
Testing Noise Correlations by an AI-Assisted Two-Qubit
Quantum Sensor
Dario Fasone1,2,†, Shreyasi Mukherjee1,†, Mauro Paternostro3, Elisabetta Paladino1,4,
Luigi Giannelli1,4 and Giuseppe A. Falci1,4

1Dipartimento di Fisica e Astronomia “Ettore Majorana”, Università di Catania, Via S. Sofia 64, 95123 Catania, Italy
2Dottorato di Ricerca in “Quantum Technologies”, Università di Napoli Federico II, Napoli, Italy
3Università degli Studi di Palermo, Dipartimento di Fisica e Chimica “Emilio Segré”, via Archirafi 36, I-90123 Palermo, Italy
4Istituto Nazionale di Fisica Nucleare, Sezione di Catania, 95123, Catania, Italy

Abstract
We introduce and validate a machine learning-assisted protocol to classify time and space correlations of classical
noise acting on a quantum system, using two interacting qubits as probe. We consider different classes of noise,
according to their Markovianity and spatial correlations. Leveraging the sensitivity of a coherent population
transfer protocol under three distinct driving conditions, the various noises are discriminated by only measuring
the final transfer efficiencies. This approach reaches around 90% accuracy with a minimal experimental overhead.
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The interaction with environmental degrees of freedom makes quantum hardware prone to decoher-
ence [1] which would erase all the advantages of quantum coherence. While single qubits are nowadays
well optimized protected from decoherence [2], substantial work has to be done in upscaled quantum
architectures where, in particular, effects of time-correlated [3, 4] and space-correlated noise were
analyzed [5, 3, 6] and detected [7, 8, 9, 10, 11]. Space correlations of non-Markovian noise directly affect
two-qubit gates built on the Ising-𝑥𝑥 interaction [12] and quantum error correction [13]. Therefore,
new methods for noise-diagnostics and strategies to mitigate its effects are paramount for advances in
quantum technologies.noise may emerge

In this work, we propose a design of a quantum sensor for testing the presence of time- and space-
correlated noise in solid-state quantum hardware, avoiding direct measurement of the noise cross-
spectra. The principal system consists of two ultrastrongly coupled qubits, their coupling strength 𝑔
being comparable to the individual Bohr energies ∼ 𝜖. It may be a quantum sensor detecting material
properties of a substrate or a subsystem of a larger quantum processing unit. We start with the
Hamiltonian (ℏ = 1)
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with eigenvectors {|0⟩, |1⟩, |2⟩, |3⟩} and eigenvalues {−𝜀, 𝜀, 𝑔2 ,−
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system is subject to local longitudinal noise, which induces fluctuations of the individual qubit splittings,
modeled by two classical stochastic processes [14] 𝛿𝑖(𝑡)
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We consider three non-Markovian and two Markovian noise classes:

• Non-Markovian: we consider the limit of quasistatic noise where 𝛿𝑖 are random variables picked
from a Gaussian distribution. We identify three distinct classes: correlated, anticorrelated, and
uncorrelated local variables 𝛿𝑖.

• Markovian noise: zero-mean, delta-correlated stochastic processes. We consider the correlated
and anticorrelated local processes.
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Figure 1: (a) Accuracy for the training (solid blue line) and validation (solid orange line) sets versus the number
of epochs. (b) Confusion matrix of the model for classifying the noise types. Each row represents the true noise
class, while each column corresponds to the predicted class. All five noise classes can be classified with accuracy
up to ∼ 92%.

The system is operated to produce coherent population transfer through a STIRAP-like protocol [15,
16, 17]. Looking for a suitable design, we first consider the driven system in the absence of noise.
Favorable conditions are found by operating in the ultra-strong coupling regime 𝑔 ∼ 𝜖, and by driving
symmetrically the two qubits.

𝐻𝑐(𝑡) = 𝑊 (𝑡) (𝜎𝑥
1 + 𝜎𝑥

2 ) , (3)

This symmetry enforces a selection rule that excludes |3⟩ from the dynamics, which is then limited to a
three-level system. Control is operated by a two-tone field, 𝑊 (𝑡) = Ω20(𝑡) cos(𝜔20𝑡)+Ω12(𝑡) cos(𝜔12𝑡),
where Ω𝑖𝑗(𝑡) are slowly-varying pulse envelopes and 𝜔𝑖𝑗 match the energy splittings between eigenval-
ues 𝑖− 𝑗. In a doubly rotating frame and after using the rotating wave approximation (RWA) for 𝐻𝑐 we
obtain the Hamiltonian

𝐻̃ =
1√
2
{Ω𝑝(𝑡)|0⟩⟨2|+Ω𝑠(𝑡)|1⟩⟨2|+ h.c.}. (4)

which implements a ladder configuration. Then coherent population transfer by STIRAP can be obtained
using a suitable time dependence of pulse envelopes Ω𝑝/𝑠(𝑡).

Asymmetries and imperfections, such as those caused by noise, modify this picture, since coherence
is suppressed and selection rules are relaxed. The resulting 4-level dynamics, while deteriorating the
efficiency of population transfer, has the key advantage of yielding an increased discrimination between
different classes of noise correlations. To utilise the most accessible measurement protocol, we employ,
as the figure of merit for the Neural Network, the average population of the state |𝑒𝑒⟩, that is
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where 𝜉(𝑟) = ⟨𝑒𝑒|𝜌(𝑟)f |𝑒𝑒⟩ and 𝜌
(𝑟)
f is the density matrix of the system at the final time 𝑡f for the

𝑟-th noise realization. Such quantity is computed accordingly for each of the noise classes, under 3
driving conditions, (𝑖)Ωmax

𝑝 = Ωmax
𝑠 , (𝑖𝑖)Ωmax

𝑝 = 2Ωmax
𝑠 , (𝑖𝑖𝑖)Ωmax

𝑝 = Ωmax
𝑠 /2. We use synthetic data

generated by numerical simulations. For the correlated classes the correlation parameter is randomly
drawn, while for the uncorrelated classes, the Gaussian width of the noise distributions is varied. For
each class, we obtained 500 data points, each consisting of a 3-dimensional vector containing the average
efficiency for the fixed noise parameters under the 3 driving conditions.

The dataset is used to classify noise affecting the qubits by Supervised Learning. The training [18] is
performed by minimizing the sparse categorical cross-entropy, which measures the distance between
the predicted label and the true label of the noise. The model reaches an accuracy of around 92%
(Fig. 1a). The accuracy for the test datasets is summarised in Fig. 1b.



The model achieves an accuracy of 99.4% in distinguishing between non-Markovian and Markovian
noise. Within the non-Markovian noise class, it correctly classifies correlations with an accuracy of
98.67%, whereas within the Markovian class, the classification accuracy is 82%. This contrasts with the
three-level system case analyzed in [19], where the model was unable to discriminate between the two
distinct Markovian noise types.

We finally observe that current experiments on time-[7] and space- [8, 9, 6, 10, 11] correlations
characterize noise via the measurement of power spectra and cross spectra which is a highly demanding
procedure, very hard to scale to larger quantum structures. Instead, the procedure we propose aims at
detecting global properties of noise, as the existence of correlations, irrespective on their detailed form.
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