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Abstract

We investigate a quantum reservoir computing (QRC) architecture based on a fully connected transverse-field
Ising model for time series forecasting. Preliminary results on univariate financial data demonstrate that QRC-
enhanced models achieve improved predictive accuracy compared to a classical linear baseline. We outline
planned extensions to multivariable time series forecasting using multi-qubit and compact encoding strategies,
and propose future evaluations on both synthetic and real-world datasets.
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1. Introduction

Reservoir computing (RC) is a neural-network paradigm in which a fixed, high-dimensional dynamical
system, the reservoir, projects time-series inputs into a nonlinear feature space, while learning is
restricted to a linear readout layer [1]. Quantum reservoir computing (QRC) extends this idea by
harnessing the intrinsic complexity of quantum dynamics to generate expressive feature representations
without requiring internal parameter optimization [2].

While QRC has demonstrated strong performance in classification and univariate forecasting tasks [3],
its potential for multivariable time series forecasting, where multiple interdependent signals evolve
jointly, remains largely unexplored. Yet, such multivariable settings are typical of real-world use cases
in finance, climate modeling, energy systems, and biomedicine.

In this work, we present preliminary results using QRC-enhanced models for univariate time series
forecasting, demonstrating improved predictive accuracy over a classical linear baseline. These early
findings motivate the development of QRC architectures for multivariable scenarios, where quantum
reservoirs may provide efficient and scalable mechanisms for modeling inter-channel dependencies.
We outline our planned extensions, including alternative encoding schemes, architectural variations,
and evaluations on both synthetic and real-world multivariate datasets.

2. Fully-Connected Quantum Ising Model

We implement a quantum reservoir (QR) based on a fully-connected transverse-field Ising model,
following the protocol in [3]. The system is simulated using the open-source package QuTiP [4].

In contrast to [3], where the reservoir was initialized in a maximally mixed state, we initialize our
reservoir in the pure product state pg = [+)% (+|", with |+) = %(|0) + |1)). This choice provides
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a clean and symmetric initial condition, placing the system in a coherent superposition across the
computational basis while retaining a product structure, and in our experiments, it led to more stable
dynamics and improved forecasting performance.

At each forecasting step, a normalized scalar input z; is sequentially encoded into the quantum
reservoir by preparing the first qubit (i = 0) in the pure state |¢)(z;)) = /1 — 27]0) + /27 [1), via
amplitude encoding. The rest of the system remains unchanged. This updated local state is then tensored
with the reduced density matrix of the remaining system, p — [1(z;)) (¢¥(x;)| ® Tro[p], effectively
overwriting only the first qubit at each step.

The system subsequently evolves under the time-independent Hamiltonian

H = Z JZ'JX,L'X]‘ + Z hiZ;, (1)

1<j %

where X; and Z; are Pauli operators acting on qubit 7. The coefficients J; ; represent inter-qubit
couplings, and h; correspond to local transverse magnetic fields. In our implementation, the local
fields are sampled from a uniform distribution ¢/[0.1, 1.0}, while all inter-qubit couplings are fixed to
Jij = 0.5 fori # j, with J;; = 0.

This homogeneous configuration simplifies the reservoir architecture while preserving the fully
connected topology required for rich dynamics. Although [3] explores both random and engineered
coupling patterns such as Ji(f;) o (i+47)¥, we found that the uniform setup offers favorable performance
and reproducibility for forecasting tasks. The random sampling of local fields introduces sufficient
variability into the quantum dynamics, helping to break symmetries and enrich the internal state
evolution without requiring disorder in the coupling matrix.

The quantum state evolves over V' equally spaced time intervals (virtual nodes), during which the
observables (Z;(tx)) = Tr[Z;p(tx)] are extracted across all qubits. The resulting set of measurements
forms a high-dimensional feature vector for each input. After processing a full input window, the linear
readout weights are trained using the Moore—Penrose pseudoinverse solution to minimize the mean
square error between predictions and targets.

3. Preliminary Results

We evaluated the performance of the quantum reservoir model on the S&P 500 aggregated daily closing
values time series [5], using a setup inspired by the one considered in [3]. Specifically, we employed a
reservoir of N = 6 qubits with V' = 2 virtual nodes and a Hamiltonian evolution time step of At = 0.3.

To construct the input for the linear readout, we aggregated the reservoir features corresponding to
the last four input injections, (z;—3, z;—2, Z;—1, ;). The resulting high-dimensional feature vector was

then used to predict the next 25 values of the time series, [z;41,. .., Z;t25]. We evaluated the model for
each time index i € [1100, 1199], using all data up to x; for training and the subsequent 25 points for
testing.

The mean absolute error (MAE) was computed over the full prediction window for each value of i,
and the final score was obtained by averaging the MAE across all 100 indices. This averaging mitigates
the sensitivity of the MAE to the particular choice of i, which can significantly affect forecasting
performance in financial time series [3].

To assess the added value of the quantum reservoir, we compared the full QRC pipeline to a baseline
model where a linear readout was trained directly on the raw input values, without reservoir trans-
formation. Each experiment was repeated across 200 independent quantum reservoir initializations
to ensure statistical robustness. The average MAE results, shown in Fig. 1, demonstrate a consistent
improvement of the QRC-enhanced model over the baseline, particularly at longer prediction horizons.
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Figure 1: Average mean absolute error (MAE) over 200 randomly initialized quantum reservoirs compared to a
baseline linear readout model.

4. Conclusions and Future Work

We presented a quantum reservoir computing (QRC) model based on a fully-connected transverse-field
Ising Hamiltonian for univariate time series forecasting. Our implementation introduced a simplified
and coherent reservoir design, with fixed inter-qubit couplings and product-state initialization in |+>®N,
which led to improved predictive accuracy and stability across runs. Experiments on financial time
series data show that QRC-enhanced models consistently outperform a baseline linear predictor trained
directly on raw inputs. As shown in Fig. 1, the quantum reservoir significantly reduces the mean
absolute error (MAE) for longer forecast steps, while maintaining comparable performance to the
baseline in the short term. The results also demonstrate robustness across 200 randomly initialized
reservoirs, as reflected by the confidence region.

Looking ahead, we aim to extend this framework to multivariable time series, which better reflect
the complexity of real-world forecasting tasks. Possible architectural adaptations include multi-qubit
input encoding, where each input channel is mapped to a separate qubit, and more compact encodings
that embed multiple classical features into a single qubit, for example, via independent parameterized
rotations. In addition, we will investigate how varying the reservoir size, particularly the number of
qubits, influences predictive accuracy and dynamical richness.

We also plan to explore alternative physical realizations of the quantum reservoir, such as quantum
systems based on neutral atoms [6], which may offer improved scalability, coherence, and compatibility
with near-term quantum hardware. Beyond architectural development, we will evaluate our models
on a broader set of synthetic and real-world multivariate datasets to better understand generalization
behavior.

Finally, a promising future direction is to refine the prediction objective itself. Inspired by reward
discounting in reinforcement learning, one could investigate loss functions that assign greater weight
to near-term predictions within the forecasting horizon. This could potentially bias the model toward
more stable or actionable outputs, depending on application needs.
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