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Abstract
This paper presents a hybrid quantum-classical pipeline for multiclass classification, integrating a triplet autoen-
coder (T-AE) with quantum circuits inspired by tensor network structures. The T-AE compresses high-dimensional
input data into a semantically structured latent space, thereby enhancing class separability through triplet loss
regularisation. These latent embeddings are then mapped onto quantum states using a modified angle encoding
scheme, after which they are processed by parameterised quantum circuits inspired by Matrix Product States
(MPS) and Tree Tensor Networks (TTN). This architecture captures both local and global correlations while
maintaining a reduced number of parameters. Experimental results on the MNIST dataset demonstrate that
the proposed pipeline achieves superior accuracy to PCA-based baselines, particularly in scenarios with limited
data. These results highlight the potential of combining structured latent representations with tensor-inspired
quantum models for efficiently addressing complex classification tasks.
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1. Introduction

Tensor networks (TNs) have emerged as a modern numerical method for representing and processing
high-dimensional data in computational tasks for a growing number of applications. Their main strength
lies in the ability to reduce both data complexity and computational cost through the decomposition
of global objects into networks of locally connected components. Originally developed in the field of
quantum many-body physics, structures such as matrix product states (MPS) and tree tensor networks
(TTN), have proven effective at capturing complex correlations with a reduced number of parameters,
which gives a clear demonstration of their ability in providing efficient computation. This makes them
a scalable alternative to dense representations in classical machine learning systems[1, 2]. TNs have
more recently been explored in machine learning as tools for building expressive and compact models
that perform structured feature selection through their topology and bond dimensions [3].
It has been proved that tensor networks can represent losslessly the 2𝑛 quantum states of a n-qubit

circuit [4]. They are able to accommodate quantum properties, such as entanglement, thanks to bond
dimensions and TN topologies [5]. Additionally, contraction operations on small-rank tensors allows to
simulate the property the quantum superposition [6]. This has inspired the design of efficient quantum
models and opened to new approaches in quantum machine learning (QML). One of the main results
has been the development of variational models that incorporate physical constraints while maintaining
learning capabilities [7]. This synergy is particularly promising in the current Noisy Intermediate-Scale
Quantum (NISQ) era, where circuit depth and qubit connectivity are limited [8].
The literature shows that tensor networks have been particularly successful in supervised learning

[1], especially in classification problems. Previous studies have demonstrated the advantages on binary
classification [3], while more intricate tasks are still to be explored. Probably, the first one of this list
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is represented by multi-class classification, where one cannot design or employ directly approaches
originally developed for binary case, since the generalization of methods is not trivial.

2. Contribution

Multi-class classification represents the problem of categorization which is more frequent finding in
the real-world applications and represents the increasing of the challenge for binary classificaiton in
QML. In [9] , the authors apply tensor network-based circuit architectures to digit recognition using
a subset of the MNIST dataset and quantum phase recognition. Results for digit recognition were
compared against classical benchmarks. The circuits tested were based on tree tensor networks (TTN)
and multiscale entanglement renormalization ansätze (MERA). Two approaches for implementing the
multi-class setup were explored: amplitude decoding, which extracts predictions from computational
basis measurements, and qubit decoding with binary labels, which computes predictions using the
expectation value of single-qubit observables. The study focused on circuits utilizing eight qubits.
Another approach in this field is proposed by Murota et al.[10] propose the forest tensor network

classifier, a framework comprising multiple TTN classifiers that form an intermediate representation
used subsequently for classification.

As to the binary classification with tensor networks, [11] provides several contributions through an
hybrid method. Firstly, they propose a kernel encoding of quantum data, XX entanglement gate to
share the correlation between adjacent qubits, and use stochastic gradient descent to avoid the analysis
gradient too costly.
There is growing list of quantum-inspired/based versions of CNN methods for multi-class classifi-

cation. [12] proposed a quantum CNN architecture for multiclass image classification, using a new
convolutional architecture using 3-qubit gates, a new pooling architecture that leverages the reversibil-
ity of quantum gates and tested a set of configurations for the densely connected layer. In [13], after
convolutional layers, a few fully connected layers are followed by a quantum variational circuit, whose
outputs are passed to a softmax loss function and optimized by adjusting the quantum parameters. A
modified quantum perceptron is also introduced, enabling high classification accuracy with a compact
quantum circuit.
It is evident that the approaches that have been employed with great success are those that utilise

Quantum Convolutional Neural Networks (QCNN) for multiclass image classification by analysing
either an increasing number of classes [14, 15] or different domains [16], achieving good performance.
A different approach is proposed by Shi et al.[17], that involves the use of a convolutional neural

network (CNN) to extract meaningful information, in combination with a quantum neural network
(QNN) to handle the multi-class classification problem.

In this field, we also have the paper proposed by Senokosov et al.[18]. This paper sets out a two-hybrid
architecture that incorporates a quantum layer inside the net, using the quantum properties to enhance
the performance of the model with fewer parameters.

In this work, we address the multiclass classification task by developing a hybrid-quantum machine
learning pipeline that coherently integrates classical and quantum techniques. Specifically, we explore
the effective employment of quantum tensor network circuits as variational models for distinguishing
between multiple classes.

To prepare the high-dimensional input data for quantum processing, we use a T-AE, so trained with
a triplet loss function. This approach enables us to reduce the dimensionality of the original feature
space while imposing a structure that draws samples belonging to the same class closer together and
pushes samples from different classes further apart. This makes the downstream classification problem
more tractable and aligns the data with the constraints of quantum hardware by reducing the number
of qubits required for encoding.

We then feed this compact, semantically structured latent representation into quantum circuits that
leverage the inherent inductive biases of tensor network topologies. Our aim is to demonstrate that it is
possible to achieve competitive multiclass classification performance with fewer parameters than more



Figure 1: Autoencoder trained using triplet loss.

generic quantum variational models. The combination of advanced feature learning and architecturally
motivated quantum circuits has been demonstrated to facilitate scalable, resource-efficient quantum
machine learning solutions that are capable of addressing complex multiclass scenarios.

3. Method

As mentioned earlier, our approach starts with transforming the original, high-dimensional input data
into a more compact representation using an autoencoder. The autoencoder is specifically trained to
minimise a combined loss function that incorporates a triplet loss component designed to enforce a
geometry in which samples of the same class are pulled closer together and samples of different classes
are pushed apart, as well as a reconstruction term based on mean squared error (MSE). The total loss is
defined as follows:

ℒ = ℒ𝑡𝑟 𝑖𝑝𝑙𝑒𝑡 + 𝛼 × ℒ𝑀𝑆𝐸 (1)

where 𝛼 balances the reconstruction penalty relative to the triplet term.
The triplet loss function was originally proposed by Schroff et al.[19]. This loss function is designed

to operate on three samples simultaneously: the current training example (anchor), another sample
from the same class (positive), and a sample from a different class (negative). The aim is to ensure that
the distance between the anchor and the positive is smaller than the distance between the anchor and
the negative by at least a predefined margin. Formally, it is defined as:

ℒ𝑡𝑟 𝑖𝑝𝑙𝑒𝑡 =
𝑁
∑
𝑖
[∥ 𝑓 (𝑥𝑎𝑖 ) − 𝑓 (𝑥𝑝𝑖 ) ∥22 − ∥ 𝑓 (𝑥𝑎𝑖 ) − 𝑓 (𝑥𝑛𝑖 ) ∥22 +𝛼]+ (2)

where 𝑥𝑎𝑖 is the anchor, 𝑥
𝑝
𝑖 is the positive and 𝑥𝑛𝑖 is the negative samples, and [⋅]+ mean that only the

positive value are considered, ensuring the hinge loss behaviour.
For the reconstruction component, we use the standard mean squared error (MSE) loss function,

which is widely used in autoencoder applications to measure the similarity between the network’s
output 𝑥̂𝑖 and the original input 𝑥𝑖. This term ensures that the autoencoder maintains the ability to
faithfully reproduce the input data, in addition to structuring the latent space through the triplet
objective. Formally, the MSE is defined as:

ℒ𝑀𝑆𝐸 = 1
𝑛

𝑛
∑
𝑖=1

(𝑥𝑖 − 𝑥̂𝑖)
2 (3)



Figure 2: Example of a Matrix Product State (MPS) quantum circuit, where local parameterized unitaries 𝑈𝑘(𝜃𝑘)
act sequentially on overlapping subsets of qubits, propagating correlations along the chain.

The combination of this reconstruction loss with the triplet loss serves to guide the autoencoder in its
learning of latent representations that are discriminative across different classes, thereby ensuring the
preservation of the essential input data features, as visually summarised in Figure 1, which depicts the
overall architecture and training objective of our T-AE.
Once the data has been transformed into a compact latent space by means of the T-AE, we turn

our attention to modeling the relationships present within this reduced representation. To achieve
this, we draw inspiration from well-established methods in classical tensor methods, such as Matrix
Product States (MPS) and Tree Tensor Networks (TTN). These frameworks are known for their ability to
decompose complex systems into structured forms that efficiently capture correlations across different
components. Translating these ideas into the quantum domain, we design circuits that reflect the same
underlying principles.
Instead of applying generic, fully connected quantum models to this latent space, we deliberately

exploit the taxonomic properties of tensor networks, which naturally organize computations into
sequential or hierarchical patterns. We implement these patterns as parameterized quantum circuits,
arranging local unitary operations according to specific tensor network topologies like MPS and TTN.
This architectural choice allows us to propagate information and build correlations throughout the
system in a controlled and interpretable manner, aligning with the structural priors imposed by the
original tensor network formulations. In doing so, we aim to harness the efficiency and expressiveness
of tensor networks directly within our hybrid-quantum learning pipeline, tailoring it to handle the
intricate patterns necessary for robust multiclass classification.
Formally, we can denote each local unitary block in the circuit as 𝑈𝑘(𝜃𝑘), where 𝜃𝑘 represents the

associated set of variational parameters. The specific tensor network topology dictates the arrangement
of these local unitaries and the establishment and propagation of correlations, such as entanglement,
across the system. Within this framework, the global quantum state prepared by the circuit can be
expressed as follows:

|𝜓 (Θ)⟩ = ∑
𝑘∈ℰ

𝑈𝑘(𝜃𝑘) |0⟩
⊗𝑛 (4)

where ℰ denotes the set of connections (or edges) dictated by the tensor network topology. Each 𝑈𝑘(𝜃𝑘)
acts locally on one or more qubits and contributes to building up the global quantum state. The symbol
∑ here does not represent a simple algebraic product, but rather a structured composition of unitary
operations, explicitly ordered and interconnected according to the topology of ℰ. It serves as a compact
way to express how the network orchestrates the local transformations into a coherent global circuit.

Figure 2 presents an example of the proposed formalisation, illustrating how local parameterized
unitaries are sequentially applied according to the MPS topology.
Having formally introduced the tensor network framework and described the T-AE that produces

compact latent representations, we will now detail the feature map that embeds these vectors into
quantum states. This completes the set of building blocks required to fully specify the quantum circuit
architecture proposed in this work.
Specifically, we use a variant of the standard angle encoding scheme, preceding each data-driven

rotation 𝑅𝑌 with a Hadamard gate. This modification initialises each qubit in a superposition spanning
the entire Hilbert space. This choice ensures that subsequent parameterised operations have access to a
richer quantum state manifold, which could enhance the circuit’s ability to model complex correlations



Figure 3: The MPS fully connected block proposed in this work. This section of the circuit sequentially
entangles pairs of qubits, directly interrelating all components of the latent embedding. This ensures that
each part of the input contributes to the global quantum state, capturing widespread correlations.

within the input data.
Melo et al.[20] and Monnet et al.[21] have already examined a similar type of feature map in other

quantum machine learning contexts.
We now bring together all the elements previously introduced into a unified quantum circuit architec-

ture. This design integrates the latent representations, the feature map, and the tensor network-inspired
structures into a single workflow tailored for multiclass classification.
The circuit is organized into three main stages, each serving a distinct purpose:

1. Feature map: As previously mentioned, it begins by embedding the latent vector into quantum
states using our Hadamard angle encoding. This initialises each qubit into a rich superposition,
preparing the system to capture intricate correlations through interference and entanglement.

2. Fully connected MPS section: The next stage of the circuit employs a sequence of entangling oper-
ations arranged in a fully connected manner, inspired by Matrix Product States. The propagation
of correlations in a conventional MPS is primarily conducted sequentially along a chain, whereas
our design propagates correlations back to the initial qubit.
This approach is driven by the nature of the input provided. Each qubit encodes an embedding
component extracted from the same original image. This ensures that all qubits contain relevant
information. Closing the chain in this way ensures that correlations are distributed across
the entire register, allowing the circuit to capture global dependencies spanning the full set of
embeddings.
The model is present in figure 3.

3. TTN hierarchy with measurements: The final segment of the circuit is inspired by Tensor Tree
Networks (TTNs) and implements a tree-like structure, progressively merging and propagating
information through successive layers of local unitaries. This hierarchical composition concen-
trates correlations into fewer qubits as we move up the structure, resulting in a compact set of
qubits encapsulating the most globally aggregated features.
At the end of this process, we perform explicit measurements on these final qubits. The number
of qubits measured is determined by the multiclass nature of the classification task. For example,
when classifying four categories, we read the states of the last two qubits and map them onto
two classical registers. Similarly, for problems involving six, eight or ten classes, we extend the
measurement to the last four qubits and use four classical registers to capture a richer set of
outcomes. This strategy enables us to adapt the quantum-classical interface to the complexity of
the multiclass problem by allocating more measurement capacity as the number of categories
increases.
We are fully aware that measuring only a subset of the qubits results in the partial collapse of the
overall quantum state and the inevitable loss of some quantum information. However, in this
work, our primary aim is to preserve and exploit the hierarchical informational structure imposed
by the tensor network by focusing our measurements precisely on the qubits at the top of the
TTN hierarchy. These qubits carry the culmination of correlations and entanglement propagated
through all preceding layers, effectively distilling the most globally representative features of the
input data.
By measuring these final qubits explicitly, we extract maximally aggregated information according
to the multi-scale architecture of the tensor network. For instance, when measuring the final four
qubits of the circuit, up to 16 possible output states are inherently obtained. In our multiclass



Figure 4: Proposed TTN-inspired quantum circuit used for multiclass classification. The hierarchical structure
progressively aggregates information from the fully connected MPS stage, routing correlations upwards through
successive layers of local unitaries. Measurements are performed on the final qubits at the top of the hierarchy,
encapsulating the most globally representative features.

experiments, we typically target a smaller set of categories, such as four, six, eight or ten classes.
To map the raw quantum measurement outcomes into the predefined class labels, we incorporate
an additional interpret function. This strategy enables us to adapt the expressive capacity of the
quantum circuit to the specific classification task at hand while maintaining the critical flow of
hierarchical information enabled by the TTN structure.
This architecture is represented by the figure shown in Figure 4.

The interpret function that we use is designed to take each bitstring obtained from quantum measure-
ments and perform a simple modulo operation with respect to the number of target classes. This ensures
that each outcome is consistently assigned to one of the predefined class labels, regardless of how
many distinct bitstring outcomes can be produced by measuring the final qubits. This strategy offers a
straightforward, computationally efficient method of linking the quantum output space to the classical
multiclass decision space, thus seamlessly integrating the final stage of our quantum classification
pipeline.

4. Experiments

For our experimental evaluation, we implemented the proposed quantum tensor network models using
the Qiskit [22] framework along with the Qiskit Machine Learning extension [23], which provides
convenient abstractions for building variational quantum algorithm (VQA) and integrating them into
hybrid learning pipelines. As a benchmark dataset, we selected MNIST[24], a widely used collection of
handwritten digit images that offers a standard testing ground for multiclass classification algorithms.
This combination of robust quantum computing libraries and a well-understood dataset allows us to
rigorously assess the performance and behavior of the proposed architectures under realistic conditions.
In the quantum circuits of the tensor network designed for this study, the local unitary blocks 𝑈𝑘
introduced in our formalisation are instantiated as RealAmplitudes circuits on two-qubit with a single
repetition. This ensures that each core block can generate entanglement among the qubits on which
it acts, providing the essential mechanism for propagating correlations throughout the network. The
effect of these RealAmplitudes circuits in establishing entanglement and mixing the input features can
also be seen in Figures 3 and 4. For our quantum experiments, we utilized the Qiskit Aer simulator
backend, which facilitates high-fidelity emulation of quantum circuits on classical hardware. This
choice enables scalable and reproducible testing of our variational quantum models, free from the noise
and hardware limitations associated with current NISQ devices.

During the training phase, we constructed our datasets by selecting varying numbers of samples per
class from the original MNIST training set. In particular, we explored training regimes with 50, 100, 150,
200, 250, and 300 examples per class to investigate how the model’s performance evolves as the number
of available examples increases. For each multiclass scenario, we included only the digits corresponding



Figure 5: Proposed pipeline: starting with the image flattening, then scaling and dimensionality reduction with
AE, followed by normalisation in quantum states to give the model this representation.

to the number of target classes under consideration; for instance, when tackling a four-class problem,
we used samples drawn from the first (the 0 digit) four digits (the 3 digit). To thoroughly evaluate
generalisation, we retained all available test samples per class from the MNIST test set, which typically
contains around 1, 000 examples for each digit. This experimental design aligns with the concept of
few-shot learning [25], as the training set remains relatively small compared to the extensive test set,
thereby highlighting the model’s ability to learn robust decision boundaries even with limited data.
First, the T-AE was trained on these normalized training examples, where pixel values were scaled

by dividing by 255 to lie within the range [0, 1]. We set 𝛼 = 1, which means that the reconstruction
loss was given the same importance as the triplet loss during training, thus balancing the objective of
accurately reconstructing the input data with the objective of structuring the latent space to reflect class
similarities. Once the latent space representations had been learned, the embeddings were extracted
and further normalised to be within the interval [0, 𝜋]. This step was specifically designed to align
with the angle encoding requirements used in the quantum circuit. We then trained the VQA on these
normalised latent vectors, using the COBYLA optimiser for 1, 000 iterations.

During the testing phase, we evaluated the trained quantum models using the full set of test samples
available for each selected class in the MNIST dataset. This approach ensures a rigorous assessment
of the generalisation capabilities of our quantum tensor network architectures, which is particularly
important given the relatively limited number of training samples employed. The latent embeddings
for these test inputs were generated by passing the normalised images through the previously trained
T-AE and scaling them to the range [0, 𝜋], as was done during training. Predictions were obtained by
feeding these latent representations into the trained variational quantum circuits. The final class labels
were then assigned using the interpret function described earlier.

The proposed pipeline is illustrated in Figure 5, which shows the process from data pre-processing
to quantum classification. Within this framework, we conducted a comparative analysis to evaluate
the effectiveness of our latent space based autoencoder. Specifically, we replaced the autoencoder with
the standard dimensionality reduction technique of Principal Component Analysis (PCA) and repeated
classification experiments using the same quantum tensor network architecture.
The aim of this comparison is to assess whether training a compact latent representation using a

T-AE can outperform conventional linear methods such as PCA, which are commonly used in hybrid
quantum-classical machine learning pipelines. By keeping the quantum architecture the same and only
varying the feature extraction mechanism, we can isolate the autoencoder’s contribution and evaluate
its effect on model performance in settings with limited data.

Table 1 compares the classification accuracy achieved with standard PCA and the proposed T-AE as
dimensionality reduction strategies. As can be seen, the T-AE consistently outperforms PCA across all
configurations, particularly in complex scenarios or when data is limited.
In the four-class task, the T-AE achieves its best performance with 200 or 300 training samples

per class, reaching 97.19% and 98.00%, respectively. While PCA yields comparable accuracy with 100
samples (86.05%), its performance is inconsistent and deteriorates rapidly with 150 samples (69.64%),
indicating a lack of robustness. In contrast, the T-AE maintains high accuracy across different sample
sizes, confirming the stability of the learned representations.

The difference becomes even more striking in the six-class task. Although PCA struggles to surpass
65.5%, even with 200 samples, T-AE achieves 93.22% under the same conditions and delivers consistent



Samples per class 4 Classes 6 Classes
PCA Triplet AE PCA Triplet AE

50 81.09 78.42 56.66 77.62
100 86.05 94.49 60.11 67.73
150 69.64 92.13 53.86 90.17
200 82.22 97.19 65.54 93.22
250 80.78 96.92 59.71 81.46
300 80.30 98.00 60.85 86.40

Table 1
Classification accuracy (%) for 4 and 6 classes using PCA and T-AE

performance above 86% from 150 samples onward. Even in the most data-scarce scenario of 50 samples,
the autoencoder achieves a substantial improvement on PCA (77.62% versus 56.66%).
These results suggest that the proposed T-AE learns more expressive latent features and provides a

more stable and scalable representation as the number of classes and samples increases. This supports its
suitability for integration with quantum tensor networks, particularly for low-data and high-complexity
classification tasks.

5. Conclusion

In this study, we demonstrated that combining a compact, semantically rich latent representation
produced by a T-AE with a quantum circuit architecture inspired by tensor network structures can
effectively address complex multiclass classification tasks. Leveraging the expressiveness of hierarchical
quantum models and the discriminative power of the learned latent space enabled us to achieve high
classification performance, even in low-data regimes.
The proposed hybrid circuit has demonstrated robust generalisation capabilities across various

classification settings. Our results confirm that integrating structured quantum circuits with meaningful
input representations enables the efficient use of quantum resources by reducing the number of trainable
parameters, while achieving performance that is competitive with, and sometimes superior to, that of
standard baselines and classical dimensionality reduction approaches such as PCA.
These findings reinforce the idea that quantum tensor network models are theoretically elegant

and practically viable tools for quantum machine learning, particularly when dealing with complex
decision boundaries or limited training data. The combination of expressive quantum architectures
and task-specific encoding strategies suggests promising directions for future developments in scalable,
efficient quantum learning systems.
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