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Abstract
In this work1, we follow an optimization strategy for beam systems using heuristic techniques such as Quantum
Annealing (QA) and Simulated Annealing (SA). The optimization is carried out in two stages: first, minimizing the
Hamiltonian with respect to beam displacements to determine equilibrium configurations under external loads;
second, iteratively optimizing the cross-sectional areas of the beam members to maximize system stiffness while
maintaining volume constraints. The approach combines modern quantum-inspired techniques with classical
computational methods to efficiently explore the solution space. Preliminary numerical results are given at the
end.
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1. Introduction

The optimization of structural systems, particularly beam systems, is a longstanding and critical problem
in engineering design. The goal is to enhance performance metrics such as strength, stiffness, or material
efficiency while minimizing resource use. Beam systems—composed of straight members connected at
joints—are fundamental in applications ranging from bridges to spacecraft and micro-lattice structures.

Traditional simulation tools such as the Finite Element Method (FEM) provide accurate predictions
of displacements and internal forces, but they become computationally demanding as the number of
elements, load cases, and design variables grows. Likewise, gradient-based optimization techniques
(e.g., Sequential Linear Programming, Sequential Quadratic Programming, or interior-point methods)
can be very efficient near a local optimum yet often struggle with highly non-convex, discrete, or
multi-modal design spaces typical of topology and sizing optimization. Constraint handling, sensitivity
discontinuities, and the curse of dimensionality further complicate their use.

Heuristic and stochastic search methods—including Genetic Algorithms, Particle Swarm Optimization,
Simulated Annealing (SA), and more recently quantum-inspired and quantum metaheuristics—have
therefore gained traction. These methods are relatively insensitive to non-convexity and can escape
shallow local minima, making them attractive for high-dimensional combinatorial formulations. Among
them, Quantum Annealing (QA) stands out as a hardware-accelerated heuristic tailored to problems
expressible as Quadratic Unconstrained Binary Optimization (QUBO) or, equivalently, Ising models. QA
systems (e.g., D-Wave processors) implement an analog realization of adiabatic quantum computation,
promising advantages in exploring rugged energy landscapes by exploiting quantum tunneling and
massive parallelism at the hardware level. Our work builds on the recent paper [1] where optimization
of truss systems with axial strength only was studied.

1.1. Why QUBO?

Many engineering design problems ultimately boil down to choosing one option among a finite set for
each of many coupled decisions: select or discard a member, assign a cross-sectional size from a catalog,
toggle load paths, etc. Encoding such discrete choices as binary variables is natural. The challenge is to
express the objective and constraints using only linear and quadratic terms in those binaries—which is
precisely what a QUBO model requires. Formally, a QUBO minimizes

min
x∈{0,1}𝑛

x𝑇𝑄x+ c𝑇x+ 𝑐0, (1)

where 𝑄 is an 𝑛× 𝑛 real matrix capturing pairwise interactions, c is a linear coefficient vector, and 𝑐0
is a constant. Constraints (e.g., volume, stress, displacement limits) are typically cast into the objective
through penalty terms with tunable Lagrange multipliers. Equality constraints can be enforced with
squared penalties, while inequalities can be relaxed or reformulated using slack binaries. Because most



available quantum annealers accept either QUBO or Ising Hamiltonians (binary spins 𝑠𝑖 ∈ {−1, 1}),
reducing the engineering problem to this canonical form is a prerequisite for harnessing these machines.

A QUBO representation offers several practical benefits beyond hardware compatibility:

• Unified encoding of objectives and constraints, allowing heterogeneous physical requirements
to be aggregated into a single cost function.

• Sparsity exploitation: FEM-derived coupling is often banded or sparse, leading to structured 𝑄
matrices that can be embedded more efficiently on restricted hardware graphs.

• Hybrid decomposition: QUBOs are amenable to classical pre- and post-processing (e.g., variable
fixing, roof duality bounds) and to hybrid algorithms that split the problem between classical
CPUs/GPUs and quantum co-processors.

1.2. Importance of Quantum Computing for Engineering Optimization

Quantum computing, broadly construed, is poised to augment classical computing in domains where
combinatorial explosion or rugged objective landscapes limit classical heuristics. For structural opti-
mization, the potential advantages include:

• Scalability for discrete design spaces: Many sizing/topology problems are NP-hard. Quantum
hardware that directly samples low-energy states could provide speedups or, at minimum, high-
quality candidate sets faster.

• Massive parallel sampling: QA can return thousands of low-energy samples in a single run,
enabling statistical analysis of design alternatives and robust optimization under uncertainty.

• Hybrid quantum–classical workflows: Even without quantum advantage, integrating QA
as a subroutine (e.g., for difficult subproblems or warm starts) can reduce wall-clock time and
improve solution diversity.

• Cross-disciplinary transfer: Techniques developed for logistics, finance, and machine learning
QUBOs readily translate to structural design, accelerating methodological innovation.

Nonetheless, current devices are noisy, have limited qubit counts and connectivity, and require
careful formulation to realize any benefit. Therefore, problem reduction, parameter tuning, and classical
post-processing remain integral.

1.3. Outline of This Work

In this work, we follow the procedure outlined in [1], where a two-step optimization routine was
outlined: (1) computing equilibrium displacements and internal forces using classical mechanics and
FEM; and (2) iteratively redistributing beam cross-sectional areas to maximize global stiffness while
satisfying a total volume (or weight) constraint.

The rest of the paper is organized as follows. Section 2 discusses the basics of QUBO. Section 3
formulates the structural optimization problem and derives its Hamiltonian representation, including
constraint penalties. Section 4 gives the first results for truss systems where bending is not contemplated.
Section moves on to presenting numerical tests on the Euler-Bernoulli Theory, where truss bending is
taken into account.Section 5 concludes with a summary of future research avenues, including extensions
to dynamic loading and reliability-based design.

2. Combinatorial Optimization, QUBO and Adiabatic Quantum
Optimization

A wide class of combinatorial optimization problems can be approached with quantum algorithms.
We briefly recall the standard formulation of such problems. Let 𝒞 : 𝒮 → R be a real-valued cost (or



objective) function defined over a set of decision variables 𝒮 . The task is to find an element 𝑥⋆ ∈ 𝒮 that
minimizes 𝒞:

𝑥⋆ = argmin
𝑥∈𝒮

𝒞(𝑥) (2)

subject to a collection of constraints

𝑔ℓ(𝑥) = 0 (ℓ = 1, . . . , 𝐿), ℎ𝑚(𝑥) ≤ 0 (𝑚 = 1, . . . ,𝑀). (3)

A convenient strategy is to turn the constrained problem (2)–(3) into an unconstrained one by
absorbing the constraints into the objective via penalty terms. We then search for

𝑥⋆ = argmin
𝑥

𝐻𝑃 (𝑥), (4)

where
𝐻𝑃 (𝑥) = 𝒞(𝑥) +

∑︁
ℓ

𝑎ℓ 𝑔ℓ(𝑥)
2 +

∑︁
𝑚

𝑏𝑚 max
[︀
ℎ𝑚(𝑥), 0

]︀
. (5)

Here 𝑎ℓ > 0 and 𝑏𝑚 > 0 are penalty coefficients chosen large enough that any violation of the
constraints is energetically disfavored.

When the decision space is binary, 𝒮 = B𝑛 with B = {0, 1}, and the penalized energy 𝐻𝑃 is
quadratic in the variables, the problem is known as a Quadratic Unconstrained Binary Optimization
(QUBO).1

QUBO instances are directly related—indeed, equivalent—to Ising models, where binary spins 𝑠𝑖 ∈
{−1, 1} replace {0, 1} variables. A simple change of variables maps one formulation to the other; the
explicit transformation is presented in the next section.

Consequently, many combinatorial problems can be reframed as finding the ground state of a quantum
Hamiltonian, enabling the use of physics-based techniques. One particularly promising framework is
Adiabatic Quantum Computation (AQC), which relies on the adiabatic theorem: if a system is evolved
slowly enough, it remains in its instantaneous ground state.

In the literature, AQC is often used interchangeably with Quantum Annealing (QA). Strictly speaking,
QA encompasses protocols that need not be fully adiabatic, but in this work we use the two terms
synonymously.

We will not discuss Adiabatic Quantum Optimization any further in this contribution. For compre-
hensive reviews on Ising Models and Quantum Adiabatic Optimization, see, for example, [2, 3], and
[4, 5] for the quantum adiabatic theorem. See also the original paper [6].

We now move on to framing the problem and seeing how it can be converted to QUBO.

3. Framing the problem

Consider a beam element belonging to a 2D frame system in the Euler-Bernoulli theory of elasticity.
The goal is to start from the continuous formulation (internal energy and external work) and derive the
complete FEM discrete formulation, including axial and bending stiffness.

The total potential energy of such a beam can be defined as:

Π = 𝑈 −𝑊

where:

• 𝑈 is the internal strain energy,
• 𝑊 is the work of external forces.

1Higher-order terms can be reduced to quadratic form with ancillary (auxiliary) variables. For instance, a cubic term 𝑥1𝑥2𝑥3 can
be replaced by 𝑥1𝑥4 by defining 𝑥4 = 𝑥2𝑥3 and enforcing the relation through a penalty such as 3𝑥4+𝑥2𝑥3−2𝑥2𝑥4−2𝑥3𝑥4,
which vanishes only when 𝑥4 = 𝑥2𝑥3.



Here, the work done by external forces is taken positive. Thus, the work done on the system is negative.
That explains the minus sign in the 𝑊 -term. For an element of length 𝐿, the axial strain and the bending
curvature are given by

• axial strain: 𝜀𝑥 =
𝑑𝑢′

𝑑𝑥
,

• bending curvature: 𝜅 =
𝑑2𝑤

𝑑𝑥2
,

where 𝑢′ is the axial displacement in the beam system, whereas 𝑤 is the transverse displacement. Here,
we assumed that the beam axis is parallel to the 𝑥-axis, while 𝑤 describes the vertical displacement in
the beam system, i.e. along the 𝑦-direction. Later, we will have to consider also the global frame 𝑋 − 𝑌 .
We will denote deformations in the 𝑋 and 𝑌 directions 𝑢 and 𝑣, respectively. Switching from a local to
the global frame is rather simple, and will be shown in the following.

Thus, the internal energy is given by the sum of the strain energy and the bending energy:

𝑈 =
1

2

∫︁ 𝐿

0

(︀
𝐸𝐴

(︂
𝑑𝑢′

𝑑𝑥

)︂2

+ 𝐸𝐼

(︂
𝑑2𝑤

𝑑𝑥2

)︂2 )︀
𝑑𝑥 (6)

where:

• 𝑢′(𝑥): axial displacement along the local axis of the beam,
• 𝑤(𝑥): transverse displacement,
• 𝐸: Young’s modulus,
• 𝐴: cross-sectional area,
• 𝐼 : second moment of area.

Notice that the second moments of area depend on the beam sections. They are indeed defined as

𝐼𝑧 =

∫︁
𝐴
𝑦2 𝑑𝐴, 𝐼𝑦 =

∫︁
𝐴
𝑧2 𝑑𝐴. (7)

Here, we take the beam cross sections to be circular. Other geometries can be contemplated. In the case
of circular sections, the second moment of area along z reduces to the simple formula

𝐼𝑧 =

∫︁
𝐴
𝑦2 𝑑𝐴 =

𝜋𝑅4

4
=

𝐴2

4𝜋
. (8)

An analog formula holds for 𝐼𝑦 .
The work done by external forces in the form of external loads applied at the joints can be simply

written as
𝑊 =

∑︁
𝑖

𝑃𝑖𝑣𝑖,

where the 𝑣𝑖’s are the global vertical displacements.

3.1. FEM Approximation: Shape Functions

One of the goals of this paper is to solve the beam system, i.e. determine strains and stresses. We do so
by treating each beam as a discrete entity, employing techniques from FEM (Finite Element Methods).

We think of the as a discrete element with two nodes (node 1 and node 2). Then, the local degrees of
freedom for a 2D beam are:

dlocal
𝑒 = [𝑢′1, 𝑤1, 𝜃1, 𝑢

′
2, 𝑤2, 𝜃2]

𝑇 (9)

where:

• 𝑢′1, 𝑢
′
2: axial displacements at the nodes,



• 𝑤1, 𝑤2: transverse displacements at the nodes,
• 𝜃1, 𝜃2: nodal rotations.

In the usual Euler -Bernoulli theory, the 𝜃’s are the derivatives of the vertical displacement:

𝜃(𝑥) =
𝑑𝑤(𝑥)

𝑑𝑥
. (10)

In the following, as is usual within the FEM, we will treat them as separate variables. How to reconcile
𝜃 = 𝑑𝑤/𝑑𝑥 will be clear in a moment.

Axial Displacement Field

In the following, we will be working in the linear regime. Thus, we assume linear interpolation for the
axial displacement:

𝑢′(𝑥) = 𝑁𝑎
1 (𝑥)𝑢

′
1 +𝑁𝑎

2 (𝑥)𝑢
′
2, 𝑁𝑎

1 = 1− 𝜉, 𝑁𝑎
2 = 𝜉, 𝜉 = 𝑥/𝐿

Thus, we have for the axial strain:
𝑑𝑢′

𝑑𝑥
=

𝑢′2 − 𝑢′1
𝐿

(constant)

Transverse Displacement Field

For the vertical displacement, it is customary to use Hermite shape functions (ensuring 𝐶1 continuity)
as interpolators:

𝑤(𝑥) = 𝑁𝑓
1 (𝑥)𝑤1 +𝑁𝑓

2 (𝑥)𝜃1 +𝑁𝑓
3 (𝑥)𝑤2 +𝑁𝑓

4 (𝑥)𝜃2 (11)
with:

𝑁𝑓
1 (𝜉) = 1− 3𝜉2 + 2𝜉3,

𝑁𝑓
2 (𝜉) = 𝐿(𝜉 − 2𝜉2 + 𝜉3),

𝑁𝑓
3 (𝜉) = 3𝜉2 − 2𝜉3,

𝑁𝑓
4 (𝜉) = 𝐿(−𝜉2 + 𝜉3),

(12)

where 𝜉 is the dimensionless variable: 𝜉 = 𝑥
𝐿 .

Therefore, the curvature takes on the following form:

𝑑2𝑤(𝑥)

𝑑𝑥2
=

4∑︁
𝑖=1

𝑑2𝑁𝑓
𝑖

𝑑𝑥2
𝑑𝑖,

with d𝑓 = [𝑤1, 𝜃1, 𝑤2, 𝜃2]
𝑇 . Being the shape functions polynomial, the derivatives are easily computed.

Discrete Axial Energy

The discrete axial energy is then easily evaluated:

𝑈𝑎 =
1

2

∫︁ 𝐿

0
𝐸𝐴

(︂
𝑑𝑢′

𝑑𝑥

)︂2

𝑑𝑥 =
1

2

𝐸𝐴

𝐿
(𝑢′2 − 𝑢′1)

2.

Such a form is typical of elastic systems: this is just an upshot of the linear approximation. It is often
useful to write 𝑈𝑎 employing a matrix formulation. Defining u𝑇 = [𝑢1, 𝑢2], we can set

𝑈𝑎 = u𝑇Klocal
𝑎 u, (13)

where Klocal
𝑎 is given in the local system by the simple formula

Klocal
𝑎 =

𝐸𝐴

𝐿

[︂
1 −1
−1 1

]︂
Let us now move on to the bending energy.



Discrete Bending Energy

The discrete bending energy is made of a curvature term:

𝑈𝑓 =
1

2

∫︁ 𝐿

0
𝐸𝐼

(︂
𝑑2𝑤(𝑥)

𝑑𝑥2

)︂2

𝑑𝑥

which, once again, can be conveniently rewritten in matrix notation. Using the Hermite shape functions
(12) we get:

𝑈𝑓 =
1

2
d𝑇
𝑓 K

local
𝑓 d𝑓 , (14)

with:

Klocal
𝑓 =

𝐸𝐼

𝐿3

⎡⎢⎢⎣
12 6𝐿 −12 6𝐿
6𝐿 4𝐿2 −6𝐿 2𝐿2

−12 −6𝐿 12 −6𝐿
6𝐿 2𝐿2 −6𝐿 4𝐿2

⎤⎥⎥⎦
It turns out to be convenient to write the beam axial and bending energy in terms of the complete

local stiffness matrix:

Klocal
𝑒 =

⎡⎢⎢⎢⎢⎢⎢⎣

𝐸𝐴
𝐿 0 0 −𝐸𝐴

𝐿 0 0

0 12𝐸𝐼
𝐿3

6𝐸𝐼
𝐿2 0 −12𝐸𝐼

𝐿3
6𝐸𝐼
𝐿2

0 6𝐸𝐼
𝐿2

4𝐸𝐼
𝐿 0 −6𝐸𝐼

𝐿2
2𝐸𝐼
𝐿

−𝐸𝐴
𝐿 0 0 𝐸𝐴

𝐿 0 0

0 −12𝐸𝐼
𝐿3 −6𝐸𝐼

𝐿2 0 12𝐸𝐼
𝐿3 −6𝐸𝐼

𝐿2

0 6𝐸𝐼
𝐿2

2𝐸𝐼
𝐿 0 −6𝐸𝐼

𝐿2
4𝐸𝐼
𝐿

⎤⎥⎥⎥⎥⎥⎥⎦
where the degrees of freedom are, once again,

dlocal
𝑒 = [𝑢′1, 𝑤1, 𝜃1, 𝑢

′
2, 𝑤2, 𝜃2]

𝑇 (15)

Global Functional of the System

At this point, it is useful to quote how we can go from a local beam system to the global 𝑋 − 𝑌 system.
If the beam forms an angle 𝛼 with the global X-axis, we define the matrix

T𝑒 =

⎡⎢⎢⎢⎢⎢⎢⎣

𝑐 𝑠 0 0 0 0
−𝑠 𝑐 0 0 0 0
0 0 1 0 0 0
0 0 0 𝑐 𝑠 0
0 0 0 −𝑠 𝑐 0
0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦ , 𝑐 = cos𝛼, 𝑠 = sin𝛼

The global stiffness matrix is the obtained via:

Kglobal
𝑒 = T𝑇

𝑒 K
local
𝑒 T𝑒

This way we can express the beam energy in the global system, which is more suitable for what we will
be doing in the following.

Assembling all elements, we find the rather compact form:

Π(d) =
1

2
d𝑇Kd− d𝑇F (16)

where:

• K = stiffness matrix assembled from all transformed elements,



• F = vector of nodal loads (e.g., vertical weight at a node).
The equilibrium condition is, of course, obtained by minimizing through minimization:

𝛿Π = 0 ⇒ Kd = F

However, solving such an equation might be a challenging task, especially for convoluted beam systems.
This is where the QUBO optimization kicks in.

3.2. Problem Formulation

The optimization of a beam system is governed by its mechanical equilibrium under applied loads and
the constraints imposed by material usage. The problem can be expressed mathematically as given
below.

The optimization problem is mapped to a QUBO model for compatibility with quantum annealing
solvers. To reach mechanical equilibrium, the Hamiltonian to be minimized is 𝐻 = Π(𝑑), and can be
split into two terms, one for the internal system energy and another one for the external work:

𝐻 = 𝐻1 +𝐻2. (17)

This is the first step of the optimization process (Step 1). Explict formulas for 𝐻1 are given below,
according to the theory we are considering (trusses, Euler-Bernoulli or Timoshenko). 𝐻2 will be of the
form

𝐻2 = −d𝑇F. (18)
Minimizing 𝐻 leads to equilibrium configuration for the beam system, i.e. leads to the system displace-
ments d.

Once the d is found, we can proceed to find the optimal cross-sections distribution for the beam. To
do so, we aim at maximizing the global stiff amtrix. Thus, the hamiltonian this time reads:

𝐻 = −𝐻1 +𝐻3, (19)

where 𝐻3 enforces the volume constraint as a penalty term:

𝐻3 =

⎛⎝ ∑︁
(𝑖,𝑗)∈𝐸

𝐴𝑖𝑗𝑙𝑖𝑗 − 𝑉TOT + slack

⎞⎠2

. (20)

This is the second step of the optimziation process (Step 2). Here slack refers to the slack variables to
enforce the inequality constraints. Should they not be introduced, we would be enforcing an equality
constraint, which in the present formulation is just as good.

Step 1 and 2 are repeated in a loop until we do not appreciate a significant change of the cross
sections anymore. In that case, convergence has been reached and the configuration can be thought of
as definitive for our optimization task. In the end, we should see a deformed beam structure (strains
and stresses) and beams with different sections, so to optimize material usage.

4. Truss systems: No Bending

4.1. Mechanical Equilibrium

The equilibrium configuration of a beam system minimizes the total potential energy, which consists of
the elastic strain energy stored in the members and the work done by external loads. To get started,
we begin with a system where bending is negligible, i.e. 𝑤(𝑥) ≈ 0 in the local system. Thus, the only
variables are the 𝑢′’s in the local system which are mapped to the global 𝑢’s and 𝑣’s. The Hamiltonian
for this system is given by:

𝐻 = 𝐻1 +𝐻2, (21)
where:



• 𝐻1: Elastic strain energy of the beam members.
• 𝐻2: Work done by external forces.

The elastic strain energy 𝐻1 is expressed as:

𝐻1 =
∑︁

(𝑖,𝑗)∈𝐸

𝐸𝐴𝑖𝑗

2𝑙𝑖𝑗

[︂
(𝑥𝑖 − 𝑥𝑗)

𝑙𝑖𝑗
(𝑢𝑖 − 𝑢𝑗) +

(𝑦𝑖 − 𝑦𝑗)

𝑙𝑖𝑗
(𝑣𝑖 − 𝑣𝑗)

]︂2
, (22)

where:

• 𝐸: Young’s modulus of the material,
• 𝐴𝑖𝑗 : Cross-sectional area of member (𝑖, 𝑗),
• 𝑙𝑖𝑗 : Length of member (𝑖, 𝑗),
• (𝑢𝑖, 𝑣𝑖): Displacement components of node 𝑖.

The external work 𝐻2 is:
𝐻2 =

∑︁
𝑖∈𝑁

P𝑖 · u𝑖, (23)

where P𝑖 represents the external force vector at the node 𝑖.

4.2. Optimization of Cross-Sections

Once the equilibrium position is found, i.e. we determined the displacement vectors 𝑢⃗, we can attempt
to maximize stiffness while satisfying volume constraints. Here, we follow closely reference [1] with
minor differences. The optimization is formulated as follows:

Maximize:
∑︁

(𝑖,𝑗)∈𝐸

𝐸𝐴𝑖𝑗

𝑙𝑖𝑗
𝜀2𝑖𝑗 , (24)

Subject to:
∑︁

(𝑖,𝑗)∈𝐸

𝐴𝑖𝑗𝑙𝑖𝑗 ≤ 𝑉TOT, (25)

where 𝜀𝑖𝑗 is the strain in member (𝑖, 𝑗) and 𝑉TOT is the total allowable volume of material.
The cross section is to be varied only by a small amount (say no more than 20 %), or otherwise we

would be to far afield wrt the equilibrium configuration found in the previous step. The process repeats
till convergence is reached. In that case, we have established the equilibrium position of the beam
system with optimal cross-sectional distribution.

To set the problem properly, we discretize the areas in the following fashion: each truss member 𝑗 is
assigned an 𝑛𝑏-bit binary vector {𝑥𝑗,𝑖}𝑛𝑏−1

𝑖=0 , which is decoded via random per-bit coefficients 𝑐𝑗,𝑖 into
an additive area update. Specifically, we compute

𝑚𝑗 =

𝑛𝑏−1∑︁
𝑖=0

𝑐𝑗,𝑖 𝑥𝑗,𝑖, 𝑚̃𝑗 =
𝑚𝑗∑︀𝑛𝑏−1

𝑖=0 𝑐𝑗,𝑖
∈ [0, 1], (26)

Δ𝐴𝑗 =
(︀
2 𝑚̃𝑗 − 1

)︀
𝑑𝐴max, 𝐴𝑗 = 𝐴

(0)
𝑗 +Δ𝐴𝑗 , (27)

with 𝑑𝐴max not exceeding 20% its original value. The new areas {𝐴𝑗} are obtained through annealing,
by minimizing global system keeping the volume not exceeding a given value:

𝐻 = −𝐻1 +𝐻3 (28)

with 𝐻1 as before, while 𝐻3 given by equation (20). This configuration—absolute step updates, ran-
domized bit weights, and hard volume filtering—ensures both rich exploration of the design space and
feasibility with respect to the volume constraint.

We discuss now the case of the truss system in Figure 1. The truss system has 12 nodes and 29 trusses,
all with equal sections.

We then apply an external weight 𝑃 at the rightmost node of the bottom row.



4.3. Two-stage optimization strategy

The optimization proceeded in two tightly coupled stages. In the first stage, for any prescribed set
of external loads, we minimized the total Hamiltonian of the beam system with respect to the nodal
displacement field. This energy-based formulation (strain energy + potential of external forces) yields
the equilibrium configuration directly, and can be achieved with standard FEM methods or simulated
annealing. We used both, reaching similar results in similar times. A standard Python package for FEM
is PyNite and its FEModel3D module.

The resulting displacement vector served as the state variable that feeds the second stage. In that
second stage, we iteratively updated the cross-sectional areas of the individual beam members to
maximize the global structural stiffness (equivalently, to minimize compliance) while enforcing a fixed
total volume (mass) constraint. The sizing problem was cast as a constrained optimization.-

Figure 1: Indeformata.

Figure 2 shows the undeformed and deformed configurations of the truss. Member thickness is
proportional to the optimized cross-sectional area, so thicker lines indicate elements that the sizing
algorithm kept or enlarged because they carry higher axial forces (or are needed to satisfy stiffness
constraints). Conversely, thin members correspond to low-force paths and could be candidates for
further reduction or even removal if allowed by the design constraints.

The gray drawing shows the original, undeformed geometry; all members are plotted with the same
topology but already scaled in thickness by their final areas so you can read the importance of each bar
directly on the baseline configuration. The red drawing is the deformed shape, magnified (×7.8) to
make displacements visible. Blue arrows point from the initial to the magnified positions and illustrate
the displacement vectors. The vertical load 𝑃 is applied at the bottom-right node, and the largest
rotations and translations occur close to that point, as expected.

Reading the plot:

• Load path: The thickest bars cluster along the lower chord and the diagonals connecting the
loaded node to the supports, revealing the primary force flow.

• Efficiency after optimization: Members that are thin across both configurations carry compara-
tively little force; the optimizer reduced their area to save material while keeping global stiffness
and strength within limits.



• Deformation pattern: The amplified red outline highlights global sway and local joint rotations;
because the scale factor is stated, the true displacements can be recovered if needed.

In summary, line thickness encodes the optimized section magnitude, while the overlaid, scaled
deformation shows how the structure responds to the applied load. Together they provide an immediate
visual link between structural demand (forces) and structural response (displacements).

Figure 2: Deformed (scale ×7.8) with load 𝑃 applied at the rightmost node in the bottom row.

Figure 2 is consistent with results found in [1] and is what we see at step 30 of the iteration. However,
going further down the double-step procedure we do not seem to see any rapid convergence, with a
changing topology as well. We leave further exploration about convergence for the future.

4.4. Quantum annealing implementation (D-Wave)

To efficiently explore the high-dimensional design space, the second-stage search was initialized and
periodically re-seeded using samples from a D-Wave quantum annealer. The discrete sizing/topology
problem was encoded in Quadratic Unconstrained Binary Optimization (QUBO) form,

min
z∈{0,1}𝑛

𝛼 𝒞(z) + 𝛽 𝒱(z) + 𝛾 𝒫(z),

where 𝒞 penalizes compliance (i.e., negative stiffness), 𝒱 enforces the volume budget, and 𝒫 aggregates
manufacturability/regularization terms. The binary vector z encodes discrete cross-section choices for
each member; decoded continuous areas were recovered via a mapping A = 𝑓(z).

The QUBO was submitted to the D-Wave Advantage_system4.1 processor with the following key
settings:

• Number of reads: 100
• Anneal time per read: default (no custom anneal time specified)
• Anneal schedule: LINEAR (default, no custom breakpoints)
• Chain strength: auto (relative to the largest QUBO coefficient)
• Embedding method: automatic minor-embedding via minorminer



• Gauge / spin-reversal transforms: OFF
• Post-processing: NONE (chain breaks resolved via majority vote)
• QPU access timeout: 5000ms

Raw annealer samples were filtered for feasibility (𝒱(z) ≤ 𝑉 * = 4000) and ranked by objective
value. The top candidate (𝑘 = 1) was decoded to continuous variables and used as a warm start for a
gradient-based classical optimizer (e.g., sequential quadratic programming). This hybrid loop—QPU
sampling → classical refinement—was performed at each iteration.

5. Including bending

In this section we repeat verbatim what has been done in the previous section, but including bending as
well: transversal displacement 𝑤 is no longer considered negligible. The full hamiltonian will include,
for each truss, a term like the second integral in the equation (6). It is given by equation (16). This

Figure 3: Deformed (scale ×15 and scale bending ×8) with load 𝑃 applied at the rightmost node in the bottom
row.

time we can see the topology changes considerably. The system lands to a more “squared” setup. Also,
the displacements turn out to be much smaller with respect to the case of the previous section where
only axial displacement was contemplated. This is due to the fact that shorter trusses demand stronger
bending and larger energies. Also, some of the trusses display an “S”-like shape. This is due to the fact
that momenta along the trusses tend to change sign, producing antagonist couples at the endpoints.

The solution plotted in Figure 3 was obtained through Simulated Annealing as implemented by
D-Wave. Both displacements’ magnitudes and curvature have been greatly exagerated to make them
more visible.

One final remark concerns the optimization within the Euler–Bernoulli framework. Unlike the purely
axial case, the area optimization here involves a quadratic bending contribution in the areas, since the
stiffness matrix contains terms proportional to 𝐼 ∼ 𝐴2. In the second optimization step this contribution
enters with a minus sign. To ensure well-posedness of the problem, the optimization hyperparameters
must therefore be chosen such that the volume-constraint term dominates for large 𝐴, as discussed in
Appendix A.



However, since in practice the optimization acts on small variations of the areas (𝐴 → 𝐴+Δ𝐴 with
Δ𝐴 small), one can equivalently solve the linearized problem, retaining only the terms proportional to
Δ𝐴.

6. Future Directions

In the near future, it would be desirable to provide a comprehensive benchmark against established
classical optimization procedures for the problem addressed in the present work. Further generalizations
are also under consideration, such as extensions to more refined beam models — for instance, the
Timoshenko theory outlined in the Appendix B — as well as the inclusion of nonlinear effects. Moreover,
the case of dynamical loads, i.e., time-dependent forces acting on the truss structure, is currently being
investigated. Such scenarios are not only relevant for applications with variable loads (e.g., a person
walking on a truss), but also pave the way for studying wave propagation in continuous media within a
QUBO framework. We plan to report on these developments in the near future.

Declaration on Generative AI

During the preparation of this work, the authors used ChatGPT in order to: Grammar and spelling
check, Paraphrase and reword. After using this tool, the authors reviewed and edited the content as
needed and takes full responsibility for the publication’s content.

A. A Coercivity Criterion for a Rank-One Perturbed Quadratic on the
Nonnegative Orthant

Setup

Here, we prove that our problem in the general setting as a global minimum if some coefficients are
chosen properly. Consider

𝑓(𝑥) = −
𝑁∑︁
𝑖=1

𝐴𝑖𝑥𝑖 −
𝑁∑︁
𝑖=1

𝐵𝑖𝑥
2
𝑖 + 𝐸

(︁ 𝑁∑︁
𝑖=1

𝐶𝑖𝑥𝑖 −𝐷
)︁2

, 𝑥 ∈ R𝑁
+ , (29)

where 𝐴𝑖, 𝐵𝑖, 𝐶𝑖 > 0, 𝐷 > 0, and 𝐸 > 0. Let 𝐵 = diag(𝐵1, . . . , 𝐵𝑁 ) and 𝐶 = (𝐶1, . . . , 𝐶𝑁 )⊤.
Define

𝐸* := max
1≤𝑖≤𝑁

𝐵𝑖

𝐶2
𝑖

. (30)

Criterion

• If 𝐸 > 𝐸*, then 𝑓 is coercive on R𝑁
+ ; i.e., 𝑓(𝑥) → +∞ as ‖𝑥‖ → ∞ with 𝑥 ≥ 0. Therefore a

global minimizer exists.
• If 𝐸 < 𝐸*, then 𝑓 is unbounded below on R𝑁

+ .
• If 𝐸 = 𝐸*, then along any direction 𝑣 ≥ 0 attaining the maximum in (30) the quadratic coefficient

vanishes. In this borderline case,

𝑓(𝑡𝑣) =
(︀
−𝐴⊤𝑣 − 2𝐸*𝐷𝐶⊤𝑣

)︀
𝑡 + const,

so 𝑓 is bounded below iff the coefficient of 𝑡 is nonnegative for every such 𝑣:

−𝐴⊤𝑣 − 2𝐸*𝐷𝐶⊤𝑣 ≥ 0.

Otherwise 𝑓(𝑡𝑣) → −∞ as 𝑡 → ∞.



Proof Sketch

Fix 𝑣 ≥ 0, 𝑣 ̸= 0, and consider the ray 𝑥 = 𝑡𝑣 (𝑡 ≥ 0). Then

𝑓(𝑡𝑣) = −𝑡 𝐴⊤𝑣 − 𝑡2 𝑣⊤𝐵𝑣 + 𝐸
(︀
𝑡 𝐶⊤𝑣 −𝐷

)︀2
= −𝑡𝐴⊤𝑣 + 𝑡2

(︁
− 𝑣⊤𝐵𝑣 + 𝐸(𝐶⊤𝑣)2

)︁
− 2𝐸𝐷(𝐶⊤𝑣)𝑡+ 𝐸𝐷2.

Let
𝑅(𝑣) :=

𝑣⊤𝐵𝑣

(𝐶⊤𝑣)2
.

Since 𝑅(𝛼𝑣) = 𝑅(𝑣) for any 𝛼 > 0, impose 𝐶⊤𝑣 = 1 and maximize
∑︀

𝑖𝐵𝑖𝑣
2
𝑖 over 𝑣 ≥ 0. This convex

quadratic is maximized at a vertex of the simplex, giving

sup
𝑣≥0

𝑅(𝑣) = max
𝑖

𝐵𝑖

𝐶2
𝑖

= 𝐸*.

Thus:

• If 𝐸 > 𝐸*, the 𝑡2-coefficient is positive for all 𝑣 ≥ 0, so 𝑓(𝑡𝑣) → +∞ and coercivity follows.
• If 𝐸 < 𝐸*, there exists 𝑣 ≥ 0 with negative 𝑡2-coefficient, giving 𝑓(𝑡𝑣) → −∞.
• If 𝐸 = 𝐸*, the 𝑡2-coefficient is zero for maximizers of 𝑅(𝑣), and the sign of the linear coefficient

decides boundedness.

Remarks

• The minimizer need not be interior; some coordinates may be zero. However, 𝑥 = 0 is not optimal
when all 𝐴𝑖, 𝐶𝑖, 𝐷,𝐸 > 0, since 𝜕𝑖𝑓(0) = −𝐴𝑖 − 2𝐸𝐷𝐶𝑖 < 0.

• Once 𝐸 > 𝐸* is fixed, the global minimizer can be found by solving system for the quadratic
program with bounds 𝑥 ≥ 0.

B. Timoshenko Beam Theory: Derivation and FEM Discretization

The Euler-Bernoulli theory that we have used throughout the paper can be generalized to the Timo-
shenko theory. The model takes into account shear deformation and rotational bending effects. We no
longer have the definig relation 𝑑𝑤/𝑑𝑥 = 𝜑(𝑥), but 𝑤 and 𝜑 are treated really as independet variables.

We give a streamlined setup in the following.

B.1. Notation and Setup

• Beam axis along 𝑥, transverse deflection along 𝑧, width along 𝑦.
• Point in the cross–section: (𝑥, 𝑦, 𝑧), neutral axis at 𝑧 = 0.
• Unknown fields (functions of 𝑥):

𝑤(𝑥) : transverse displacement (along 𝑧),
𝜑(𝑥) : rotation of the cross–section about 𝑦,
𝑢0(𝑥) : axial displacement of the neutral axis (optional).

• Material: 𝐸 (Young’s modulus), 𝐺 (shear modulus), shear correction factor 𝜅.
• Section properties: area 𝐴, second moment of area 𝐼 about the neutral axis.



B.2. Kinematics (Timoshenko Assumption)

Cross–sections remain rigid in their own plane but may rotate independently of𝑤′(𝑥) (shear deformation
allowed). The displacement field (small rotations) is

𝑢𝑥(𝑥, 𝑧) = 𝑢0(𝑥)− 𝑧 𝜑(𝑥), (31)
𝑢𝑦(𝑥, 𝑧) = 0, (32)
𝑢𝑧(𝑥, 𝑧) = 𝑤(𝑥). (33)

The strains are then given by:

𝜀𝑥 =
𝜕𝑢𝑥
𝜕𝑥

= 𝑢′0(𝑥)− 𝑧 𝜑′(𝑥), (34)

𝛾𝑥𝑧 =
𝜕𝑢𝑧
𝜕𝑥

+
𝜕𝑢𝑥
𝜕𝑧

= 𝑤′(𝑥)− 𝜑(𝑥). (35)

B.3. Constitutive Relations and Section Resultants

Assuming linear elasticity,

𝜎𝑥 = 𝐸 𝜀𝑥, 𝜏𝑥𝑧 = 𝜅𝐺𝛾𝑥𝑧. (36)

Resultants (force/moment per unit length) are given by:

𝑁(𝑥) =

∫︁
𝐴
𝜎𝑥 𝑑𝐴 = 𝐸𝐴𝑢′0(𝑥), (37)

𝑀(𝑥) =

∫︁
𝐴
𝑧 𝜎𝑥 𝑑𝐴 = −𝐸𝐼 𝜑′(𝑥), (38)

𝑉 (𝑥) =

∫︁
𝐴
𝜏𝑥𝑧 𝑑𝐴 = 𝜅𝐺𝐴

(︀
𝑤′(𝑥)− 𝜑(𝑥)

)︀
. (39)

For pure bending, set 𝑢0 = 0 and 𝑁 = 0.

B.4. Equilibrium (Strong Form)

Let 𝑞(𝑥) be the distributed transverse load (positive downward):

𝑑𝑉

𝑑𝑥
+ 𝑞(𝑥) = 0, (40)

𝑑𝑀

𝑑𝑥
− 𝑉 = 0. (41)

Substituting 𝑀 and 𝑉 yields (︀
𝜅𝐺𝐴(𝑤′ − 𝜑)

)︀′
+ 𝑞 = 0, (42)

−(𝐸𝐼 𝜑′)′ − 𝜅𝐺𝐴(𝑤′ − 𝜑) = 0. (43)

B.5. Weak Form (Virtual Work)

The internal virtual work is given as usual:

𝛿𝑊int =

∫︁ 𝐿

0

[︀
𝐸𝐼 𝜑′ 𝛿𝜑′ + 𝜅𝐺𝐴(𝑤′ − 𝜑)(𝛿𝑤′ − 𝛿𝜑)

]︀
𝑑𝑥.

External virtual work (for distributed load only):

𝛿𝑊ext =

∫︁ 𝐿

0
𝑞(𝑥) 𝛿𝑤 𝑑𝑥+ (end force/moment terms).

Set 𝛿𝑊int − 𝛿𝑊ext = 0 for all admissible variations to obtain the weak form.



B.6. Two-Node Timoshenko Beam Element (1D FEM)

Consider an element of length 𝐿𝑒 with nodes 1 and 2. Use linear (𝐶0) shape functions:

𝑁1(𝜉) = 1− 𝜉, 𝑁2(𝜉) = 𝜉, 𝜉 =
𝑥

𝐿𝑒
∈ [0, 1].

The interpolation of 𝑤 and 𝜑 really are independent:

𝑤(𝑥) = 𝑁1𝑤1 +𝑁2𝑤2,

𝜑(𝑥) = 𝑁1𝜑1 +𝑁2𝜑2.

Derivatives (constant within the element for 𝑤′) are easily computed:

𝑤′(𝑥) =
1

𝐿𝑒
(−𝑤1 + 𝑤2),

𝜑′(𝑥) =
1

𝐿𝑒
(−𝜑1 + 𝜑2).

The nodal DOFs are still:
d𝑒 = [𝑤1, 𝜑1, 𝑤2, 𝜑2 ]

𝑇 .

Bending Part

𝐾𝑏 =

∫︁ 𝐿𝑒

0
𝐸𝐼 𝐵𝑇

𝑏 𝐵𝑏 𝑑𝑥, 𝐵𝑏 =
[︀
−1/𝐿𝑒 1/𝐿𝑒

]︀
.

Embedded in the full 4× 4 matrix (DOF order [𝑤1, 𝜑1, 𝑤2, 𝜑2]):

𝐾
(emb)
𝑏 =

𝐸𝐼

𝐿𝑒

⎡⎢⎢⎣
0 0 0 0
0 1 0 −1
0 0 0 0
0 −1 0 1

⎤⎥⎥⎦ .

Shear Part Define
𝑆(𝑥) = 𝑤′(𝑥)− 𝜑(𝑥).

whose matrix form is:
𝑆 =

1

𝐿𝑒

[︀
−1 1

]︀
⏟  ⏞  

𝐵𝑤

[︂
𝑤1

𝑤2

]︂
−
[︀
𝑁1 𝑁2

]︀⏟  ⏞  
𝑁𝜑

[︂
𝜑1

𝜑2

]︂
.

Then
𝐾𝑠 =

∫︁ 𝐿𝑒

0
𝜅𝐺𝐴

[︀
𝐵𝑤 −𝑁𝜑

]︀𝑇 [︀
𝐵𝑤 −𝑁𝜑

]︀
𝑑𝑥.

Carrying out the integrals, we get:

𝐾𝑠 =
𝜅𝐺𝐴

𝐿𝑒

⎡⎢⎢⎢⎣
1 −𝐿𝑒

2 −1 −𝐿𝑒
2

−𝐿𝑒
2

𝐿2
𝑒

12
𝐿𝑒
2

𝐿2
𝑒

12

−1 𝐿𝑒
2 1 𝐿𝑒

2

−𝐿𝑒
2

𝐿2
𝑒

12
𝐿𝑒
2

𝐿2
𝑒

12

⎤⎥⎥⎥⎦ .

Total Element Stiffness
𝐾𝑒 = 𝐾𝑠 +𝐾

(emb)
𝑏 .

A compact equivalent using 𝜆 =
12𝐸𝐼

𝜅𝐺𝐴𝐿2
𝑒

is

𝐾𝑒 =
𝐸𝐼

𝐿3
𝑒

1

1 + 𝜆

⎡⎢⎢⎣
12 6𝐿𝑒 −12 6𝐿𝑒

6𝐿𝑒 (4 + 𝜆)𝐿2
𝑒 −6𝐿𝑒 (2− 𝜆)𝐿2

𝑒

−12 −6𝐿𝑒 12 −6𝐿𝑒

6𝐿𝑒 (2− 𝜆)𝐿2
𝑒 −6𝐿𝑒 (4 + 𝜆)𝐿2

𝑒

⎤⎥⎥⎦ .



Consistent Load Vector (Uniform 𝑞)

f𝑒 =

∫︁ 𝐿𝑒

0
𝑁𝑇

𝑤 𝑞 𝑑𝑥 = 𝑞
𝐿𝑒

2
[ 1, 0, 1, 0 ]𝑇 .

Mass Matrix (Optional) For density 𝜌:

𝑀 (𝑤)
𝑒 = 𝜌𝐴

∫︁ 𝐿𝑒

0
𝑁𝑇

𝑤𝑁𝑤 𝑑𝑥 = 𝜌𝐴
𝐿𝑒

6

⎡⎢⎢⎣
2 0 1 0
0 0 0 0
1 0 2 0
0 0 0 0

⎤⎥⎥⎦ ,

and similarly for rotational inertia using 𝜌𝐼 with 𝑁𝜑.

B.7. Assembly and Boundary Conditions

Assemble the global stiffness and force vectors in the usual way, apply essential boundary conditions
on 𝑤 and/or 𝜑, and solve

Kd = f .

B.8. Euler–Bernoulli Limit

Setting 𝛾𝑥𝑧 = 0 ⇒ 𝑤′ = 𝜑 recovers Euler–Bernoulli kinematics. In FEM this corresponds to 𝜅𝐺𝐴 → ∞
or directly constraining 𝑤′ = 𝜑 with suitable interpolation.
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