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Abstract
An efficient and data-driven encoding scheme is proposed to enhance the performance of variational quantum
classifiers. This encoding is specially designed for complex datasets like images and seeks to help the classification
task by producing input states that formwell-separated clusters in the Hilbert space according to their classification
labels. The encoding circuit is trained using a triplet loss function inspired by classical facial recognition algorithms,
and class separability is measured via average trace distances between the encoded density matrices. Benchmark
tests performed on various binary classification tasks onMNIST andMedMNIST datasets demonstrate considerable
improvement over amplitude encoding with the same VQC structure while requiring a much lower circuit depth.
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1. Introduction

The goal of quantum machine learning (QML) [1] is to take advantage of quantum computers to address
learning tasks such as classification, regression, and content generation. A key component in QML is
the data encoding strategy: the method by which classical data is embedded into the initial quantum
states, to be subsequently manipulated using hybrid learning algorithms [2, 3]. The encoding step is, in
essence, the most important one, as it defines the working principle of the quantum algorithm, often
constitutes the bottleneck step in terms of runtime, and the choice of encoding significantly influences
the performance of the learning algorithm.
Commonly used encoding schemes, such as angle encoding and amplitude encoding [2], are not

efficient. Angle encoding maps classical data 𝑥 = (𝑥1, ..., 𝑥𝑛) into a quantum state using rotation angles:

|𝑥⟩ =
𝑛

⨂
𝑖=1

cos(𝑥𝑖)|0⟩ + sin(𝑥𝑖)|1⟩. (1)

However, angle encoding is not efficient in terms of the number of qubits, as it can encode only one
feature per qubit. Amplitude encoding, instead, maps a normalized classical 𝑁-dimensional data 𝑥 into
the amplitudes of a quantum state:

|𝜓𝑥⟩ =
𝑁
∑
𝑖=1

𝑥𝑖|𝑖⟩ (2)

where 𝑁 = 2𝑛, 𝑥𝑖 is the 𝑖𝑡ℎ element of 𝑥 and |𝑖⟩ is the 𝑖𝑡ℎ computational basis state. However, amplitude
encoding requires a quantum circuit whose depth increases exponentially with the number of qubits [4,
5, 6]. This is a relevant issue, as in the current Noisy Intermediate-Scale Quantum (NISQ) era, quantum
devices are prone to noise and deeper circuits tend to produce noise. Furthermore, these methods do
not take advantage of the structure of the data, which could be exploited for improved classification or
generalization.
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In this work, a novel approach to quantum encoding is explored, specifically aimed at classification
problems, that is adaptive and data-driven. Instead of using an a-priori fixed encoding map, an encoding
circuit is designed and optimized specifically for the classification task at hand. More precisely, it aims
to embed input data in a way that explicitly achieves class separability in the Hilbert space. The method
is inspired by FaceNet [7], a classical deep learning model for face recognition that employs a triplet
loss function to encourage similar inputs to be mapped close together and dissimilar ones far apart in
the embedding space.

The paper is organized as follows. In Section 2, the state-of-the-art is discussed and some of the recent
developments in addressing the problem of quantum embeddings for machine learning are summarized.
In Section 3, the mathematical problem and the objective are defined. The strategy is described in
Section 4, where the triplet loss and how it drives the embedding circuit construction are explained.
The basic variational classifier that uses these embedded states to make predictions is also described
in that section. In Section 5, results from both simulation and real hardware are reported. Finally, in
Section 6 an overview of findings and future outlook is presented.

2. Related Work

In recent years, the problem of encoding classical data into a quantum state has attracted considerable
interest. A well-designed encoding scheme can simplify the task for the Variational Quantum Circuit
(VQC), but the most commonly used methods, angle and amplitude encoding, present several challenges.
Several algorithms have been developed in recent years to address this problem.
A comprehensive benchmarking of the most well-known encoding schemes, viz. amplitude, angle

and IQP embedding [8] has been carried out in [9] on various datasets including the MNIST01 and
MNIST08 subsets. These results are useful as a benchmark test for advanced encoding schemes that
better take into account the data structure.
In recent years, a research field known as Quantum Architecture Search (QAS) [10] has emerged,

aiming to identify the optimal quantum circuit architecture for both the encoding stage and the VQC.
Techniques such as Reinforcement Learning [11, 12], evolutionary algorithms [13, 14, 15, 16], and
particle swarm optimization were applied [12, 17]. Genetic algorithms [18] are used to learn the
whole architecture of the encoding scheme. Those are optimization techniques based on the theory of
evolution. The algorithms evolve a population of individuals with the encoded feature maps, through
the application of genetic operators. In each generation, the resulting offspring is selected in order to
improve the objectives. In [15], the authors optimized the quantum feature maps in a quantum kernel
Support Vector Machine (SVM) [19]. The genetic algorithm stores the circuit of each individual and
aims to maximize the accuracy of the feature maps in modeling the data, while minimizing circuit
complexity. The results show that it can produce a classifier with 100% accuracy that generalizes well
to unseen data.

In [20], the authors, inspired by the so-called classical ”metric learning” [21, 22], trained the quantum
embedding using the trace and Hilbert-Schmidt distances.

Drawing inspiration from classical kernel methods [23], quantum kernel methods map classical data
into a high-dimensional quantum feature space [24, 25, 26, 27]. The similarity between data points is
then calculated using a quantum kernel, which is essentially the inner product of the quantum states.
In [28], two strategies inspired by kernel theory [23] to find patterns in the data were proposed. One
estimates intractable quantum kernels by feeding them into a classical kernel method; the other applies
VQC to learn models that process the feature vectors.

Rath et al. [29] analyzed the impact of quantum encoding techniques (basis, superposition, angle,
and amplitude encodings) in classical machine learning. Various classical algorithms were tested, such
as SVM, Decision Tree, Random Forest, and AdaBoost.
In [30], an efficient method for amplitude encoding of real polynomial functions was proposed.
Another interesting embedding is the Hamiltonian encoding [2, 31], where classical data are encoded

into the parameters of a system’s Hamiltonian.



The choice of the encoding method plays a crucial role, as it can lead to the emergence of barren
plateaus [32], which cause the gradients to vanish exponentially with the size of the system, hindering
effective training. The entanglement entropy [33] generated by a quantum circuit can follow either
a volume law or an area law. In a volume law regime, entanglement scales proportionally with the
total number of qubits in the system; while in the area law scenario, entanglement entropy scales
proportionally with the number of qubits at the boundary. Consequently, the applied encoding method
can induce barren plateaus by generating excessive entanglement entropy [34].

3. Problem Statement

The goal of the data encoding strategy is to design an encoding that is well-suited for complex classifi-
cation tasks involving unstructured data, such as image classification. As a concrete test case, a binary
image classification task is considered using both MNIST and MedMNIST datasets [35]. As a simple
starting point, the datasets are restricted to the first two classes (e.g., “0” vs “1”). An embedding circuit
𝑈𝑒𝑚𝑏(x(𝑗)) is constructed (where x(𝑗) are the sets of feature vectors in the training dataset), such that
the resulting state vectors |𝜓 (𝑗)⟩ = 𝑈𝑒𝑚𝑏(x(𝑗))|0⟩ lie in compact and mutually orthogonal subspaces of
the Hilbert space depending on their class labels 𝑦 (𝑗). For an ideal encoding, the following should be
obtained:

⟨𝜓 (𝑖)|𝜓 (𝑗)⟩ ≃ {
1, 𝑦 (𝑖) = 𝑦 (𝑗)

0, 𝑦 (𝑖) ≠ 𝑦 (𝑗).
(3)

Of course, an ideal encoding is not possible for such a complex, unstructured dataset; therefore,
the algorithm aims to cluster the encoded state vectors into distinct regions of the Hilbert space. To
introduce a natural metric on the space of states and to allow for future generalizations to noisy and
partial measurements, density matrices 𝜌(𝑖) are taken into account rather than state vectors. A natural
metric on the Hilbert space is then the trace distance:

𝐷(𝜌1, 𝜌2) =
1
2
tr√(𝜌1 − 𝜌2)†(𝜌1 − 𝜌2). (4)

Two sets of pairs are defined:

• Intra-class pairs 𝒫𝑠𝑎𝑚𝑒 = {(𝑖, 𝑗)|𝑦 (𝑖) = 𝑦 (𝑗)},
• Inter-class pairs 𝒫𝑑𝑖𝑓 𝑓 = {(𝑖, 𝑗)|𝑦 (𝑖) ≠ 𝑦 (𝑗)}.

The objective is to minimize the average distance 𝔼(𝑖,𝑗)∈𝒫𝑠𝑎𝑚𝑒
𝐷(𝜌(𝑖), 𝜌(𝑗)) while maximizing the average

distance 𝔼(𝑖,𝑗)∈𝒫𝑑𝑖𝑓 𝑓
𝐷(𝜌(𝑖), 𝜌(𝑗)).

4. Proposed Solution

A triplet-loss-driven construction of a quantum encoding circuit that maps classical images to expressive
quantum states is proposed. The entire algorithm proceeds in three main stages:

1. Triplet selection,
2. Greedy circuit construction,
3. Variational classification circuit.

4.1. Triplet selection

A strategy similar to the hard mining strategy in classical image recognition [7] is adopted. For each
ordered pair of classes (𝑎, 𝑏), the following is chosen:

• An anchor 𝐴: The median of all image vectors belonging to class 𝑎.



• A positive 𝑃: The image vector in class 𝑎 that is the farthest from the anchor (hard positive).
• A negative 𝑁: The image vector in class 𝑏 that is the closest to the anchor (hard negative).

The goal is to consider the worst-case scenario, selecting the farthest image of the same class as the
anchor (positive) and the closest image from the other class (negative), in order to minimize the distance
between the anchor and the positive, while maximizing the distance between the anchor and the
negative.
This triplet is designed to be maximally informative, promoting embeddings that tightly cluster

class-relevant features while pushing away confusing examples. To demonstrate, the simple problem of
binary classification with only digits ”0” and ”1” of the MNIST dataset is considered. There are only
two triplets corresponding to (0, 1) and (1, 0) respectively. The triplets are shown in Figure 1.

Figure 1: Triplets for the binary (0,1) subset of the MNIST dataset. The image resolution is 8 × 8.

4.2. Greedy Circuit Construction

Two hyperparameters are introduced:

• A weight factor 𝑤 that introduces a relative weight between the positive and negative loss.
• A margin 𝑚 to adjust the degree of separation between the different clusters.

The following objective function is minimized:

𝐽 = ∑
𝑡𝑟 𝑖𝑝𝑙𝑒𝑡𝑠

max(0, 𝑤𝐷(𝐴, 𝑃) − 𝐷(𝐴, 𝑁 ) + 𝑚). (5)

This is performed with a greedy combinatorial optimization algorithm:

1. Start with an empty circuit.
2. At each step 𝑖, pick the 𝑖𝑡ℎ feature (pixel value) to encode.
3. Incrementally add gates from a fixed pool: {𝑅𝑋, 𝑅𝑌, 𝑅𝑍, 𝐶𝑁𝑂𝑇 , 𝐶𝑍} at each step as follows:

a) Go through all possible gate-qubit combinations. For single-qubit rotations, the feature
vector 𝑥𝑖 is encoded in the rotation angle.

b) Temporarily append each combination to the previously constructed circuit, and evaluate
the density matrices corresponding to each triplet element.

c) Compute the triplet loss for each choice.
d) Pick the gate-qubit combination that corresponds to the lowest triplet loss (greedy choice).



e) If this best choice of gate turns out to be a 𝐶𝑁𝑂𝑇 or a 𝐶𝑍, make sure to follow it up by a
rotation gate that best encodes the 𝑖𝑡ℎ feature. Thus, this feature is actually being encoded
by an entangling gate followed by a rotation.

4. Repeat this until all features have been encoded or a target depth is reached.
5. Store the sequence of gate-qubit combinations: this serves as embedding circuit 𝑈𝑒𝑚𝑏.

The controlled rotations (𝐶𝑅𝑥, 𝐶𝑅𝑦, 𝐶𝑅𝑧) are not included in the set of possible gates, as the optimal
solutions that minimize the loss never select them. Instead, 𝐶𝑁𝑂𝑇 gates and single-qubit rotations
consistently perform better.

4.3. Variational Classification Layer

A trainable parameterized quantum circuit 𝑈𝑣𝑎𝑟(𝜃) is applied to the output of 𝑈𝑒𝑚𝑏(𝑥), forming a hybrid
quantummodel. The parameters 𝜃 are optimized using a standard classical optimizer (Adam) to minimize
the classification loss (cross-entropy).
The VQC of [9] is used, each layer of which consists of:

• A layer of 𝑅𝑌 rotations, each parametrized by {𝜃1, ...𝜃𝑛} applied to each qubit.
• A circular layer of CNOTs.

For a binary classification problem, the last qubit is measured and the probability of it being in the state
|1⟩ is obtained. One layer of the VQC is visualized in Fig. 2.

Figure 2: One layer of the variational circuit for a random choice of parameters.

Performance is evaluated using only one or two layers of the VQC, to demonstrate the improvement
over the usual amplitude encoding scheme.

5. Experimental Evaluation

5.1. Preprocessing

Images are rescaled to 𝑑 × 𝑑 pixels, such that 𝑛𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠 = 𝑑2. The proposed encoding scheme works better
if no further rescaling is applied to the data set.

5.2. Hyperparameter Selection

For a smaller scale of the problem, it is sufficient to set the margin parameter in (5) to 𝑚 = 0. Also, for
best results, it helps to choose a starting weight of 𝑤 = 1.0 (which gives equal weightage to both cluster
separation and condensation within the cluster), and dampening it by a small amount (0.01) at each



step. The choice of using a cut-off of 0 for the loss function does not significantly affect the results, so
the following objective is used:

𝐽 = − ∑
𝑡𝑟 𝑖𝑝𝑙𝑒𝑡𝑠

(𝐷(𝐴, 𝑁 ) − 𝑤𝐷(𝐴, 𝑃)) (6)

with 𝑤 receiving a small damping at each iteration.
𝑁𝑞𝑢𝑏𝑖𝑡𝑠 is set to log2 𝑛𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠 since a lower number would lead to deeper circuits, worsen performance

and noise resilience, and could lead to barren plateau problems.
For the benefit of the reader, a typical embedding circuit generated for 8-by-8 MNIST01 images is

presented in Figure 3, with the above selection of hyperparameters. The features are encoded in the
rotation angles of the single-qubit rotation gates. Note that the total gate count in this circuit is less
than 64, because consecutive rotations have been merged into a single rotation. At the end of the circuit,
all qubits are measured in order to retrieve the density matrices and compute the trace distances. When
the encoding circuit is ready, it will be followed by the VQC, without any measurement.

Figure 3: A typical embedding circuit. We have used the encoding of a 0 image as an example.

5.3. MNIST Results

The clusters of the encoded density matrix are shown in Figure 4, with the help of a t-SNE embedding,
for image resolutions ranging from 8-by-8 to 12-by-12 pixels. This demonstrates that the embedding
performs quite well in cluster separation even with considerably low image resolutions.
In Figure 5, the epoch-wise accuracy is plotted while training the VQC layers for 8-by-8 images (64

features), with the proposed encoding scheme and amplitude encoding, respectively. The proposed
encoding matches or surpasses amplitude encoding in the accuracy of results for low resolution of
images, while being more efficient in terms of circuit depth.

The various metrics across feature size are shown in Table 1. When a single layer of the VQC is used,
the proposed method outperforms amplitude encoding (except in the 8-qubit case). However, with a
more expressive two-layer VQC, the difference between the two encoding methods diminishes, and the
choice of encoding circuit becomes less critical. Nonetheless, using fewer gates remains advantageous
for execution on real devices, as it reduces noise, an effect that will be demonstrated in Section 5.5.
In fact, the number of gates needed in the proposed method is much lower than those applied in
amplitude encoding. Indeed, if the Mottonen state preparation [4] is applied to implement the amplitude
embedding, the CNOT and rotation counts are:

• 6 qubits: 228 CNOT, 251 Rotations,
• 7 qubits: 480 CNOT, 507 Rotations,
• 8 qubits: 980 CNOT, 1019 Rotations.

On the contrary, the total gate count of the proposed method is:

• 64 features (6 qubits): 13 CNOT, 64 rotations at most (one for each feature, but consecutive
rotations can be merged),



Figure 4: A visualization of the embedded density matrices using t-SNE, across different system sizes.

Figure 5: Epoch-wise accuracy curves during training of VQC with 1 layer, for 8 × 8 MNIST images.

• 100 features (7 qubits): 14 CNOT, 100 rotations at most,
• 144 features (8 qubits): 24 CNOT, 144 rotations at most,
• 256 features (8 qubits): 47 CNOT, 256 rotations at most.



Note that amplitude encoding requires padding of the feature vector to match a power of 2, but the
proposed method does not require such padding.

𝑁𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠 𝑁𝑞𝑢𝑏𝑖𝑡𝑠 𝑁𝑙𝑎𝑦𝑒𝑟𝑠 Encoding Accuracy class Precision Recall
f1-

score

8 × 8 6

1
Amplitude 77% 0 0.67 0.98 0.80

1 0.97 0.59 0.73

Proposed 93% 0 0.96 0.89 0.92
1 0.91 0.97 0.94

2
Amplitude 97% 0 0.97 0.98 0.97

1 0.97 0.96 0.97

Proposed 97% 0 0.97 0.96 0.97
1 0.97 0.98 0.97

10 × 10 7

1
Amplitude 62% 0 0.58 0.70 0.63

1 0.68 0.56 0.61

Proposed 91% 0 0.90 0.91 0.91
1 0.92 0.91 0.92

2
Amplitude 87% 0 0.78 0.99 0.87

1 0.99 0.76 0.86

Proposed 92% 0 0.93 0.90 0.91
1 0.90 0.94 0.92

12 × 12 8

1
Amplitude 94% 0 0.90 0.98 0.94

1 0.98 0.91 0.94

Proposed 97% 0 0.96 0.96 0.96
1 0.97 0.97 0.97

2
Amplitude 97.5% 0 0.97 0.97 0.97

1 0.98 0.97 0.97

Proposed 97% 0 0.98 0.96 0.97
1 0.97 0.98 0.97

16 × 16 8

1
Amplitude 95% 0 0.90 1.0 0.95

1 1.0 0.91 0.94

Proposed 54% 0 0.50 0.74 0.60
1 0.62 0.36 0.46

2
Amplitude 95% 0 0.95 0.94 0.95

1 0.94 0.95 0.94

Proposed 84% 0 0.86 0.79 0.82
1 0.83 0.89 0.86

Table 1
Comparison of metrics for different feature size

5.4. MedMNIST Results

In this case, a learning rate of 0.01 and a batch size of 32 are used. For each result, the training is
executed 5 times and the mean results are taken. For the Tissue and OCT datasets, a smaller training
set of 3500 samples (1750 samples for each class) is used to reduce the encoding circuit generation
time. The results obtained with the proposed method are compared to those achieved using amplitude
encoding. Only one layer of the circuit shown in Fig. 2 is used.

Table 2 reports the test set accuracies on various MedMNIST datasets, where the images are rescaled
to 8 × 8. The class-wise precision, recall, and f1-score of a random execution are presented. An
improvement in performance cannot be observed. In fact, both methods tend to predict a single class
for all examples, indicating a failure to learn meaningful patterns. The only improvement is visible in
the organA dataset; while amplitude encoding still predicts a single class, the proposed method begins
to learn.
However, with 16 × 16 images, the differences between the two encoding methods become visible,

as shown in Table 3. Indeed, for Chest, Breast, and OrganC datasets, the proposed encoding method



𝑁𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠 𝑁𝑞𝑢𝑏𝑖𝑡𝑠 Dataset Encoding Accuracy class Precision Recall
f1-

score

8 × 8 6

Chest
Amplitude 54% 0 0.54 0.65 0.59

1 0.49 0.38 0.43

Proposed 53% 0 0.53 1.0 0.69
1 0.55 0.001 0.002

Breast
Amplitude 73% 0 0.0 0.0 0.0

1 0.73 1.0 0.84

Proposed 73% 0 0.0 0.0 0.0
1 0.73 1.0 0.84

oct
Amplitude 55% 0 0.59 0.32 0.41

1 0.53 0.78 0.64

Proposed 50% 0 0.0 0.0 0.0
1 0.50 1.0 0.67

Tissue
Amplitude 44% 0 0.89 0.39 0.54

1 0.14 0.67 0.23

Proposed 87% 0 0.87 1.0 0.93
1 0.0 0.0 0.0

Pneumonia
Amplitude 62% 0 0.0 0.0 0.0

1 0.62 1.0 0.77

Proposed 62% 0 0.0 0.0 0.0
1 0.62 1.0 0.77

OrganA
Amplitude 58.5% 0 0.58 1.0 0.72

1 0.0 0.0 0.0

Proposed 67% 0 0.78 0.63 0.70
1 0.61 0.76 0.68

OrganC
Amplitude 66% 0 0.66 1.0 0.79

1 0.0 0.0 0.0

Proposed 66% 0 0.66 1.0 0.79
1 0.0 0.0 0.0

OrganS
Amplitude 65% 0 0.65 1.0 0.79

1 0.0 0.0 0.0

Proposed 65% 0 0.65 1.0 0.79
1 0.0 0.0 0.0

Table 2
8 × 8 MedMNIST results on the test set with different dataset.

performs similarly to the amplitude encoding in terms of accuracy; on the other hand, amplitude
encoding performs better with the Tissue and OCT datasets, due to the fact that the smaller training
set loses the true member of the triplet for each class. However, for the Tissue dataset, the proposed
encoding method starts recognizing some members of the positive class, even though in the test set
there are more negative than positive examples. Furthermore, the proposed method achieves better
accuracy with the Pneumonia, OrganA, and OrganS datasets. In this case, while amplitude encoding
does not learn meaningful patterns and still predicts the same class every time (such as in the 8 × 8
scenario), the proposed encoder is starting to learn both classes.

With 28 × 28 images; the proposed encoding shows a larger improvement in recognizing both classes,
as shown in Table 4. Now, it achieves better results also on the OrganC and the Tissue datasets and, in
general, gives a more balanced f1-score across classes than the amplitude encoding.
In Figure 6, an example of training on the OrganA validation set is presented.
Furthermore, the MNIST dataset is trained with only 3500 samples to understand how the smaller part

of the training set affects the results for the Tissue and OCT datasets. The proposed method achieves
an accuracy of 75%, while the amplitude encoding reaches approximately 80%. These results show a
performance deterioration due to the absence of the original anchor, positive, and negative images in
the reduced training set. Therefore, other techniques will be explored to reduce the computational time.



𝑁𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠 𝑁𝑞𝑢𝑏𝑖𝑡𝑠 Dataset Encoding Accuracy Class Precision Recall
f1-

score

16 × 16 8

Chest
Amplitude 52.5% 0 0.55 0.63 0.59

1 0.50 0.41 0.45

Proposed 52% 0 0.55 0.64 0.59
1 0.49 0.40 0.44

Breast
Amplitude 62% 0 0.38 0.71 0.50

1 0.85 0.58 0.69

Proposed 53% 0 0.30 0.57 0.40
1 0.77 0.52 0.62

oct
Amplitude 54% 0 0.54 0.57 0.56

1 0.54 0.51 0.53

Proposed 50% 0 0.75 0.01 0.02
1 0.50 1.00 0.67

Tissue
Amplitude 66% 0 0.87 0.71 0.78

1 0.12 0.27 0.17

Proposed 82% 0 0.87 0.93 0.90
1 0.11 0.05 0.07

Pneumonia
Amplitude 62% 0 0.0 0.0 0.0

1 0.62 1.0 0.77

Proposed 59% 0 0.46 0.76 0.57
1 0.76 0.47 0.58

OrganA
Amplitude 58.5% 0 0.58 1.0 0.72

1 0.0 0.0 0.0

Proposed 60% 0 0.6 0.90 0.72
1 0.6 0.19 0.29

OrganC
Amplitude 66% 0 0.66 1.0 0.79

1 0.0 0.0 0.0

Proposed 66% 0 0.66 1.0 0.79
1 0.0 0.0 0.0

OrganS
Amplitude 65% 0 0.65 1.0 0.79

1 0.0 0.0 0.0

Proposed 58% 0 0.64 0.88 0.74
1 0.32 0.10 0.16

Table 3
16 × 16 MedMNIST results on the test set with different dataset.

Figure 6: Accuracy on 8 × 8 organA validation dataset during training.

5.5. Real Hardware Execution

The produced encoding circuit with the trained VQC for 8×8MNIST images is tested on Rigetti Ankaa-3
and IQM Garnet quantum computers, through AWS Braket. Each circuit is executed with 1024 shots.
The first 500 samples of the test set are taken into account. In Table 5 the accuracy, precision, recall, and



𝑁𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠 𝑁𝑞𝑢𝑏𝑖𝑡𝑠 Dataset Encoding Accuracy Class Precision Recall
f1-

score

28 × 28 10

Chest
Amplitude 54% 0 0.54 0.96 0.69

1 0.60 0.06 0.11

Proposed 52% 0 0.54 0.68 0.60
1 0.48 0.33 0.40

Breast
Amplitude 49% 0 0.24 0.43 0.31

1 0.71 0.51 0.59

Proposed 46% 0 0.19 0.31 0.24
1 0.67 0.52 0.59

oct
Amplitude 51% 0 0.52 0.37 0.43

1 0.51 0.65 0.57

Proposed 50% 0 0.50 0.48 0.49
1 0.50 0.52 0.51

Tissue
Amplitude 38% 0 0.88 0.34 0.49

1 0.13 0.69 0.22

Proposed 68% 0 0.87 0.75 0.80
1 0.12 0.23 0.15

Pneumonia
Amplitude 62% 0 0.0 0.0 0.0

1 0.62 1.0 0.77

Proposed 55% 0 0.42 0.44 0.43
1 0.66 0.64 0.65

OrganA
Amplitude 58.5% 0 0.58 1.0 0.72

1 0.0 0.0 0.0

Proposed 63% 0 0.66 0.74 0.69
1 0.58 0.49 0.53

OrganC
Amplitude 66% 0 0.66 1.0 0.79

1 0.0 0.0 0.0

Proposed 54% 0 0.69 0.53 0.60
1 0.37 0.54 0.44

OrganS
Amplitude 65% 0 0.65 1.0 0.79

1 0.0 0.0 0.0

Proposed 58% 0 0.70 0.65 0.67
1 0.43 0.49 0.46

Table 4
28 × 28 MedMNIST results on the test set with different dataset.

f1-score are reported. On Rigetti Ankaa-3, the results are worse due to noise, as the encoding circuit still
has a high depth, even though the number of rotations and CNOT gates is lower than in the amplitude
encoding. However, on IQM Garnet, the noise does not affect the results. The accuracy is identical to
that obtained in simulation; there are only minor variations in precision, recall, and f1-score.

𝑛𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠 𝑁𝑞𝑢𝑏𝑖𝑡𝑠 Hardware Accuracy Class Precision Recall f1-score

8 × 8 6

Rigetti Ankaa-3 50% 0 0.33 0.14 0.19
1 0.78 0.54 0.64

IQM Garnet 96.8% 0 0.97 0.95 0.96
1 0.97 0.98 0.97

Simulation 96.8% 0 0.99 0.93 0.96
1 0.95 0.99 0.97

Table 5
Comparison of accuracies on simulation and real hardware during the testing of the MNIST dataset.



6. Conclusion

In this work, a novel quantum encoding scheme based on triplet loss is proposed. Specifically, the
gates applied to the encoding circuit are selected to maximize the distance between different classes
and minimize the distance between samples of the same class. The generated encoding circuit has a
lower depth than amplitude encoding while using the same number of features, and it does not lose any
information, unlike angle encoding, which uses only a few features to encode the data.

This encoding scheme is tested on various binary classification tasks. The MNIST dataset and various
MedMNIST datasets are taken into account to evaluate the encoding performance. Furthermore, the
method is also evaluated on real quantum hardware to determine the impact of noise on the results.

The proposed encoding scheme is very successful in class separation for simple and distinctive image
datasets like the MNIST dataset, and for low-resolution images achieves better results than amplitude
encoding with a much lesser circuit depth. For more complex image datasets like the MedMNIST, where
variations between images of different classes are much harder to spot, the encoding scheme performs
more poorly when low-resolution images are used; however, at high enough resolutions, it starts to
capture these inter-class differences better.
Future work will involve modifying the encoding generator to further enhance performance. In

particular, the current ”hard” selection of triplets is too simplistic, and more complex image datasets are
likely to benefit from a more effective triplet-mining strategy. Additionally, the ”greedy” algorithm for
adding gates may be refined to incorporate strategies that better capture correlations among different
features and to reduce the encoding circuit generation time, as computational time increases with
higher-resolution images or larger datasets.

Currently, when different gate configurations applied to different qubits yield the same optimal loss,
the gates acting on the first qubits are preferentially selected. As a result, a disproportionately high
number of operations is applied to the first qubits, leading to an increased circuit depth, and making
the other qubits redundant. This issue will be addressed in the future.
Furthermore, an evaluation of deeper VQC will be performed, and the algorithm will also be tested

in multiclass scenarios.
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