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Abstract
Here, we present two of our works focusing on QuantumMachine Learning. We discuss both about the capabilities
of trained quantum optical chips, as well as about methods to train them efficiently. We also consider how the
training process will be affected by limitations and imperfections in a possible physical implementation, and
show how the performance of the trained circuit is impacted by these issues, as well as how the training process
can partially overcome these additional challenges. While these works focus on the quantum optical platform,
many of the aspects that we discussed in these works also apply to other quantum computing technologies.
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1. Introduction

Quantum devices and quantum algorithms promise substantial advantages in many computational
tasks, with even a theoretical exponential speedup when compared to classical computers on specific
tasks [1, 2, 3]. In recent years, significant advancements have been made in this field, with the first
experiments [4, 5] tackling the quantum advantage regime. At the same time, machine learning, and
more specifically deep learning [6], has been finding use in many different sectors. Thus, it is no surprise
that the meeting point of these 2 fields, Quantum Machine Learning, has become a topic of interest.

Here, we present some of our work pertaining to Quantum Machine Learning (QML) over the last
couple of years. The main focus will be on 2 of our projects: the first one is about training a Quantum
Optical Neural Network (QONN) to perform deterministic optimal quantum cloning [7] (as opposed to
the previously known optical quantum cloners, which are probabilistic [8, 9]), while the second project
addresses the training of a continuously coupled optical chip using machine learning techniques to
perform a desired unitary transformation.

Both these works relate to training quantum optical chips for specific tasks, with the first one being
more focused on the capabilities of a trained chip, while the second one being more focused on how a
quantum optical chip can be efficiently trained. It is also worth noting that, while these works focus on
the quantum optical platform, many of the aspects that we discussed in these works also apply to other
quantum computing technologies.

2. Training a deterministic universal optical quantum cloner via
QONNs

The QONN is the quantum optical extension of neural networks, and is composed of multiple layers,
each composed of a linear unitary transformation and a set of nonlinear single-site transformations.
Input states in the network are photon states employed to encode qubits. More specifically, the dual-rail
encoding is used to associate each pair of modes to a qubit, where states |0⟩ and |1⟩ correspond to a
single photon in the first and second mode respectively. The QONN can be considered the quantum
optical version of the multi-layer perceptron (MLP), and was first introduced in a work by Steinbrecher
et al. [10].
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Figure 1: Left, complete circuit including the input state preparation stage and the output state measurement
one on each pair of modes corresponding to a logical qubit. Right, fidelity of the clones as a function of the
fabrication error Δ𝑇𝑗 in the directional couplers. The purple bars represent the range between the minimum and
maximum fidelity for each QONN, while the orange line represents the theoretical maximum average fidelity.

In this work our objective was to train a simulated QONN to obtain a deterministic optimal quantum
cloner for the optical platform. We managed to successfully do so, and obtained an optical quantum
cloner whose performance is very close to that of an optimal universal quantum cloner. The optical
quantum cloner obtained was deterministic, which is very important, as current optical implementations
are inherently probabilistic [8, 9]. We also verified numerically the robustness of this approach with
respect to experimental imperfections, mainly relating to the effects of a restricted range of transmittivity
for the tunable beam-splitters on the training, which is relevant for potential future implementations.
In Figure 1 we show the structure of the circuit we used to train the QONN, as well as the results of the
fidelity of the trained QONNs in the case of simulated experimental imperfections of various magnitude.

This work thus showed the capabilities and flexibility of QONNs, which might prove important for
designing even more complex optical circuits, as well as highlighting some potential uses for QONNs.

3. Training a continuously coupled optical chip via machine learning
techniques

Continuously coupled optical chips [11, 12] offer several potential advantages over other options, such
as shorter circuits, and thus lower losses, due to their more compact nature, especially when considering
3D designs [11]. However, one issue that this type of quantum optical chip currently presents is that,
given a specific tunable continuously coupled optical chip, it is not yet known how to obtain the
parameters that achieve a specific unitary transformation, while in the case of quantum optical chips
with discrete points of interaction such decompositions are known [13, 14].

Thus, in this work we make use of machine learning techniques to train the parameters of a con-
tinuously coupled chip to perform a desired unitary transformation. We simulate different sizes and
structures of continuously coupled optical chips, and check how these techniques work in these various
scenarios. We consider both flat and 3D designs, as well as a varying number of optical modes and the
effect on training of having limited control on the quantum optical chip. We also evaluate the errors
caused by several potential experimental limitations, such as those produced by a limited number of
samples, and those caused by imperfections in the parametrization of the chip. We also tackle the issue
of training the quantum optical chip with constraints similar as those that would be present in an actual
physical experiment, such as the fact that backpropagation cannot be used [15], and thus alternative
strategies need to be employed to obtain an estimation of the gradient. On top of that, we implement
various optimizations during the training process that would reduce the number of measurements
needed to physically implement this training process, thus leading to faster training times. We also train
a classical machine learning model, to work in tandem with the quantum machine learning process, in
cases in which only training the quantum chip directly does not provide the desired results.

This work thus showed the challenges that arise when attempting to train a quantum chip in a



realistic scenario, as well as giving some insights on methods and optimizations that can be used to
improve and accelerate the training process.
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