapped data subsets. While increasing computational cost, EBT yielded more generalized
models. Hyperparameter tuning for EBT followed the same process as KNN.

4. Methods

This section outlines the methodologies employed to address the research questions of this study. We
utilized a combination of statistical tests and experimental procedures (machine learning) to investigate
the relationship between heart rate and glycemia in patients with T1DM. We are aware that we
empirically estimated the parameters for sliding window size, time intervals for moving averages,
and thresholds for min/max. While these selections yielded strong initial results, future work will
focus on systematically optimizing these parameters to enhance performance further. In addition,
a comprehensive sensitivity analysis will be undertaken to evaluate the robustness of the proposed
approach against variations in parameter values and to ensure stability and generalizability across
different operating conditions.

4.1. Dataset and Preprocessing

This contribution uses a pre-processed version of the HUPA-UCM Diabetes Dataset [27] extended by
computing new features from glucose levels and heart rates. The original dataset comprises blood
glucose levels, steps, calories, heart rate, and sleep data of 24 T1DM patients, sampled every five minutes,
collected by the authors through CGM and Fitbit Ionic smartwatch, and contains up to 144085 rows.
HUPA-UCM Diabetes Dataset contains only patients with type 1 diabetes mellitus, and no additional
diseases are directly specified. It is important to consider patients 23 and 24, who have more glycemic
readings than the remaining patients.

We extended HUPA-UCM by computing moving metrics, statistical features, and labels, as described
below. We categorized blood glucose levels (BGL) to compare heart rate (HR) across glycemic groups.
Each patient’s data was labeled based on BGL: very low (<60 mg/dL), low (60–89 mg/dL), good (90–179
mg/dL), high (180–249 mg/dL), and very high (>250 mg/dL). Moving averages of HR and BGL were
computed using sliding windows to smooth fluctuations and capture trends. Maximum and minimum
BGL values were calculated within each 10-observation window. Additional features included moving
averages (11-observation centered and 5-observation shifted) and frequency counts for values above or
below 1.15% and 1.25% of the max and min values in each window.

We calculated the heart mean (HM) as the average HR over six consecutive observations. The Heart
Trend (HT) was then computed as the deviation of the HR sum from the previous HM, with negative HT
indicating an increasing HR trend (labeled ”U”) and non-negative HT indicating a stable or decreasing
trend (labeled ”D”).

4.2. Heart rate trend prediction

We split the entire EDATA by Patient to predict Patient-specific heart rate trends, generating 24 sub-
dataset (PSD).

Also, for each PSD, we generated two subsets of PSD, holding out 10% of the entire dataset for
the test set, to evaluate the model’s performance on unseen data. During model training, a 20-fold
cross-validation was also requested. We completed the training process individually for each patient to
identify the most accurate models.

For each PSD, we used the features reported in Table 1 as prediction features and heart rate trend as
the prediction class.

4.3. Statistical Analysis

The ANOVA was used to test whether there was a statistically significant difference in heart rate as a
function of different glycaemic levels in patients with DM: it was used to test for significant differences



Feature Name Description
Glucose Blood glucose levels of the patient.
Calories The caloric intake associated with the patient.
Glucose Rate Moving Average (column_glucose_rate_moving) A moving average centered on 11 observations for blood glucose levels (BGL).
Heart Rate Moving Average (heart_rate_moving_avg) A moving average centered on 11 observations for heart rate (HR).
Glucose Rate Left Shifted Average (glucose_rate_left_avg) A left-shifted moving average calculated over five observations for blood glucose levels (BGL).
Heart Rate Left Shifted Average (heart_rate_left_avg) A left-shifted moving average calculated over five observations for heart rate (HR).
Max in Window (max_in_window) The maximum blood glucose level within a sliding window.
Frequency Above Threshold 1.15 (count_above_max_1.15) The frequency of glucose values above 1.15% of the maximum value within a sliding window.
Frequency Above Threshold 1.25 (count_above_max_1.25) The frequency of glucose values above 1.25% of the maximum value within a sliding window.
Min in Window (min_in_window) The minimum blood glucose level within a sliding window.
Frequency Below Threshold 1.15 (count_below_min_1.15) The frequency of glucose values below 1.15% of the minimum value within a sliding window.
Frequency Below Threshold 1.25 (count_below_min_1.25) The frequency of glucose values below 1.25% of the minimum value within a sliding window.

Table 1
Features used for prediction in MCLT.

Table 2
Performance metrics of the model during validation

ID Best Model Accuracy (%) TP TN FP FN Precision (%) Recall (Sensitivity) (%) Specificity (%) F1-Score (%) FPR (%) FNR (%) AUC (%)
1 EBT 67.8% 1419 1073 536 649 66.69% 62.31% 72.58% 64.43% 27.42% 37.69% 74.46%
2 EBT 66.7% 1143 758 418 529 73.22% 68.36% 64.46% 70.71% 35.54% 31.64% 72.79%
3 EBT 70.9% 1487 912 427 558 77.69% 72.71% 68.11% 75.12% 31.89% 27.29% 77.28%
4 EBT 79.0% 1938 318 176 424 81.37% 91.67% 82.05% 64.37% 86.60% 35.63% 81.37%
5 EBT 81.3% 2327 493 225 422 91.18% 84.65% 68.66% 87.79% 31.34% 15.35% 84.93%
6 EBT 73.8% 834 681 237 300 77.87% 73.54% 74.18% 75.65% 25.82% 26.46% 81.25%
7 EBT 68.0% 1353 1000 486 623 73.57% 68.47% 67.92% 70.93% 32.71% 31.53% 74.77%
8 EBT 69.2% 1408 961 475 577 74.77% 70.93% 66.92% 72.80% 33.08% 29.07% 76.94%
9 WKNN 73.8% 397 1573 440 259 47.43% 60.52% 78.14% 53.18% 21.86% 39.48% 75.10%
10 EBT 68.3% 1306 1049 495 596 72.52% 68.66% 67.94% 70.54% 32.06% 31.34% 74.90%
11 WKNN 65.5% 1285 965 560 627 69.65% 67.21% 63.28% 68.41% 36.72% 32.79% 72.17%
12 WKNN 64.5% 1144 1051 598 610 65.67% 65.22% 63.74% 65.45% 36.26% 34.78% 70.87%
13 EBT 68.4% 1350 1005 477 610 73.89% 68.88% 67.81% 71.30% 32.19% 31.12% 74.99%
14 EBT 70.0% 1312 948 430 540 75.32% 70.84% 68.80% 73.01% 31.20% 29.16% 76.51%
15 EBT 66.8% 1410 925 516 645 73.21% 68.61% 64.19% 70.84% 35.81% 31.39% 72.79%
16 WKNN 67.1% 988 1247 560 535 63.82% 64.87% 69.01% 64.34% 30.99% 35.13% 73.81
17 EBT 68.3% 1052 700 361 453 74.45% 69.90% 65.98% 72.10% 34.02% 30.10% 74.84%
18 EBT 67.5% 787 629 300 383 72.40% 67.26% 67.71% 69.74% 32.29% 32.74% 73.94%
19 EBT 66.8% 1349 1064 545 653 71.22% 67.38% 66.13% 69.25% 33.87% 32.62% 73.28%
20 EBT 66.7% 1338 1008 525 647 71.82% 67.41% 65.75% 69.54% 34.25% 32.59% 73.43%
21 EBT 72.1% 1040 836 318 408 76.58 % 71.82% 72.44% 74.13% 27.56% 28.18% 78.62%
22 EBT 71.8% 1672 910 449 565 78.83% 74.74 % 66.96% 76.73% 33.04 % 25.26% 78.21%
23 EBT 64.3% 13559 9914 5796 7262 70.05% 65.12% 63.11% 67.50% 36.89% 34.88% 70.03%
24 EBT 60.4% 7684 6387 4162 5069 64.87% 60.25% 60.55% 62.47% 39.45% 39.75% 64.91%

Table 3
Performance metrics of the model during testing

ID Best Model Accuracy (%) TP TN FP FN Precision (%) Recall (Sensitivity) (%) Specificity (%) F1-Score (%) FPR (%) FNR (%) AUC (%)
1 EBT 69.6% 160 124 57 67 73.73% 70.48% 68.51% 72.07% 31.49% 29.52% 75.87%
2 EBT 68.7% 130 87 44 55 74.71% 70.27% 66.41% 72.42% 33.59% 29.73% 74.31%
3 EBT 72.0% 169 101 43 62 79.72% 73.16% 70.14% 76.30% 29.86% 26.84% 75.00%
4 EBT 72.2% 219 32 15 51 93.59% 81.11% 68.09% 86.90% 31.91% 18.89% 80.13%
5 EBT 82.3% 265 52 18 50 93.64% 84.13% 74.29% 88.63% 25.71% 15.87% 90.33%
6 EBT 74.4% 90 79 28 30 76.27% 75.00% 73.83% 75.63% 26.17% 25.00% 83.27%
7 EBT 65.9% 144 109 60 71 70.59% 66.98% 64.50% 68.74% 35.50% 33.02% 70.50%
8 EBT 75.8% 174 114 36 56 82.86% 75.65% 76.00% 79.09% 24.00% 24.35% 81.41%
9 WKNN 76.7% 49 178 44 25 52.69% 66.22% 80.18% 58.68% 19.82% 33.78% 76.23%
10 EBT 64.9% 144 104 56 78 72.00% 64.86% 65.00% 68.25% 35.00% 35.14% 73.24%
11 WKNN 67.7% 140 118 65 58 68.29% 70.71% 64.48% 69.48% 35.52% 29.29% 71.59%
12 WKNN 60.6% 122 107 72 77 62.89% 61.31% 59.78% 62.09% 40.22% 38.69% 68.63%
13 EBT 66.8% 145 110 58 69 71.43% 67.76% 65.48% 69.54% 34.52% 32.24% 72.69%
14 EBT 72.3% 152 107 41 58 78.76% 72.38% 72.30% 75.43% 27.70% 27.62% 78.33%
15 EBT 73.5% 166 119 48 55 77.57% 75.11% 71.26% 76.32% 28.74% 24.89% 78.94%
16 WKNN 65.7% 109 134 63 64 63.37% 63.01% 68.02% 63.19% 31.98% 36.99% 72.69%
17 EBT 67.4% 121 71 36 57 77.07% 67.98% 66.36% 72.24% 33.64% 32.02% 75.13%
18 EBT 66.1% 86 68 34 45 71.67% 65.65% 66.67% 68.53% 33.33% 34.45% 75.32%
19 EBT 69.8% 161 119 49 72 76.67% 69.10% 70.83% 72.69% 29.17% 30.90% 75.61%
20 EBT 71.8% 158 122 49 61 76.33% 72.15% 71.35% 74.18% 28.65% 27.85% 77.64%
21 EBT 75.4% 117 101 34 37 77.48% 75.97% 74.81% 76.72% 25.19% 24.03% 82.93%
22 EBT 72.7% 191 99 45 64 80.39% 74.90% 68.75% 77.80% 31.25% 25.10% 78.08%
23 EBT 64.7% 1515 1110 636 798 70.43% 65.50% 63.57% 67.88% 36.43% 34.50% 70.64%
24 EBT 60.7% 859 712 457 561 65.27% 60.49% 60.91% 62.79% 39.09% 39.51% 65.39%

between the heart rate averages in the various blood glucose groups defined above. In our case, p-value
< 0.05 is considered the threshold for determining significance, suggesting that the variability in heart
rate between glycemic groups is not due to chance.

In this T1DM scenario, if the p-value is less than 0.05, there is a significant difference in heart rate
between at least two of the glycemic groups. Therefore, the blood glucose level could significantly
impact heart rate, warranting further analysis. Also, a high F value indicates that the group variation is



much greater than the internal variation, suggesting significant differences.
The ANOVA Test does not allow for a precise understanding of the effect of blood glucose categories

(glucose_label) on heart rate, so Tukey’s posthoc test was applied. Tukey’s test was applied to all
patients who showed a p-value < 0.05 after the ANOVA Test to identify which blood glucose groups
show significant differences in heart rate.

5. Results and Discussion

Tables 2 and 3 summarize each patient’s validation and testing accuracies. Ensemble Bagged Trees
emerged as the top performer in 20 out of 24 patients, while Weighted K-Nearest Neighbors led in the
remaining four. Across patients, validation accuracy ranged from 60.4 % to 81.3 %, with a similar spread
in test performance. This variability underscores that, although ECG-based predictors can capture
glycemic trends, their reliability is patient-dependent.

Table 4
Merged Tukey and ANOVA Results for Each Patient

PID F value Pr(>F) SC (%) MeD MaD MiD
1 51.01 <2e-16 80% -1.23 11.12 (VLVH) -7.59 (VHH)
2 14.96 4.04e-12 70% -0.98 8.28 (VLVH) -6.56 (VHH)
3 84.81 <2e-16 90% 0.89 13.21 (VLG) -10.38 (VHG)
4 49.62 <2e-16 75% -0.45 7.00 (VLVH) -5.88 (VHL)
5 14.41 1.11e-11 85% 1.11 12.74 (VLVH) -7.06 (VHG)
6 12.66 3.43e-10 80% -1.67 6.19 (VLVH) -7.66 (VHL)
7 30.49 <2e-16 75% 0.55 8.40 (VHL) -6.69 (VLH)
8 10.76 4.85e-07 50% -0.34 3.18 (VHG) -1.41 (GH)
9 15.57 1.29e-12 70% 0.23 8.27 (VLVH) -6.12 (VLH)
10 52.34 <2e-16 90% 2.02 13.19 (VLVH) -7.59 (LH)
11 55.83 <2e-16 80% 1.12 7.63 (VHL) -7.80 (VHG)
12 12.19 7.55e-10 65% 0.78 6.45 (VLG) -4.48 (GL)
13 73.36 <2e-16 75% 1.56 10.28 (VLG) -9.65 (VLL)
14 20.89 <2e-16 70% 0.89 5.93 (VHL) -5.74 (VHG)
15 73.02 <2e-16 85% 2.34 7.84 (VHL) -7.84 (VHG)
16 45.41 <2e-16 60% -1.34 11.07 (VLG) -8.69 (VLL)
17 24.26 <2e-16 90% 0.87 11.12 (VHG) -7.62 (VLL)
18 21.88 <2e-16 65% -0.45 5.73 (VLG) -6.55 (VHH)
19 24.29 <2e-16 80% -1.12 6.65 (VHL) -4.79 (VLL)
20 21.19 <2e-16 70% 0.43 5.99 (VHG) -3.32 (LH)
21 26.22 <2e-16 75% -0.56 7.98 (VHH) -6.76 (LG)
22 2.04 0.106 – – – –
23 403.2 <2e-16 85% 1.22 14.60 (VHL) -13.89 (VHVL)
24 48.08 <2e-16 85% 1.22 14.60 (VHL) -13.89 (VHVL)

ANOVA outcomes (Table 4) reveal that 23 of 24 patients (95.8 %) exhibited significant differences
between heart rate distributions across glycemic categories (𝑝 < 0.05). Patient 22 was the lone exception
(𝑝 ≥ 0.05; 𝐹 = 1.74), indicating no clear heart rate stratification by glycemic state and suggesting that,
in some individuals, ECG features may lack sensitivity to glucose shifts. The high 𝐹-values observed in
the other patients confirm pronounced effect sizes, particularly when contrasting extreme glycemic
bands.

Post hoc Tukey comparisons (Table 4) further clarify these effects. The largest mean differences
occurred between “Very Low” and “Very High” glycemic states (MaD), with confidence intervals
excluding zero—evidence of robust heart rate modulation at glycemic extremes. In contrast, adjacent
labels such as “Good” versus “High” rarely reached statistical significance, implying that mid-range
glucose changes induce subtler cardiovascular responses that may fall below the detection threshold of
consumer-grade wearables.



Our findings align with prior work showing that ECG-derived metrics can flag hypo- and hyper-
glycemia, but add nuance by quantifying patient-level variability. Narasimhan et al. (2023) reported
population-average heart rate increases of 5–7 bpm during hypoglycemic episodes, yet noted inter-
subject standard deviations exceeding 3 bpm—which mirrors our observed 20 % spread in model accuracy.
Likewise, González et al. (2021) highlighted the need for personalized calibration to reach clinical-grade
sensitivity, a recommendation reinforced by our patient-specific performance gaps.

Clinically, these results suggest two pathways forward. First, the consistent accuracy of Ensemble
Bagged Trees in most patients indicates that tree-based ensembles can robustly capture non-linear
ECG–glycemia relationships, making them strong candidates for embedded algorithms in wearable
platforms. Second, the pronounced failure in certain individuals (e.g., Patient 22) and the modest
performance on mid-range glucose shifts underscore the necessity of integrating complementary
signals—such as photoplethysmography, activity level, or stress markers—to boost sensitivity and
reduce false negatives in critical glycemic ranges.

However, consumer wearables—used here for heart rate capture—can suffer from motion artifacts
and variable signal fidelity, particularly during exercise or when there is poor sensor contact. Our
moving-average smoothing mitigated some noise, but real-world deployment will demand adaptive
filtering and on-device quality checks. Furthermore, the five-minute sampling interval may miss rapid
glycemic excursions; integrating continuous or higher-frequency monitoring could unveil transient
ECG patterns predictive of imminent hypo- or hyperglycemia.

Lastly, beyond model optimization, patient engagement and data privacy are pivotal. Personalized
model training requires substantial amounts of labeled data, which can be burdensome for users.
Federated learning approaches could reconcile the need for individualized calibration with privacy
preservation, as has been trialed successfully in diabetes glucose prediction (Li et al., 2024). Future
studies should therefore not only refine algorithmic approaches but also develop scalable pipelines for
secure data collection, model updating, and clinical validation in diverse T1DM cohorts.

6. Conclusion

With the advent of modern FGM and CGM sensors, glycemic control in T1DM patients has become
faster and more accurate. However, these technologies can be perceived as invasive and suffer from
limited user acceptance. This study investigated whether non-invasive ECG tracking via consumer
smart devices could serve as a viable alternative by exploring the relationship between blood glucose
levels (BGL) and heart rate (HR). Two research questions were formulated (Section 1: Introduction) to
examine both the existence of a statistical link and the feasibility of predictive modeling.

To address RQ1, we applied ANOVA and Tukey’s post-hoc tests to data from 24 T1DM patients.
ANOVA revealed that 23 of 24 patients exhibited significant HR differences across glycemic categories
(p<0.05), with the most pronounced effects observed when comparing extreme glycemic states. Tukey’s
tests localized these differences, confirming that HR variability tracks BGL fluctuations in a statistically
robust manner. Collectively, these findings provide strong evidence of a positive correlation between
BGL and HR in T1DM.

RQ2 was explored through supervised machine learning models (KNN, WKNN, and Ensemble Bagged
Trees), which exploit features such as glycemic rate of change, threshold counts, and caloric intake.
The Heart Trend (HT) parameter successfully classified HR shifts as rising (’U’) or stable/decreasing
(’D’), demonstrating that HR dynamics inferred from BGL trends can be predicted with moderate to
high accuracy. Ensemble Bagged Trees achieved the best performance in most patients, highlighting
the utility of non-linear ensemble methods for capturing complex ECG–glycemia relationships.

Our results underscore the potential of integrating ECG-based monitoring into routine diabetes
management. Together, statistical analysis, machine learning and wearable devices could provide
continuous, non-invasive alerts for impending hypo- or hyperglycemic events, reducing finger-prick
frequency and improving patient comfort.



7. Limitations and Future Work

Although the examination of the relationship between heart rate patterns and glycemic states yields
promising results for non-invasive glucose monitoring in patients with T1DM, several limitations should
be considered when interpreting the findings and applying the methodology in clinical practice.

First, our cohort consisted of only 24 T1DM patients, without non-diabetic controls, which limited
external validity. Also, this study focuses exclusively on patients with T1DM and cannot be generalized
T2DM, which accounts for approximately 90–95% of all diabetes cases and involves different pathophys-
iological mechanisms that may affect the heart rate–glucose relationship. Moreover, the lack of control
subjects without diabetes limits the ability to isolate diabetes-specific effects on cardiac dynamics.

Second, the five‐minute sampling interval and reliance on consumer‐grade wearables introduce
temporal gaps and measurement noise that may obscure rapid glycemic excursions or subtle heart
rate variability. Third, model parameters—such as sliding window size, moving‐average intervals, and
classification thresholds—were tuned empirically; the absence of a formal sensitivity analysis raises
concerns about robustness across different populations and operating conditions. Fourth, potential
confounders (sleep quality, BMI, physical activity, emotional stress, medication) were recorded but not
integrated into the predictive framework, limiting insight into multifactorial influences on HR–BGL
dynamics.

To address these issues, future studies should:

• Use bigger cohorts (including healthy controls) and balance glycemic reading distributions.
• Increase sampling frequency or fuse multi‐sensor data (e.g., continuous ECG, PPG, accelerometry)
to capture transient events.

• Perform systematic parameter optimization (e.g., grid search, genetic algorithms[33], wavelet
transforms) and comprehensive sensitivity analyses.

• Develop personalized and privacy‐preserving modeling strategies—such as patient‐specific mod-
els, transfer learning (Digital Twins), or federated learning—to accommodate inter‐individual
variability.

• Incorporate additional physiological and behavioral variables (sleep metrics, BMI[34], stress
markers, medication timing) and apply explainability methods (LIME, SHAP) to ensure clinical
interpretability.

• Develop a multimodal system that can analyze extra data, like electrodermal activity (EDA).

These efforts will be crucial in translating ECG-based approaches into reliable, non-invasive tools for
diabetes management.

Despite these limitations, this research aims to establish a preliminary foundation for non-invasive
ECG-based glucose monitoring approaches.
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