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Abstract
This paper explores the performance of quantum-classical hybrid networks in image classification tasks, focusing
on the integration of quantum circuits as alternative feature extractors to traditional convolutional layers.
Specifically, it investigates the use of quanvolutional layers, variational quantum circuits that leverage quantum
entanglement and quantum gates, in comparison to classical layers. The study examines various quantum
pooling techniques, including conditional entanglement gates, and their impact on classification accuracy across
datasets with varying complexity. By experimenting with different pooling strategies, both parametrized and
non-parametrized, this work assesses their influence on network performance and feature representation. Results
indicate that quanvolutional layers in a hybrid network consistently outperform classical convolutional layers
in terms of classification accuracy, particularly when applied to datasets with prominent features. Additionally,
the findings suggest that quantum entanglement techniques, rather than rotation parameters, play a more
significant role in enhancing performance. This paper concludes that quantum-classical hybrid networks offer a
promising approach for feature extraction, although the optimal configuration of pooling methods depends on
the characteristics of the data. Future research could further explore the interplay between quantum circuits and
different pooling strategies for more effective feature representation.
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1. Introduction

In recent years, quantum computing has emerged as a promising avenue for enhancing machine learning
models [1, 2], particularly in the domain of image classification. Classical convolutional neural networks
(CNNs) [3] have achieved remarkable success in visual tasks by leveraging convolutional layers to
detect hierarchical patterns in images. However, these classical networks often struggle with scalability
and expressiveness of data, especially when dealing with complex data or large feature spaces [4]. As
quantum computing continues to evolve, there has been growing interest in integrating quantum circuits
in classical machine learning frameworks to create hybrid models with better feature expression [5].
Quantum-classical hybrid networks are a promising approach that utilize quantum circuits for feature
extraction, while relying on classical layers for tasks like decision-making and classification [6].

One such quantum-classical architecture is the quanvolutional network, where quantum circuits,
particularly those employing quantum entanglement and quantum gates, serve as an alternative to
traditional convolutional layers [5]. These quantum circuits can potentially provide enhanced feature
representation by exploiting quantum properties such as superposition and entanglement to generate
distributions that are hard to produce for classical computers [6, 7]. However, the precise configuration

AIQxQIA 2025: International Workshop on AI for Quantum and Quantum for AI | co-located with ECAI 2025, Bologna, Italy
*Corresponding author.
$ robin.faier@campus.lmu.de (R. Faier); jeanette.miriam.lorenz@iks.fraunhofer.de (P. Dr. habil. J. M. Lorenz);
hans.ehm@infineon.com (H. Ehm)
� 0000-0001-6530-1873 (P. Dr. habil. J. M. Lorenz)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

published 2026-01-20

mailto:robin.faier@campus.lmu.de
mailto:jeanette.miriam.lorenz@iks.fraunhofer.de
mailto:hans.ehm@infineon.com
https://orcid.org/0000-0001-6530-1873
https://creativecommons.org/licenses/by/4.0/deed.en


of quantum circuits, including the selection of pooling methods, entanglement techniques, and rotation
parameters, remains an open question [8].

This paper explores the performance of quanvolutional layers in quantum-classical hybrid net-
works, comparing them with classical convolutional layers in the context of image classification tasks.
Specifically, we investigate various pooling techniques, including conditional and multi-conditional
entanglement methods such as CNOT, CCNOT, and CCCNOT, and examine how these pooling strategies
impact the networks’ ability to learn and classify features from different datasets. Our focus is on the in-
terplay between quantum entanglement, circuit parametrization, and the overall classification accuracy
across datasets with varying levels of feature complexity. The goal of this study is to provide insights
into the effectiveness of quantum-classical hybrid networks, especially in the context of quanvolutional
layers, and to explore how different pooling methods and training parameters affect the network’s
performance. Additionally, we aim to understand the conditions under which quantum circuits may
provide an advantage over classical methods and identify potential avenues for future research.

2. Background

2.1. Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are a widely used class of deep learning models specifically
designed for image and grid-like data [9, 10]. They address the inefficiency of fully connected networks
for high-dimensional inputs by leveraging local connectivity and weight sharing, thus significantly
reducing the number of parameters [3], which would otherwise increase quadratically for a two-
dimensional input. A typical CNN architecture consists of convolutional layers for feature extraction [3]
and often alternating pooling layers for significant size reduction, followed by one or more fully
connected layers for feature assessment and classification. Non-linear activation functions such as
ReLU [11] are applied after each layer to enhance the model’s capacity to capture complex patterns.

In this work, the convolutional layer serves as a classical baseline for comparison with quanvolutional
layers. Both use a 2 × 2 kernel and reduce the input resolution by a factor of two, enabling a direct
evaluation of their feature extraction capabilities within a hybrid quantum-classical architecture.

2.2. Quanvolution

First proposed by Henderson [5], the quanvolutional layer is the quantum computational equivalent of
the convolutional layer in classical networks. This layer aims to locally convolve data while ensuring
that its parameterization remains translationally invariant [3]. The concept is based on the assumption
that multiple similar patterns within the data combine to form more complex features, which can be
detected locally [10]. By conserving filter parameters, the number of required parameters is reduced, as
the number of parameters is determined by the filter size rather than the dataset size.

The same principle applies to the quanvolutional layer [5], which can be constructed with smaller
filters and, consequently, smaller circuits. For two-dimensional data, such as images, at least four panels
are required, as this is the minimum number of neighboring elements that can be convolved. Each
panel information is embedded on one of four qubits, altered by parameterized gates, and entangled
with the others. The appropriate embedding of data in the quantum layer and parameterization in the
variational quantum circuit are ongoing subjects of research [12, 7], with both empirical [5, 13] and
theoretical [7] approaches available. Given the non-quantum nature of the data used and the lack of a
reliable transformation to a quantum circuit, the rationale for studying purely quantum networks at the
current state is questionable [14].

Therefore, this work focuses on investigating the performance of a quantum-classical hybrid neural
network, specifically exploring the quantum subroutine that replaces the convolutional layer with a
quanvolutional one. The study aims to assess not only the effect of parameterization within the quantum
circuits but also how effectively the classical network can adapt to and exploit the quantum-generated
features. In this sense, the classical network self-optimizes the information flow between the quantum



Serial Parameterization

(a) CNOT_RZ_s &
CNOT_RX_s

(b) CCNOT_RZ_s &
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Figure 1: The subfigures display the constructions of the various pooling methods tested. The first row
shows serially parameterized circuits, the second row shows parallel parameterization (including RX-RX
redundant circuits), and the third row shows non-variational pooling circuits without any trainable
parameters. Each serial and parallel pooling circuit is tested twice: once with 𝑋-rotation gates (RX) and
once with 𝑍-rotation gates (RZ), as indicated in the subfigure labels and circuit names. These circuits
are referred to as single-pooling methods throughout this work, as they use only one type of entangling
gate per circuit. The target qubit (the top wire in all diagrams) collects information from all input qubits
via entanglement and is measured to obtain a reduced output dimension. In addition to the different
parameter gates, the circuits in subfigures (a), (d), and (g) all implement CNOT pooling, while those
in subfigures (b), (e), and (h) use CCNOT pooling, and those in subfigures (c), (f), and (i) implement
CCCNOT pooling. Every parametrized gate has an individual trainable weight.

and classical parts to improve overall classification performance. The primary scientific question is:
Can a classification network benefit from a self-trained quantum subroutine, and are there meaningful
differences in performance for various subroutines?

2.3. Quantum Pooling

Pooling layers are commonly employed in classical machine learning to reduce the spatial dimensions
of large data, such as high-resolution images, while simultaneously improving computational efficiency.
Different pooling techniques impose distinct methods for contracting the input, such as average pooling,
which computes the average of the inputs, and max pooling, which selects the highest input value.

This concept of input condensation is adapted in quantum machine learning, where quantum pooling
techniques, based on variational circuits, are explored [13, 15]. In these circuits, multiple input qubits
are entangled with a designated target qubit such that the final state of the target reflects correlations



among the full register. The target qubit encodes an effective representation of the entire input block
through its entangled state. Thus, when this qubit is measured, the outcome probabilistically represents a
compressed summary of all the qubits’ states, serving as a quantum pooling mechanism. The entire qubit
system spans a higher-dimensional Hilbert space (here 24 = 16 dimensions), but by entangling all qubits
and measuring only a single target qubit, the effective representation is reduced to the 2-dimensional
space of the measured qubit [16]. In this sense, the pooling operation reduces the number of qubits
while preserving relevant information for classification. The goal of reducing spatial dimensions and
enhancing network efficiency by condensing information from multiple inputs into a more informative
output remains consistent [17]. Unlike classical pooling methods such as max or average pooling, which
directly aggregate numerical values, quantum pooling indirectly compresses input information through
entanglement and measurements. Some quantum pooling methods have shown more stable training
processes and improved prediction accuracy compared to unpooled quanvolutional circuits [13]. In this
work, we further investigate simple entanglement strategies and their advantages within the context of
quanvolutional pooling circuits for quantum-classical hybrid networks.

2.4. Related Work

Quantum convolutional architectures have been studied from both empirical and theoretical perspectives.
Cong et al. [18] introduced quantum convolutional neural networks (QCNNs) based on multiscale
entanglement structures, showing strong performance in quantum phase recognition. Pesah et al. [16]
demonstrated that such architectures are not affected by barren plateaus, supporting their practical
trainability.

In more resource-constrained applications, Song et al. [19] proposed a resource-efficient QCNN
variant (RE-QCNN) adapted to classical image datasets like MNIST, while Chinzei et al. [20] introduced
an equivariant split-parallel QCNN (sp-QCNN) that exploits symmetry for enhanced scalability.

Regarding pooling strategies, Monnet et al. [8] and Hur et al. [21] developed modulated pooling
layers combining entanglement and trainable gates. Their work inspired some of the advanced pooling
circuits examined in this study. Schuld et al. [7] analyzed how data encoding and circuit topology jointly
determine the expressive capacity of quantum models, emphasizing the importance of architectural
choices such as embedding schemes and entanglement layout.

Hybrid approaches beyond convolutional architectures have also explored pooling-like ideas for
dimensionality reduction. For instance, QUARTA [22], equivariant QCNNs with embedding-dependent
pooling structures [23], and interaction layer QCNNs using three-qubit gates [24] highlight how
diverse architectural extensions can enhance hybrid quantum models. In contrast, our work provides a
systematic empirical study of pooling strategies themselves, isolating their role within quantum-classical
hybrid networks.

While these studies provide valuable architectural and theoretical insights, our work contributes a
systematic empirical comparison of simple pooling strategies (CNOT, CCNOT, CCCNOT), with and
without parameterization, in a hybrid quantum-classical setting. Furthermore, we examine combinations
of simple pooling methods, such as CNOT+CCNOT or full CNOT+CCNOT+CCCNOT compositions, to
investigate whether increasing the entanglement complexity leads to improved feature extraction. To
our knowledge, such a direct comparison of both entanglement structure and parametrization, across
multiple datasets and pooling configurations, has not been previously reported.

3. Methodology

3.1. Data

Three datasets are used to analyze the performance of the hybrid networks and assess the quanvolutional
capabilities of the circuits for different features. The datasets vary in complexity, the number of features,
and the representational ability of features with respect to the number of classes. To gain deeper insights
into the impact of a quanvolutional pooling layer on feature perception, two binary-class and one



multi-class classification dataset are used. The first dataset is the BreastMNIST [25] (Set1) from the
MedMNIST collection [26], which consists of images of malignant and benign tissues to be classified
by the network. The second dataset, Set2, is a reduced version of the MNIST [27] dataset, where only
the digits five and seven are to be recognized. The third dataset, Set3, is the full MNIST [27] dataset,
containing ten classes of images of handwritten digits from zero to nine. All images are resized to 28x28
pixels for computational efficiency while retaining the most critical features for recognition. The two
binary-class datasets are evaluated with training set sizes of 200 and 400 samples to investigate the
sensitivity of quantum pooling circuits to limited data availability and to analyze performance trends as
the number of training samples increases. This setup reflects practical use cases where (quantum) models
must operate effectively under data-scarce conditions, while also enabling a comparative analysis of
circuit behavior across different data regimes. For the multi-class dataset (Set3), a larger sample size of
10,000 was chosen to ensure sufficient statistical resolution across ten output classes and to balance the
higher variation in circuit configurations with resource constraints during simulation. These datasets
provide a range of feature complexity and numbers of classes, offering an opportunity to investigate
how quanvolutional pooling layers affect both binary and multi-class classification.

3.2. Quantum-Classical Hybrid Network

The quantum-classical hybrid network consists of a quantum circuit, where pixel information is encoded
via angle embedding using 𝑋-rotations, followed by a two-layer classical linear model to evaluate
the circuit measurements. To map the pixel information onto the qubits, all inputs are normalized
to the range [0, 2𝜋] prior to rotation. The hybrid network is built using Pennylane [28] for the
quanvolutional layer and Pytorch [29] for the overall network architecture. Training of the circuit
parameters is performed using the Pennylane parameter-shift rule, which involves evaluating the
continuous expectation value of the circuit measurement. ADAM [30] is employed as the optimizer, and
cross-entropy is used as the loss function for classification. The training for all quanvolutional layers
and the convolutional layer is repeated ten times, each with different randomized initial parameters, to
ensure that all observations are independent of the initial parameter settings.

3.3. Pooling Techniques in Quanvolutional layers

The pooling methods we focus on are based on conditional NOT gates (CNOT) and multi-conditional
NOT gates (CCNOT and CCCNOT/Toffoli), with and without parametrization. Variations in parameters
are introduced using trainable RX- and RZ-gates, applied both in parallel and serially within the circuits.
In parallel configuration, each qubit is individually parametrized before entanglement, while in serial
configuration, the target qubit is parametrized between entanglements. To better understand the effect
of entanglement on pooling, independent of parametrization, a non-variational circuit is also used. In
this non-variational setup, four neighboring pixels are encoded as input on four qubits, which are then
entangled to produce one output value, similar to a convolution layer with a 2×2 filter. These circuits,
which consist of a single type of entanglement gate, are referred to as single-pooling methods and
are illustrated in Figure 1. The three circuits CNOT_RX_p, CCNOT_RX_p, and CCCNOT_RX_p apply
an 𝑅𝑋 embedding directly followed by an 𝑅𝑋 parameterization, potentially introducing redundant
transformations on individual qubits. This redundancy arises because two consecutive 𝑅𝑋 rotations
on the same qubit axis effectively combine into a single rotation with the sum of both angles. In this
configuration, the trainable rotation does not interact with a new degree of freedom but merely acts as
a constant shift relative to the embedded input. Since this shift occurs individually on each qubit, it can
unintentionally modulate the encoded input amplitudes in a non-informative way and thereby reduce
the circuit’s sensitivity to actual input. We refer to these as RX-redundant circuits throughout this work,
as their structure may interfere with the interpretability and informativeness of the encoded features.

More advanced circuits, known as mixed poolings, are constructed by applying multiple types of
entanglement gates sequentially. All mixed pooling circuits are purely entanglement-based, with no
parameterized gates introduced. For comparison, we also adapt the modulated pooling circuits from [8],



Mixed Pooling Circuits

(a) Mix_CNOT_CCCNOT (b) Mix_CCNOT_CCCNOT

(c) Mix_CNOT_CCNOT (d) Mix_all

Modular Pooling Circuits

(e) PoolMod_A (f) PoolMod_B

(g) PoolMod_C

Figure 2: The subfigures illustrate the constructions of various advanced pooling strategies, which we
refer to as multi-pooling. Subfigures (a)–(d) display the mixed pooling circuits Mix_CNOT_CCCNOT,
Mix_CCNOT_CCCNOT, Mix_CNOT_CCNOT, and Mix_all, respectively, each sequentially combining
different single pooling techniques. Subfigures (e)–(g) show modulated pooling circuits adapted from [8],
where a single entanglement module is repeated across qubits. PoolMod_A (e) implements the simplest
module using only one conditional 𝑅𝑍 and 𝑅𝑋 gate and an 𝑋 gate on the second qubit. PoolMod_B
(f) introduces two additional 𝑅𝑌 gates and one CNOT per module, while PoolMod_C (g) adds two
Hadamard gates, a 𝐶𝑍 gate, and more complex parameterization, with two different 𝑅𝑋 gates. Identical
parameter names (e.g., 𝑤1, 𝑤2) are reused across modules to reflect shared weights, as proposed in
the original design [8]. These circuits aim to encode spatially structured transformations with fewer
parameters by repeating entanglement templates.

which are inspired by the work in [21]. These advanced circuits, which we refer to as multi-pooling,
are shown in Figure 2.

3.4. Classical Part of the Hybrid Network

The overall architecture is shown in Figure 3 and remains consistent across all tested networks. Following
the quanvolutional layer, two linear layers are applied sequentially, with a ReLU activation function
applied between them. The output of the second layer is evaluated using the cross-entropy loss function,



Figure 3: The network architecture illustrates the layers responsible for training on the data. Initially, the
28× 28 data arrays are normalized to the range [0, 2𝜋], before being processed by either the convolutional or
quanvolutional layer to extract features. The resulting output, sized 14× 14, is then flattened into a vector of
196 elements, which serves as the input to the first linear layer containing 30 nodes. A Rectified Linear Unit
(ReLU) activation function is applied to the 30 outputs before they are passed through the second linear layer,
which consists of 2 nodes for classification in Set1 and Set2, or 10 nodes for Set3. Finally, the output is evaluated
using the cross-entropy loss function.

depending on the number of classes in the respective dataset. This setup is compared to a standard
convolutional network, where a convolutional layer replaces the quanvolutional layer. For consistency,
the convolutional layer uses a 2×2 filter kernel and includes a bias term, resulting in a total of five
trainable parameters (2× 2 + 1 = 5).

In contrast, the quanvolutional layers differ in parameter count depending on the pooling type of the
circuit:

• Non-variational circuits (Non-Variational Circuits in Figure 1, as well as all Mixed Pooling
Circuits in Figure 2) contain 0 parameters.

• Serially parameterized circuits (Serial Parametrization in Figure 1) include one parameter per
entanglement step, summing up to 3 parameters.

• Parallelly parameterized circuits (Parallel Parametrization in Figure 1) feature one parameter
per qubit after the embedding, totaling 4 parameters.

• Modulated pooling circuits (Modular Pooling Circuits in Figure 2) also have 4 parameters.

Overall, the quanvolutional circuits reduce the number of trainable parameters compared to the
classical convolutional layer. However, since all quantum-classical hybrid models are evaluated using
the default.qubit simulator in PennyLane, the focus of the evaluation is the final classification
accuracy of the networks, rather than computational efficiency.

To maintain consistent spatial reduction, both classical and quantum models apply zero padding and
a stride of two, reducing the image size from 28×28 to 14×14, analogous to merging a 2×2 patch into a
single output value.

3.5. Training Setup

All models were implemented using the PennyLane [28] framework for the quantum circuits and
PyTorch [29] for the classical layers. Training was performed using the Adam optimizer [30] with
a learning rate of 0.001 and a batch size of 16. Each network was trained for 10 epochs using the
cross-entropy loss function. All input images were normalized to the range [0, 2𝜋] and mapped to
rotation angles via angle encoding.

Circuit parameters were initialized using a normal distribution with a mean of zero and a standard
deviation of 1. To ensure that the results are not biased by initial conditions, each experiment was
repeated ten times with different random seeds, which were drawn from a tensor initialized with a



fixed master seed (torch.manual_seed(0)) to ensure reproducibility. The reported validation accuracies
represent the mean and standard deviation across these ten runs.

To assess the robustness of the results with respect to the batch size, we performed an ablation study
using batch sizes of 8, 16, 32, and 64 on a subset of circuits presented in the Appendix section A. The
validation accuracy varied only marginally (typically less than 2 percentage points), and the relative
ranking of circuit performance remained consistent across batch sizes. This indicates that the observed
performance trends are not specific to a particular choice of batch size. A systematic study of the
learning rate was not conducted.

4. Results

This chapter presents a detailed analysis of the experimental results obtained from evaluating the various
quantum pooling circuits across the chosen datasets. The plots shown highlight the training dynamics,
validation performance, and comparative effectiveness of the best, worst, and average pooling strategies
compared to their classical counterpart for better visibility. Error bars represent the corresponding
standard deviations over the 10 epochs, and the final validation accuracy is depicted with the standard
deviation in the plots’ legends for better comparison.

4.1. Single Pooling Techniques

As a first step, we evaluate circuits with single pooling configurations to establish a performance baseline.
This allows us to isolate and compare the effects of individual pooling strategies before exploring more
complex combinations.

4.1.1. Set1

The validation accuracy of the circuits for Set1 with 200 images is shown in Figure 4. Overall, the
networks achieve an average classification accuracy of 70.46%, which is only marginally better than the
classical convolutional baseline at 70.30%. Hybrid networks, however, exhibit significantly smaller error
margins, 0.499± 0.055 on average, more than a factor of ten lower in loss variance, and about half the
mean loss compared to the classical model (1.093± 0.784), although this improvement is not reflected
in the final classification accuracy. Notably, the RX-redundant CCCNOT_RX_p starts with the lowest
initial mean accuracy but surpasses all other circuits during training, achieving the highest final accuracy
(73.94%), albeit with the largest standard deviation (6.94%). In contrast, the CCNOT_RZ_s circuit achieves
the lowest final accuracy (65.76%) despite showing the best initial performance. Extending the number
of training images from 200 to 400 for Set1 leads to only a minor improvement in validation accuracy for
the classical convolutional model, while the average performance of the quanvolutional circuits slightly
decreases, as shown in Figure 5. Once again, quantum models show significantly lower validation
losses with smaller variance (0.559± 0.042) compared to the classical baseline (0.974± 0.642), though
this advantage does not consistently translate to accuracy. Notably, the standard deviation in accuracy
increases for all models over the 10 epochs, whereas the loss deviations remain stable.



Figure 4: This figure shows the validation accuracy
over 10 training epochs for the best, worst, and av-
erage single-pooling quanvolutional circuits, along
with a classical convolutional baseline, trained on
Set1 with 200 images. The best quantum circuit
reaches a final validation accuracy of 73.94%±6.94%.
The worst-performing circuit ends at an accuracy
of 65.76%± 3.33%, while the average performance
across quantum circuits is 70.46%± 3.33% in accu-
racy. The classical network achieves 70.30%± 4.02%
accuracy. Error bars indicate the standard deviation
across 10 runs, showing that quantum circuits can
achieve both higher accuracy and lower variance.

Figure 5: This figure shows the validation accuracy
over 10 training epochs for the best, worst, and av-
erage single-pooling quanvolutional circuits, along
with a classical convolutional baseline, trained on
Set1 with 400 images. The best quantum circuit
reaches a final validation accuracy of 72.73%±3.32%.
The worst-performing circuit ends at an accuracy
of 67.27%± 4.75%, while the average performance
across quantum circuits is 70.29%± 4.02% in accu-
racy. The classical network achieves 73.48%± 4.90%
accuracy. Error bars indicate the standard deviation
across 10 runs, showing that quantum circuits can
achieve both higher accuracy and lower variance.

The best-performing circuit is the CCCNOT with an accuracy of 72.73% ±3.32%, while the worst
circuit (CNOT) ends at 67.27%, despite both starting from similar initial accuracy around 69%. On
average, the quantum models reach an accuracy of 70.29% ±4.02%, slightly below the classical result of
73.48% ±4.90%, though the overlapping error margins suggest comparable performance.

4.1.2. Set2

Training the quantum-classical hybrid networks on 200 images from Set2 training on the digits 5 and 7
highlights CCCNOT_RX_s as the best-performing circuit, as shown in Figure 6. Most other pooling
methods perform similarly, as reflected by the closely grouped training curves and a high average
final accuracy of 88.75%. The RX-redundant circuit CNOT_RX_p yields the lowest performance with a
validation accuracy of 76.67% and also exhibits the largest standard deviation among the quanvolutional
models at 9.39%. The classical convolution reaches a comparable accuracy of 77.88%, but with a much
higher standard deviation of 21.77%, indicating less consistent performance compared to the quantum
models.

In contrast to the single-pooling results on Set1, the accuracy dynamics here display a clearer anti-
correlation with the loss: circuits with high variance in loss also show larger fluctuations in accuracy,
and the relative performance across models is more consistent between both metrics.



Figure 6: This figure shows the validation accuracy
over 10 training epochs for the best, worst, and aver-
age single-pooling quanvolutional circuits, along with
a classical convolutional baseline, trained on Set2 with
200 images. The best quantum circuit achieves a final
validation accuracy of 91.52% ± 4.45%. The worst-
performing circuit ends at an accuracy of 76.67%±
9.39%, while the average quantum performance is
88.75%± 4.37% in accuracy. The classical baseline
reaches 77.88%± 21.77% accuracy. Error bars indi-
cate the standard deviation across 10 runs, showing
that quantum circuits can achieve both higher accu-
racy and lower variance.

Figure 7: This figure shows the validation accuracy
over 10 training epochs for the best, worst, and av-
erage single-pooling quanvolutional circuits, along
with a classical convolutional baseline, trained on Set2
with 400 images. The best quantum circuit achieves
a final validation accuracy of 94.55%± 1.69%. The
worst-performing circuit reaches 83.64%± 5.74% in
accuracy. The average performance of the quantum
circuits is 91.45% ± 2.24% in accuracy. The clas-
sical baseline shows a final validation accuracy of
84.24% ± 15.76%. Error bars indicate the standard
deviation across 10 runs, showing that quantum cir-
cuits can achieve both higher accuracy and lower
variance.

When increasing the number of training images for Set2 from 200 to 400, a moderate overall gain
in validation accuracy is observed as depicted in Figure 7, which is supported by a noticeable drop in
validation loss. Once again, the quanvolutional networks outperform the classical convolutional model:
their average validation accuracy rises to 91.45%, exceeding the classical result of 84.24% by more than
6 percentage points. All quantum circuits perform better than the classical baseline, except for the
RX-redundant CNOT_RX_p circuit, which falls behind at 83.64% and thus marks a clear outlier.

The best-performing model is the CNOT_RX_s circuit, reaching a validation accuracy of 94.55%
with the smallest standard deviation of 1.69%. While the classical model shows the strongest relative
improvement compared to its result with 200 images, its standard deviation only decreases by about
one quarter, whereas the hybrid models reduce their deviation by roughly half.

4.1.3. Set3

With Set3, which contains images of ten digits and 10,000 training images, the network performance
changes significantly, as shown in Figure 8. While the feature complexity of Set3 is comparable to
Set2, the classification task is considerably more difficult due to the presence of ten distinct classes. To
account for this increased complexity, the training set size is raised to 10,000, enabling more robust and
stable training outcomes.

The classical convolutional network performs reasonably well, with an average validation accuracy
of 73.46%, but suffers from a large standard deviation of 31.09%. This indicates high sensitivity to
initialization and unreliable convergence, as the model inconsistently learns relevant features. In
contrast, the quanvolutional networks show more consistent results, with standard deviations below
1%, demonstrating high reliability regardless of initial parameters.

The differences in performance among the quantum circuits become more pronounced on this
dataset: CCCNOT_RX_s performs substantially worse than its peers with only 59.78% accuracy, while
CNOT_RX_s achieves the best result at 77.67%. This clear separation highlights the importance of the



Figure 8: This figure shows the validation accuracy over 10 training epochs for the best, worst, and average
single-pooling quanvolutional circuits, along with a classical convolutional baseline, trained on Set3 with 10,000
images. The best quantum circuit achieves a final validation accuracy of 77.67%± 0.72%. The worst-performing
circuit reaches 59.78%±0.75% in accuracy. The average performance of the quantum circuits is 70.81%±0.62%
in accuracy. The classical baseline shows a final validation accuracy of 73.46%± 31.09%. Error bars indicate
the standard deviation across 10 runs, showing that quantum circuits can achieve both higher accuracy and
lower variance.

chosen pooling technique. The quanvolutional average accuracy is 70.81%, which is still competitive. A
corresponding evaluation of the validation loss curves supported these findings with aligned trends in
means and standard deviations.

4.2. Multi Pooling Techniques

When analyzing the performance of the single-pooling methods, we found that the entanglement
technique was the most decisive factor in achieving high classification accuracy. In contrast, the
choice of angle embedding axis and parameterization had a comparatively minor impact. To preserve
computational resources for the more demanding simulation of larger quantum circuits, we therefore
focused our multi-pooling study primarily on the effect of combining different single-pooling variations.
These combinations are compared against the established parameterized modular circuits proposed
in [8] and [21]. A more detailed analysis that led to this design decision is presented in section 4.3.

4.2.1. Set1

When extending the pooling methods from single- to multi-pooling techniques, the average validation
accuracy increases to 73.29%, further outperforming the classical convolutional baseline at 70.30%. The
best-performing circuit for Set1 with 200 images (Figure 9) is the Mix_CNOT_CCCNOT, reaching 78.79%
accuracy, clearly surpassing the best single-pooling method, CCCNOT_RX_p.

However, the Mix_all circuit performs poorly, achieving only 63.64%, which is not only lower than
the classical setup and approximately 10% below the quantum average but also worse than the lowest-
performing single-pooling circuit, CCNOT_RZ_s (65.76%). This indicates that mixing pooling strategies
can both enhance and impair quanvolutional feature extraction, depending on the combination of
techniques.

The validation loss follows a similar trend to the single-pooling analysis, with all quanvolutional
circuits having slightly lower loss values overall, delivering no extra insights.



Figure 9: Validation accuracy for the best, worst,
and average performing multi-pooling quantum cir-
cuits compared to a classical baseline, trained on
Set1 using 200 images. The best multi-pooling
model (Mix_CNOT_CCCNOT) achieves a final val-
idation accuracy of 78.79% ± 2.35%, while the
worst-performing circuit (Mix_all) reaches 63.64% ±
4.29%. The average across all multi-pooling circuits
results in 73.29% ± 3.44%. For comparison, the
classical model achieves 70.30% ± 4.02%. As an
additional reference, the best single-pooling model
(CCCNOT_RX_p) is shown as a dashed red curve and
achieves 73.94% ± 6.94% accuracy. Error bars indi-
cate the standard deviation across 10 runs, showing
that quantum circuits can achieve both higher accu-
racy and lower variance.

Figure 10: Validation accuracy for the best, worst,
and average performing multi-pooling quantum cir-
cuits compared to a classical baseline, trained on
Set1 using 400 images. The best multi-pooling circuit
(Mix_CNOT_CCNOT) achieves a validation accuracy
of 80.45% ± 3.21%, while the worst-performing
circuit (Mix_all) reaches 63.48% ± 3.55%. The av-
erage performance across all multi-pooling models is
72.32% ± 3.35%. The classical baseline achieves
73.48% ± 4.90%. The dashed red line shows the
best single-pooling circuit (CCCNOT), which reaches
72.73% ± 3.32% accuracy and serves as a reference
point for comparison. Error bars indicate the standard
deviation across 10 runs, demonstrating variability
and robustness in model performance.

Training the networks with 400 instead of 200 images (see Figure 10) leads to Mix_CNOT_CCNOT
achieving the best performance with an accuracy of 80.45%, outperforming Mix_CNOT_CCCNOT
from the 200-image experiment. In contrast, the average circuit (72.32%) and the worst-performing
circuit Mix_all (63.48%) show slightly lower accuracies compared to their 200-image counterparts.
Moreover, the mixture of all three single-pooling methods actively hinders feature extraction, as the
validation accuracy decreases steadily over the course of ten training epochs, rendering this combination
ineffective for this particular dataset.

Standard deviations are comparable to the results obtained with half the training data. The classical
convolutional network increases its validation accuracy to 73.48%, which places it marginally above the
average of the quanvolutional circuits, but well within the overlapping error margins.

4.2.2. Set2

For Set2 with 200 training images, stronger feature extraction capabilities are observed across all hybrid
networks. Mix_CCNOT_CCCNOT achieves a final accuracy of 93.64%, slightly outperforming the best
single-pooling technique CCCNOT_RX_s (91.52%). The average multi-pooling circuit reaches 85.19%,
which is lower than the average of the single-pooling methods but still clearly surpasses the classical
convolutional layer, which reaches 77.88%. The modular pooling method PoolMod_C achieves a similar
mean accuracy of 78.48%, but is comparable to the classical counterpart (±21.77%); its standard deviation
of ±17.43% is large, indicating low stability.

Moreover, it should be noted that the modular poolings considerably increase the standard deviation
of the average hybrid network to 6.9%, whereas all mixed pooling methods individually maintain error
margins below 4%. A similar trend is observed in the loss dynamics, where only PoolMod_A (0.172),
PoolMod_B (0.165), and PoolMod_C (0.305) of the multi-pooling circuits exhibit standard deviations



larger than 0.1, while all other hybrid models are below.

Figure 11: Validation accuracy for the best, worst,
and average performing multi-pooling quantum cir-
cuits compared to a classical baseline, trained on Set2
using 200 images. The best-performing multi-pooling
circuit (Mix_CNOT_CCNOT) achieves a validation
accuracy of 93.64% ± 3.70%, while the worst-
performing circuit (PoolMod_C) reaches 78.48% ±
17.43%. The average multi-pooling model reaches
85.19% ± 6.90%, and the classical baseline achieves
77.88% ± 21.77%. As a reference, the best single-
pooling circuit (CCCNOT_RX_s) achieves 91.52% ±
4.45%, indicated by the dashed red line. Error bars
indicate the standard deviation across 10 runs, reflect-
ing robustness and variability in model performance.

Figure 12: Validation accuracy for the best, worst,
and average performing multi-pooling quantum cir-
cuits compared to a classical baseline, trained on Set2
using 400 images. The best-performing multi-pooling
circuit (Mix_all) achieves a validation accuracy of
93.33% ± 2.06%, while the worst-performing circuit
(PoolMod_C) reaches 88.48% ± 5.17%. The average
model reaches 90.84% ± 2.74%, and the classical
baseline achieves 84.24% ± 15.76%. As a reference,
the best single-pooling circuit (CNOT_RX_s) achieves
94.55% ± 1.69%, shown as a dashed red line. Error
bars indicate the standard deviation across 10 runs,
reflecting robustness and variability in model perfor-
mance.

Increasing the number of training images for Set2 from 200 to 400 raises the average accuracy of
the multi-pooling circuits to 90.84%.Also, the weakest performing multi-pooling model for this dataset,
PoolMod_C, improves by about 10% with the larger training set, reaching a final accuracy of 88.48%
and outperforming the classical convolutional model, which achieves 84.24%.

The best-performing model, Mix_all, reaches a final accuracy of 93.33%, but this does not improve
upon the Mix_CCNOT_CCCNOT circuit trained on only 200 images. It also performs slightly worse
than the best single-pooling circuit for this dataset, CNOT_RX_s, which achieved 94.55%.

Overall, the multi-pooling circuits perform slightly worse than the single-pooling models for this
dataset, as the average mean accuracy of multi-pooling circuits (90.84%) is marginally below that of the
single-pooling circuits (91.45%).

4.2.3. Set3

Testing the multi-pooling strategies on Set3 with 10,000 training images, all quanvolutional networks
approach performance saturation relatively quickly. Mix_all achieves the highest accuracy at 79.72%
and the lowest validation loss, outperforming the best single-pooling model. The average accuracy
across all multi-pooling circuits increased by approximately 4% compared to the single-pooling average
of 74.81%, and even the weakest multi-pooling model, PoolMod_A, improved by about 2% to 61.94%.

Interestingly, the standard deviation decreased only for the Mix_all circuit, while both the average
and the worst-performing circuits showed larger error margins than their single-pooling counterparts.
Nevertheless, all quanvolutional models remained significantly more stable during training than the
classical convolutional network, which achieved a mean accuracy of 73.46% but exhibited a large
standard deviation of 31.09%, making its classification performance highly unreliable.



Figure 13: Validation accuracy for the best, worst, and average performing multi-pooling quantum circuits
compared to a classical baseline, trained on Set3 using 10.000 images. The best-performing multi-pooling circuit
(Mix_all) reaches a validation accuracy of 79.72% ± 0.56%, while the worst-performing circuit (PoolMod_A)
achieves 61.94% ± 5.40%. The average model performs at 74.81% ± 1.55%, and the classical baseline reaches
73.46% ± 31.09%. As a reference, the best single-pooling circuit (CNOT_RX_s) achieves 77.67% ± 0.72%,
indicated by the dashed red line. Error bars indicate the standard deviation across 10 runs, reflecting robustness
and variability in model performance.

4.3. Comparison

The results of the single-pooling circuits reveal several trends across datasets. For Set2, the validation
accuracies range from 75% to 92% for 200 training images and from 83% to 95% for 400 images, showing
a clear performance increase with more data. However, not all circuits improve their feature extraction
capabilities equally, as the best- and worst-performing quanvolutional models differ when doubling
the amount of training data. Notably, in both cases, the classical convolutional baseline exhibits
significantly larger standard deviations than any of the quanvolutional circuits, often more than twice
as large. This suggests that the classical network is more sensitive to its initial parameters, whereas the
quantum-classical hybrids train more reliably and consistently.

Figure 14: The heatmap presents the percentage point deviation of each single-pooling circuit’s accuracy from
the mean accuracy computed across all circuits for a given dataset (per row). For each dataset, the accuracies
of all pooling methods were averaged, and the individual deviations are shown in color. Blue tones indicate
above-average performance, while green to yellow shades mark below-average results. Clear patterns emerge
within entanglement types (e.g., CNOT, CCNOT, CCCNOT), while the RX-redundant circuits (e.g., CNOT_RX_p,
CCNOT_RX_p, CCCNOT_RX_p) exhibit strong, dataset-dependent deviations. This suggests inconsistent feature
encoding caused by redundant parametrization.

This difference in stability becomes even more evident when comparing across datasets. Set1, which



contains relatively dark, low-contrast images, is not well represented by either model type. Nevertheless,
quanvolutional networks achieve comparable or better accuracy with lower loss and smaller error
margins. In contrast, Set2 and Set3 contain more structured and high-contrast features, which appear
to favor the quantum circuits. Especially in Set3, with its 10-class classification task and 10,000 training
images, the quanvolutional models not only outperform the classical baseline in accuracy, but also show
remarkable robustness, with standard deviations remaining below 1% for all circuits.

Taken together, these results indicate that quanvolutional circuits are particularly effective on datasets
with structured and high-contrast features. They generalize better, are less sensitive to initialization, and
exhibit more stable training behavior. However, no single circuit consistently outperforms the others
across all datasets, suggesting that the optimal choice may depend on the specific data characteristics. In
contrast, while the classical convolutional layer can be competitive on average, it exhibits high variance
and requires favorable initial conditions to perform well.

Interestingly, as shown in Figure 14, circuits sharing the same entanglement structure exhibit com-
parable performance, with only minor variations introduced by different parameterizations or angle
embeddings. These patterns are visible across datasets, such as for Set1 with 200 training images, where
all CCNOT-based circuits consistently perform below average, regardless of the specific embedding
or parameterization. This trend becomes even more apparent in Set3, where all CNOT-based circuits
perform similarly well, while all CCCNOT-based circuits perform significantly worse.

A notable exception to these entanglement-driven patterns arises with the circuits CNOT_RX_p,
CCNOT_RX_p, and CCCNOT_RX_p. Their unusual behavior is attributed to RX-redundancy, where RX
embedding is immediately followed by RX parameterization. This redundancy can distort the feature
encoding by reinforcing or counteracting the input embedding. In some cases, such as CCNOT_RX_p
and CCCNOT_RX_p in Set3, this effect can enhance performance. However, it may also hinder training,
as seen with CNOT_RX_p in Set2, where the learning process becomes decoupled from the relevant
input features.

While RX-based serial parameterization tends to slightly outperform RZ-based or non-parameterized
designs, our results suggest that the choice of pooling operator, CNOT, CCNOT, or CCCNOT, has a
more pronounced effect on classification performance. Therefore, in subsequent experiments on multi-
pooling architectures, we focus on combinations of plain single-pooling blocks and omit parameterized
variants to conserve computational resources without compromising model quality.

When testing more advanced multi-pooling strategies, the dependence on both the specific circuit
design and the dataset characteristics becomes more pronounced. In general, beneficial combinations of
pooling operations lead to improved feature representation, resulting in higher validation accuracies and
lower standard deviations compared to single-pooling circuits as for example Mix_all in Set3. However,
some combinations can also reduce classification performance and increase error margins, as observed
in Figure 15 for Set1.

The modular pooling circuits (PoolMod_A, PoolMod_B, and PoolMod_C) perform comparably to
single-pooling models but are clearly outperformed by the more effective mixed-pooling configurations.
In particular, for the more structured datasets Set2 and Set3, the modular poolings exhibit the weakest
feature representations, reducing the overall average accuracy of quanvolutional models and increasing
their variance. These results suggest that the more complex entanglement and parameterization schemes
in the modular designs offer no clear advantage for the classification tasks considered in this study.

Figure 15 presents the deviation of final validation accuracy from the dataset-specific mean for
each multi-pooling circuit, including the plain single-pooling methods. In contrast to the patterns
observed in the single-pooling setup, no clear or consistent relationship emerges between the mix-
ture of entanglement strategies and model performance. For example, while CCCNOT performs
best among single-pooling circuits for Set2 with 400 images, the combination of CNOT and CCNOT
(Mix_CNOT_CCNOT) yields higher accuracy than any mixture involving CCCNOT. Furthermore, ap-
pending CCCNOT to an already well-performing Mix_CNOT_CCNOT (yielding Mix_all) can disrupt
the circuit’s capacity to extract relevant features and lead to decreased accuracy.

Overall, the results demonstrate that the benefits of mixing single-pooling methods are not easily pre-
dictable. While some combinations result in enhanced accuracy and stability, e.g., Mix_CNOT_CCNOT



Figure 15: For each dataset (each row), the mean accuracy across the three non-variational single-pooling
and all multi-pooling methods was computed. The heatmap displays the deviation (in percentage points) of
each circuit’s final accuracy from this mean. Blue tones indicate above-average performance, while green to
yellow tones represent below-average results. This allows direct visual comparison of each pooling strategy’s
effectiveness per dataset. The Mix_CNOT_CCNOT circuit consistently performs well across datasets, while
PoolMod_A and CCCNOT poolings show larger negative deviations, especially for more complex datasets like
Set3.

in Set3, others unexpectedly degrade performance. Consequently, no generalizable criteria can be
derived from the data to determine which pooling combinations will be beneficial for a given dataset.
In this sense, both the optimal single-pooling strategy and any synergistic effects of their combinations
remain dataset-specific and largely empirical.

A pattern does emerge, however, regarding dataset characteristics. Mix_all circuits perform better on
datasets with more distinctive or high-contrast features (Set2 and Set3) and with larger training sets.
This could suggest that combining multiple pooling types allows for a more comprehensive feature
representation, which is particularly advantageous when rich information is available. However, this
benefit does not generalize across all tested scenarios, and the combinatorial complexity of possible
poolings makes systematic exploration challenging.

These findings also reinforce a broader insight observed throughout our experiments: The entangle-
ment structure of the circuit has a much larger influence on performance than the parameterization
method. Our empirical results show that circuits with different parameterizations but identical entangle-
ment patterns tend to perform similarly, whereas changing the entanglement often leads to significant
accuracy differences. One possible explanation is that entanglement introduces correlations between
qubits, enabling the encoding of higher-order interactions among input features. This greatly enhances
the circuit’s expressive power, particularly in image-based tasks where spatial correlations are crucial.

In contrast, single-qubit parameterized gates act only locally, modifying individual amplitudes without
introducing new correlations. As a result, parameter optimization primarily refines an already existing
structure rather than fundamentally enhancing the circuit’s capacity.

This observation aligns with the findings of Schuld et al. [7], who demonstrate that data encoding,
especially under angle embedding, determines the function class a variational quantum circuit can
represent. Since entanglement mediates how input data is distributed across the quantum register, it
governs the circuit’s ability to capture spatial or contextual relationships within the data. Parameteriza-
tion, while still valuable, appears secondary in importance relative to entanglement when it comes to
learning effective quantum representations. Consistently, Mahmud et al. [24] report that introducing
three-qubit Toffoli-based interaction layers improves feature extraction and classification accuracy,
which resonates with our observation that pooling circuits employing CCNOT and CCCNOT gates
often provide enhanced representational power in multi-pooling schemes.



5. Conclusion & Outlook

The results indicate that single-layer quanvolutional filters in quantum-classical hybrid networks
consistently outperform single-layer convolutional filters across all tested datasets. However, it remains
uncertain whether this advantage extends to multi-layer quanvolutional networks or if it diminishes
with increased complexity. The results also show that the trained rotation parameters used in the
quantum circuit do not significantly affect the classification accuracy, regardless of their position in the
pooling. Parameter-free pooling methods yielded results similar to both parallel and serial parametrized
pooling techniques. However, since all the circuits utilized angle encoding, it is unclear whether
parameters would be beneficial in circuits with alternative embedding strategies. Further research is
needed to explore whether other encodings could also benefit from these pooling circuits or whether
different pooling strategies would be more suitable.

It is important to note that there is no single circuit that consistently achieves the best performance.
Rather, the entanglement method must be chosen based on the specific features present in the data. The
representation of these features by the networks varies not only by the dataset but also by the number
of training images. Increasing the training data induces shifts in the feature representation due to subtle
differences in the data. Therefore, different datasets favor different pooling circuits for optimal feature
representation, and even small changes in the data can affect the choice of the best circuit. Despite
this, when the features change slightly, such as by increasing the training data, the best-performing
circuit may switch, but the previously optimal circuit will still perform comparably well. To gain a
better understanding of feature-specific entanglements and the advantages of quanvolutional networks
for different types of data, further investigations into various pooling methods across diverse datasets
are needed.

Finally, mixing simple pooling methods can generally improve the performance of quanvolutional
layers, but no clear pattern emerges for which pooling methods should be combined for optimal feature
representation. As with single pooling methods, no mixed circuit consistently outperforms others;
the best choice depends on the features of the dataset. Comparing the mixed circuits with the three
modular poolings reveals that simply increasing entanglement strength does not improve performance.
Instead, feature representation is enhanced by combining individual input information (via CNOT)
with the relationships between inputs, as achieved by CCNOT and CCCNOT entanglements. Our
findings suggest that combining simple pooling methods can enhance the representational power
of quanvolutional layers for structured data, yet it remains an open question whether the order in
which these methods are applied further influences performance, presenting a potential area for future
investigation.
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A. Investigation batch sizes master’s thesis

An ablation study on batch size as a hyperparameter was conducted prior to this work as part of a
master’s thesis. The results showed only minor variations in validation accuracy for batch sizes ranging
from 8 to 64, with no consistent preference for a specific value. Consequently, batch size was fixed
to 16 in the experiments presented in this paper to reduce computational complexity and simplify
hyperparameter tuning.

Figures 16, 17, and 18 illustrate the final validation accuracy after 20 training epochs for Set1 with 546
training images, using CNOT, CCNOT, and CCCNOT pooling, respectively. Additionally, corresponding
results for Set3 with 60,000 training images are shown in Figures 19, 20, and 21.

Each plot compares three differently parameterized circuits, basent_RX, strent_rot, and noent_RX,
as well as a classical convolutional baseline. Of particular interest is the noent_RX circuit, which
corresponds exactly to the unparameterized single-pooling CNOT, CCNOT, and CCCNOT circuits used
throughout this work. Across all configurations, the error bars overlap substantially, indicating that
batch size does not significantly influence classification performance in the tested setups.
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Figure 16: The final validation accuracy of the CNOT pooling circuits shows no meaningful variation across
different batch sizes (8–64). While there are minor fluctuations in the mean accuracy, the overlapping error bars
indicate that batch size has no significant influence on the classification performance for this setup.

Figure 17: For the CCNOT pooling method, the networks achieve comparable final accuracies across all
tested batch sizes. The variations lie well within the standard deviations, suggesting that batch size does not
meaningfully affect the training dynamics or generalization performance on Set1.

Figure 18: With CCCNOT pooling, the network exhibits slightly different trends across batch sizes, but the
broad and overlapping confidence intervals suggest these differences are not statistically significant. Overall,
batch size has a negligible effect on final accuracy in this configuration.



Figure 19: The final validation accuracy of the CNOT pooling circuits on Set3 (60,000 images) shows consistent
results across different batch sizes (8–64). Minor shifts in the mean accuracy are visible, but all results lie within
overlapping confidence intervals. Batch size has no significant impact on classification performance in this
configuration.

Figure 20: Across all batch sizes tested, the CCNOT pooling circuits yield similar final accuracies on Set3.
Despite small absolute differences, the standard deviations largely overlap, indicating that batch size has no
meaningful influence on training outcome or generalization in this setup.

Figure 21: The CCCNOT pooling circuits reach stable classification accuracy regardless of batch size on Set3.
The large error bars seen in the classical baseline do not affect the quantum-enhanced models, which perform
robustly. No clear advantage of any specific batch size is observed.
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