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Abstract
We propose a QUBO encoding for the Subjective Acceptance Problem (SBA) in Value-Based Argumentation Frame-
works (VAFs), where argument acceptance depends on audience-specific value preferences. SBA, an NP-complete
problem, decides whether an argument is accepted by at least one audience in the preferred extension. By trans-
lating SBA into the QUBO formalism (which is solvable with quantum annealing), we enable new computational
approaches to value-sensitive reasoning. This is the first QUBO encoding of a preference-based problem in
Argumentation, and we validate it through initial empirical testing.
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1. Introduction

In many real-world debating and reasoning scenarios, simply identifying arguments is not sufficient
because multiple arguments often conflict and support each other in complex ways, particularly in
moral and legal contexts [1]. To address this, there has been growing interest in logics for defeasible
argumentation, which analyze how arguments can be defeated or defended.

For example, Abstract Argumentation Frameworks (AFs) [2] model conflicting arguments abstractly,
focusing solely on their attack relations. Arguments are seen as unstructured tokens of information,
and attacks symbolize a general directed conflict between two arguments: a may criticize b but not
vice-versa. For example, with a: “We should ban single-use plastics because they cause long-term
environmental damage”, and b: “Single-use plastics are convenient for consumers”, a attacks b because
it highlights serious harm (environmental damage) that outweighs the convenience benefit mentioned
by b. However, b does not attack a, as it only states a positive aspect without challenging or refuting
the environmental concern raised by a. Conversely, in “structured” argumentation (e.g., [3]), which falls
outside the direct scope of this paper, a formal language is used to represent knowledge and define how
arguments and counterarguments are constructed from that knowledge. Arguments are considered
structured because their premises and conclusions are explicitly stated, and the connection between
them is formally specified, often through logical entailment.

In debates, arguments can conflict without necessarily defeating each other, as participants may
prioritize/prefer different underlying values. For instance, one person may argue for higher taxes to
promote equality, while another argues against it to reward enterprise; in this case, both people could
accept the merit of the other’s point but rank values differently. For this reason, to model debates
effectively, it could be necessary to link arguments to the values they promote and to allow these values
to be ordered according to the audience’s preferences. Thus, the audience who attends the debate
becomes a crucial factor in evaluating the arguments presented. Value-based Argumentation Frameworks
(VAFs) [4] are one of the first attempts to extend the traditional AFs of Dung [2] by incorporating
values into the structure of arguments. Values influence whether attacks between arguments succeed
or fail, depending on their relative importance. In VAFs, an “audience” is formally represented through
a preference ordering over these values; specifically, it is a total ordering (i.e., a complete, transitive,

AIQxQIA 2025: International Workshop on AI for Quantum and Quantum for AI | co-located with ECAI 2025, Bologna, Italy
*Corresponding author.
$ marco.baioletti@unipg.it (M. Baioletti); fabio.rossi@unipg.it (F. Rossi); francesco.santini@unipg.it (F. Santini)
� 0000-0001-5630-7173 (M. Baioletti); 0000-0002-8445-0142 (F. Rossi); 0000-0002-3935-4696 (F. Santini)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

published 2026-01-20

mailto:marco.baioletti@unipg.it
mailto:fabio.rossi@unipg.it
mailto:francesco.santini@unipg.it
https://orcid.org/0000-0001-5630-7173
https://orcid.org/0000-0002-8445-0142
https://orcid.org/0000-0002-3935-4696
https://creativecommons.org/licenses/by/4.0/deed.en


antisymmetric, and connected ranking). Intuitively, an audience models a perspective or worldview,
that is, a particular way of ranking what is most important, such as different legal systems, ethical
viewpoints, or stakeholder interests.

Quadratic Unconstrained Binary Optimization (QUBO) [5, 6, 7], also known as Unconstrained Binary
Quadratic Programming (UBQP), is a combinatorial optimization problem with different applications
in various fields, including finance, economics, and machine learning. The goal is to find the optimal
combination of binary variables, each taking a value of 0 or 1, that minimizes (or maximizes) a quadratic
expression. This expression can be represented by a matrix that assigns weights to each variable
and each pair of variables, capturing both individual and pairwise interactions (i.e., constraints). The
term “quadratic” refers to the fact that the objective function includes terms that involve the product
of two variables. At the same time “unconstrained” means that there are no additional restrictions
on the variables beyond being binary. QUBO is NP-hard to solve, and various classical problems in
theoretical computer science, including maximum cut, graph coloring, and the partition problem, have
been formulated as QUBO embeddings. Moreover, QUBO is used in machine learning, particularly in
binary or combinatorial variants of problems. QUBO equivalents or approximations exist for tasks such
as feature selection, clustering, and inference in graphical models.

The connection between QUBO problems and quantum annealing is fundamental. Quantum anneal-
ers1 [8] are physical machines explicitly built to solve problems that can be expressed in QUBO (or its
equivalent, the Ising model [5]). In quantum annealing, the machine encodes the optimization problem
into a physical system, where the system’s energy corresponds to the value of the QUBO objective
function. The system is then allowed to settle into its lowest-energy (minimum) configuration, which
corresponds to the optimal solution to the original QUBO problem. This is enabled by the mathematical
equivalence between the QUBO model and the Ising model: in the latter model, the variables take values
of −1 or +1 instead of 0 or 1, but a simple transformation allows the conversion between the two.

This paper aims to propose and test a QUBO encoding of the Subjective Acceptance Problem (SBA)
defined in [9] to be NP-complete. Formally, given a VAF and an argument 𝑎, SBA is a decision problem
that tests the existence of any audience such that 𝑎 is included in the unique preferred extension
determined by that audience.2 Subjective acceptance captures the notion that an argument can be
persuasive or justifiable, but only to specific groups of people or under certain value assumptions.

This paper continues the line of research initiated in [10, 11, 12, 13] by encoding and testing different
NP-Complete problems in Argumentation to a QUBO formulation. In this paper, we introduce and
encode problems related to preference-based AFs (i.e., VAFs) for the first time. As we have previously
discussed in this section, preferences (or values) are necessary to make reasoning in debates more
effective than using the original formulation [2], where all arguments have the same appeal to the
audience. The paper is structured as follows: after this introduction (Sect. 1), outlining the field of
research and its motivations, Sect. 2 presents the necessary preliminary notions related to VAFs and
QUBO. Then, Sect. 3 proposes a QUBO encoding of the problem, and Sect. 4 describes the tests performed
to validate such an encoding empirically. Finally, we end the paper with concluding thoughts and ideas
about future work in Sect. 5.

2. Background

This section provides the essential background required to understand the remainder of this work.
Section 2.1 introduces key concepts from Abstract Argumentation [2], including AFs, their extension
to VAFs, and the SBA problem, which is NP-Complete. Section 2.2 offers an overview of what QUBO
problems are and how to formalize them.

1For example, D-Wave quantum annealers: https://docs.dwavequantum.com/en/latest/quantum_research/quantum_
annealing_intro.html.

2An extension is a set of arguments that is considered collectively acceptable or defensible according to specific semantic
rules, see Sect. 2.

https://docs.dwavequantum.com/en/latest/quantum_research/quantum_annealing_intro.html
https://docs.dwavequantum.com/en/latest/quantum_research/quantum_annealing_intro.html
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Figure 1: An example of an AF represented as a directed graph.

2.1. Problems in Abstract Argumentation Frameworks

An Abstract Argumentation Framework (AF, for short) [2] is a tuple ℱ = (A,→) where A is a set of
arguments and → is a relation →⊆ A× A. For two arguments 𝑎, 𝑏 ∈ A, the relation 𝑎 → 𝑏 means that
argument 𝑎 attacks argument 𝑏. An argument 𝑎 ∈ A is defended by 𝑆 ⊆ A (in ℱ ) if for each 𝑏 ∈ A,
such that 𝑏 → 𝑎, there is some 𝑐 ∈ 𝑆 such that 𝑐 → 𝑏. A set 𝐸 ⊆ A is conflict-free (cf in ℱ ) if and
only if there is no 𝑎, 𝑏 ∈ 𝐸 with 𝑎 → 𝑏. 𝐸 is admissible (ad in ℱ ) if and only if it is conflict-free and
if each 𝑎 ∈ 𝐸 is defended by 𝐸. A directed graph can directly represent an AF: an example with five
arguments is given in Fig. 1: ℱ = ({𝑎, 𝑏, 𝑐, 𝑑, 𝑒}, {𝑎 → 𝑏, 𝑐 → 𝑏, 𝑐 → 𝑑, 𝑑 → 𝑐, 𝑑 → 𝑒}).

The collective acceptability of arguments depends on the definition of different semantics [2]. Semantics
determine sets of jointly acceptable arguments, that is, sets of arguments called extensions, by mapping
each ℱ = (A,→) to a set 𝜎(ℱ) ⊆ 2A, where 2A is the power-set of A, and 𝜎 parametrically stands
for any of the considered semantics. Four semantics were proposed by Dung in his seminal paper [2]
(while some more have been defined in successive works [14]), namely the complete (co), preferred
(pr), stable (st), and grounded (gr) semantics. Given ℱ = (A,→) and a set 𝐸 ⊆ A, we report the
definition of all these semantics:

• 𝐸 ∈ co(ℱ) iff 𝐸 is admissible in ℱ and if 𝑎 ∈ A is defended by 𝐸 in ℱ then 𝑎 ∈ 𝐸,
• 𝐸 ∈ pr(ℱ) iff 𝐸 ∈ co(ℱ) and there is no 𝐸′ ∈ co(ℱ) s.t. 𝐸′ ⊃ 𝐸,
• 𝐸 ∈ st(ℱ) iff 𝐸 ∈ co(ℱ) and 𝐸+

ℱ = A,
• 𝐸 ∈ gr(ℱ) iff 𝐸 ∈ co(ℱ) and there is no 𝐸′ ∈ co(ℱ) s.t. 𝐸′ ⊂ 𝐸.

For a more detailed view of these semantics, please refer to [14]. Note that the grounded semantics
always uniquely identify a single extension [2] (i.e., it is a single-status semantics). In contrast, the other
introduced semantics are multi-status, since several extensions may exist. The stable semantics is the
only case where st(ℱ) might be empty (i.e., no stable extension exists), while at least one extension
always satisfies the other semantics. As an example, if we consider the framework ℱ in Fig. 1, we obtain
the following extensions:

• cf(ℱ) = {∅, {𝑎}, {𝑏}, {𝑐}, {𝑑}, {𝑒}, {𝑎, 𝑐}, {𝑎, 𝑑}, {𝑎, 𝑒}, {𝑏, 𝑑}, {𝑏, 𝑒}, {𝑐, 𝑒}, {𝑎, 𝑐, 𝑒}};
• ad(ℱ) = {∅, {𝑎}, {𝑐}, {𝑑}, {𝑎, 𝑐}, {𝑎, 𝑑}, {𝑐, 𝑒}, {𝑎, 𝑐, 𝑒}};
• co(ℱ) = {{𝑎}, {𝑎, 𝑑}, {𝑎, 𝑐, 𝑒}};
• pr(ℱ) = {{𝑎, 𝑑}, {𝑎, 𝑐, 𝑒}};
• gr(ℱ) = {{𝑎}}.

Value-based Argumentation Frameworks [4] enrich the expressiveness of AFs by incorporating sub-
jective values and audience-dependent evaluation, making them particularly suited for domains where
reasoning involves value conflicts rather than purely logical ones. They connect formal argumentation
with real-world debates, where the outcome is not determined solely by logic but also by which values
are most important to the people involved.

Definition 2.1 (Value-based Argumentation Frameworks [4]). A Value-based Argumentation Framework
(VAF) is a triple ℱ𝑣 = ((A,→), 𝑉, 𝜂), where (A,→) is an AF, 𝑉 = {𝑣1, . . . , 𝑣𝑘} is a set of 𝑘 values, and
𝜂 : A → 𝑉 is a function that assigns a value to each argument. An audience ≤ for a VAF is a total
ordering over the set of values 𝑉 . For values 𝑣𝑖, 𝑣𝑗 ∈ 𝑉 , we say that 𝑣𝑖 is preferred to 𝑣𝑗 in the audience
≤, denoted 𝑣𝑖 ≤ 𝑣𝑗 , if 𝑣𝑖 is ranked higher than 𝑣𝑗 in the total ordering.
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Figure 2: An example of VAF, obtained from Fig. 1.

In Fig. 2 we show an example of VAF ℱ𝑣 = ((A,→), 𝑉, 𝜂) obtained from the AF in Fig. 1, where
A = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒}, →= {(𝑎, 𝑏), (𝑐, 𝑏), (𝑑, 𝑒), (𝑐, 𝑑), (𝑑, 𝑐)}, 𝑉 = {𝑣1, 𝑣2, 𝑣3}, and 𝜂(𝑎) = 𝑣1, 𝜂(𝑏) = 𝑣2,
𝜂(𝑐) = 𝑣1, 𝜂(𝑑) = 𝑣3, 𝜂(𝑒) = 𝑣2.

The introduction of audiences affects the classical notion of attacks given for AFs in [2].

Definition 2.2 (Attacks in VAFs [4]). Given a VAF, an argument 𝑎 ∈ A successfully attacks an argument
𝑏 ∈ A with respect to an audience ≥, if (𝑎, 𝑏) ∈→ and 𝜂(𝑏) ̸> 𝜂(𝑎).

Therefore, an attack only “works” if the attacker’s value is not less preferred than the one being
attacked. Otherwise, the argument is no longer considered part of the underlying ℱ , and the definition
of the semantics presented before changes accordingly. For example, if we consider the VAF in Fig. 2
and the audience 𝑣1 ≥ 𝑣2 ≥ 𝑣3, the successful attacks are only {(𝑎, 𝑏), (𝑐, 𝑏), (𝑐, 𝑑)}: {𝑑, 𝑒} is now
considered conflict-free and {𝑑} is no longer admissible or complete, compared to Fig. 1, for example.

The SBA problem [9] is a decision problem that answers the question of whether there is at least
one perspective or value system under which a given argument can be accepted as justified. This
has implications in real-world reasoning and decision-making, particularly in areas where people or
institutions have different values or priorities, as, ethical debates (e.g., euthanasia, privacy vs. security),
political discourse (e.g., freedom, equality, security), or in general systems where different agents have
individual preferences or objectives: SBA helps determine whether a proposal is acceptable to at least
one agentev en if it is not universally persuasive.

Definition 2.3 (Subjective Acceptance (SBA) [9]). Given a VAF ℱ𝑣 = ((A,→), 𝑉, 𝜂) and an argument
𝑎 ∈ A in this framework, the SBA problem accepts the instance (ℱ𝑣, 𝑎) if there exists at least one
audience ≤ such that 𝑎 ∈ 𝑃≤, where 𝑃≤ is the preferred extension of ℱ (i.e., {𝑃} = pr(ℱ).) relative
to the audience ≤.

In SBA, the preferred semantics is used because it identifies arguments that are defensible under
specific value orderings, allowing for multiple acceptable viewpoints that reflect the diversity of audience
preferences. Unlike stable semantics, it is not overly strict, and, unlike the grounded semantics, it is not
excessively skeptical, making it a balanced and suitable approach for capturing the notion of subjective
acceptability. Note that Def. 2.3 relies on the existence of a single preferred extension in (A,→) given
an audience ≤ because of Prop. 2.1.

Proposition 2.1 (Unicity of preferred/stable [15]). Let ℱ𝑣 = ((A,→), 𝑉, 𝜂) be a VAF, and let ≤ be an
audience. We assume that every directed cycle in the argument graph (A,→) involves at least two
distinct values: i.e., there are no cycles consisting only of arguments associated with the same value
by 𝜂. There exists a unique non-empty preferred extension 𝑃 ⊆ A (i.e., {𝑃} = pr(ℱ)) considering ≤,
that is, there exists only one 𝑃≤. Moreover, 𝑃 is also the only stable extension given ≤: {𝑃} = st(ℱ),
whose existence is thus guaranteed in this case.

The SBA problem is shown to be NP-complete in [9], where the proof is obtained by means of a
reduction from a 3-SAT problem: the reduction constructs a VAF such that an argument is subjectively
acceptable if and only if the 3-CNF formula is satisfiable.3

The no-cycle condition on the values in Prop. 2.1 is not stringent because single-value cycles typically
represent paradoxes or irrational structures [15]. Such cycles rarely occur in practical reasoning, where
conflicts commonly arise between differing values, rather than within the same value. Figure 3 shows a
VAF that respects the no-cycle condition on the values, while Fig. 4 shows a VAF that does not respect
this condition.
3A 3CNF formula is a Boolean formula in conjunctive normal form where each clause contains exactly three literals.
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Figure 5: A second ecample of VAF.

As an example, given the VAF ℱ𝑣 in Fig. 2 and the argument 𝑐, the SBA accepts the instance (ℱ𝑣, 𝑐)
because there exists an audience, for example 𝑣1 ≥ 𝑣2 ≥ 𝑣3, for which the preferred/stable extension
is 𝑃≥ = {𝑎, 𝑐, 𝑒}, that is, 𝑐 ∈ 𝑃≥ as requested by Def. 2.3. Note that with the VAF in Fig. 2, all the
arguments are subjectively acceptable: 𝑎 is always acceptable with any audience, 𝑏 is acceptable if
𝜂(𝑏) ≥ 𝜂(𝑎)∧ 𝜂(𝑏) ≥ 𝜂(𝑐) (e.g., 𝑣2 ≥ 𝑣1), 𝑐 is acceptable if 𝜂(𝑐) ≥ 𝜂(𝑑) (e.g., 𝑣1 ≥ 𝑣3), 𝑑 is acceptable if
𝜂(𝑑) ≥ 𝜂(𝑐) (e.g., 𝑣3 ≥ 𝑣1), and finally 𝑒 is acceptable if 𝜂(𝑒) ≥ 𝜂(𝑑) (e.g., 𝑣2 ≥ 𝑣3). Given the VAF ℱ𝑣

in Fig. 2 and the argument 𝑏 instead, the SBA does not accept the instance (ℱ𝑣, 𝑏) as for any audience
≥ the attack (𝑎, 𝑏) is always successful since 𝜂(𝑎) = 𝜂(𝑏) = 𝑣1.

2.2. Quantum Annealing and QUBO

Quantum Annealing is an approach [16] that uses a quantum computer to tackle optimization problems
by identifying the lowest energy state configuration. This technique relies on the Quantum Adiabatic
Theorem and leverages quantum tunneling to deliver optimal or nearly optimal solutions for discrete
optimization problems [16]. The process begins with an initial function 𝜑𝑠, for which the solution
that minimizes the energy is easily determined. It gradually transitions to the final function 𝜑𝑓 , which
corresponds to the function to be optimized. If the transition is slow enough, the Quantum Adiabatic
Theorem guarantees that the solution with the minimum energy adapts to the change of the objective
function.

Quantum Annealing is implemented by contemporary architectures such as D-Wave, as highlighted
in Sect. 1. This company develops a line of quantum annealing devices that execute quantum annealing
algorithms. In particular, their most sophisticated machines can handle problems involving thousands
of variables.

Quantum annealers can be “programmed” by encoding the problems as Quadratic Unconstrained
Binary Optimization [6, 7] (in short, QUBO) or as Ising models [17]. In this paper, we employ the QUBO
formalism. It is expressive enough to encode several optimization problems formulated in various
application domains [18]. QUBO has been extensively studied and is used to define and address a wide
range of optimization problems: for example, it encompasses SAT Problems, Constraint Satisfaction
Problems, Maximum Cut Problems, Graph Coloring Problems, Maximum Clique Problems, General 0/1
Programming Problems, and many more [7, 18]. Moreover, QUBO embeddings exist for Support Vector
Machines, Clustering algorithms, and Markov Random Fields [19].

In a QUBO problem, 𝑛 binary variables 𝑥1, . . . , 𝑥𝑛 and an 𝑛× 𝑛 upper-triangular matrix 𝑄 are used
to formulate the task, which involves minimizing (or sometimes maximizing) the second-order function

𝑓(𝑥) =
𝑛∑︁

𝑖=1

𝑄𝑖,𝑖𝑥𝑖 +
𝑛∑︁

𝑖<𝑗

𝑄𝑖,𝑗𝑥𝑖𝑥𝑗 .

The diagonal terms 𝑄𝑖,𝑖 are the linear coefficients, and the non-zero off-diagonal terms 𝑄𝑖,𝑗 are the
quadratic coefficients. This can be expressed more concisely as

min
𝑥∈{0,1}𝑛

𝑥𝑇𝑄𝑥.



where 𝑥𝑇 denotes the transpose of the vector 𝑥. The square matrix of coefficients can be organized in a
symmetric way, where for all 𝑖, 𝑗 except 𝑖 = 𝑗, 𝑄𝑖,𝑗 is replaced by (𝑄𝑖,𝑗 +𝑄𝑗,𝑖)/2, or, as stated before,
in an upper-diagonal form where for all 𝑖, 𝑗 s.t. 𝑖 > 𝑗, 𝑄𝑖,𝑗 is replaced by 𝑄𝑖,𝑗 +𝑄𝑗,𝑖 and then all 𝑄𝑖,𝑗

are replaced by 0 for 𝑗 < 𝑖.
To formulate a discrete constrained optimization problem into a QUBO, one must: i) determine a

binary representation of the potential solutions, and ii) define a penalization function to deter non-
feasible solutions, specifically those that violate a constraint.

Except for the 0/1 limitations on the decision variables, QUBO is an unconstrained model, where the
matrix 𝑄 contains all problem data. Rather than applying constraints in the conventional sense, classical
constrained models can be successfully reformulated as QUBO models by inserting quadratic penalties
into the objective function. In constrained optimization problems, selecting a penalty that is too small
may lead to infeasible solutions. In contrast, employing a significant penalty to ensure constraints are
met can make it challenging for the optimization algorithm to find feasible solutions. This strategy
may also introduce challenges, such as sensitivity to penalty values, increased computational demands
during optimization, and instability in the iterative process of the solver. For this reason, a substantial
amount of literature has been produced to find good coefficients [20], or techniques to model classical
constraints into a function, e.g., a logical and constraint between 𝑥1 and 𝑥2 as a multiplication 𝑥1 · 𝑥2.

The literature on precise approaches to QUBO on conventional computers includes various algo-
rithms [18], all of which converge to a globally optimal solution given sufficient time and memory. Most
of these techniques use a standard branch-and-bound tree search, although alternative methods are also
available. For example, in [21], a QUBO solution is based on the inherent geometric properties of the
minimum circumscribed sphere that contains the ellipsoidal contour of the objective function, while in
[22], the authors adopt Lagrangean decompositions. The NP-hardness of QUBO and its various potential
applications have led to a significant number of research papers being published in recent years. These
documents outline a variety of heuristic methods designed to rapidly identify high-quality solutions
to medium- to large-scale problem cases. Although some of these techniques may be simple enough
to be regarded as heuristics, the most effective ones are metaheuristic processes. These involve more
complex compound strategies that outperform basic heuristics. For example, in addition to simulated
annealing [23], the work in [24] presents a guided tabu-search algorithm alternating between a basic
tabu-search procedure and a variable fix/free phase. In contrast, [25] presents a hybrid metaheuristic
approach that combines crossover and update operators with tabu search to evaluate the offspring
solutions.

3. Encoding VAFs and Audiences in QUBO

The encoding of Argumentation problems in QUBO uses a set of 𝑛 binary variables 𝑥1, . . . , 𝑥𝑛 associated
with arguments {𝑎1, . . . , 𝑎𝑛} in A. The variables 𝑥1, . . . , 𝑥𝑛 represent a subset 𝐸 of A: 𝑎𝑖 ∈ A if and
only if 𝑥𝑖 = 1 [10]. Each semantics 𝜎 will be associated with a quadratic penalty function 𝑃𝜎 such
that 𝑃𝜎 assumes its minimum value in the values (𝑥1, . . . , 𝑥𝑛) if and only if the corresponding set
𝐸 = {𝑎𝑖 ∈ A : 𝑥𝑖 = 1} is an extension valid for 𝜎.

For the SBA problem, we also use 𝑘2 − 𝑘 binary variables 𝑢𝑖𝑗 , with 𝑖, 𝑗 = 1, . . . , 𝑘, with 𝑖 ̸= 𝑗, with
the meaning that 𝑢𝑖𝑗 = 1 if and only if 𝑣𝑖 is preferred to 𝑣𝑗 in the audience ≤. To enforce that the
variables 𝑢𝑖𝑗 encode a total order, three quadratic terms are employed.

The first term encodes that for each 𝑖, 𝑗 = 1, . . . , 𝑘, with 𝑖 ̸= 𝑗, 𝑣𝑖 is preferred to 𝑣𝑗 or viceversa.
This term is:

𝑇𝑎𝑛𝑡𝑖−𝑠𝑦𝑚𝑚 =
∑︁
𝑖 ̸=𝑗

(𝑢𝑖𝑗 + 𝑢𝑗𝑖 − 1)2. (1)

The second term is used to encode the transitivity constraint:

𝑇𝑡𝑟𝑎𝑛𝑠 =
∑︁

𝑖 ̸=𝑗,𝑖̸=𝑙,𝑗 ̸=𝑙

𝜔𝑖𝑗𝑙(1− 𝑢𝑖𝑙), (2)



where the binary variables 𝜔𝑖𝑗𝑙, for 𝑖, 𝑗, 𝑙 = 1, . . . , 𝑘 are used to represent the product (or conjunction)
𝑢𝑖𝑗 · 𝑢𝑗𝑙. Here and in other equations, we use sets of additional binary variables (and corresponding
penalty terms to avoid cubic terms, which are products of three variables).

The third term has the purpose of encoding the constraint on 𝜔𝑖𝑗𝑙:

𝑇𝜔 =
∑︁

𝑖 ̸=𝑗,𝑖̸=𝑙,𝑗 ̸=𝑙

𝐴𝑁𝐷(𝜔𝑖𝑗𝑙, 𝑢𝑖𝑗 , 𝑢𝑗𝑙). (3)

The AND function [26] used in Eq. 3 and later in other equations,

𝐴𝑁𝐷(𝑧, 𝑥, 𝑦) = 3𝑧 + 𝑥𝑦 − 2𝑧(𝑥+ 𝑦), (4)

expresses the conjunction 𝑧 = (𝑥 and 𝑦) of binary variables 𝑥, 𝑦 as a quadratic function.
We denote by 𝑇 = 𝑇𝑎𝑛𝑡𝑖−𝑠𝑦𝑚𝑚 + 𝑇𝑡𝑟𝑎𝑛𝑠 + 𝑇𝜔 the sum of these three quadratic terms. To encode the

constraint of a stable extension, we first need to express that the set is complete. Hence, we define a
penalty function 𝑃𝑐𝑜 that enforces this property, which is the sum of 4 terms. The first term forces the
set 𝐸 to be conflict-free:

𝑃cf =
∑︁

𝑎𝑖→𝑎𝑗

𝑦𝑖𝑗𝑢𝜂(𝑎𝑖),𝜂(𝑎𝑗). (5)

The value of 𝑃𝑐𝑓 corresponds to the number of internal attacks in 𝐸 that respect the audience ≤,
and its value is 0 if and only if 𝐸 is conflict-free.

The 𝑛2 binary variables 𝑦𝑖𝑗 , for 𝑖, 𝑗 = 1, . . . , 𝑛 are used to represent the product (or conjunction)
𝑥𝑖𝑥𝑗 = 1. Hence, an additional penalty function must be included:

𝑃𝑦 =
𝑛∑︁

𝑖,𝑗=1

𝐴𝑁𝐷(𝑦𝑖𝑗 , 𝑥𝑖, 𝑥𝑗).

The constraints for modeling the notion of defense are more complex and require additional variables.
The first set contains the variables 𝑡1, . . . , 𝑡𝑛, which denote the arguments that are successfully attacked
by 𝐸: 𝑡𝑖 = 1 if and only if some argument of 𝐸 attacks 𝑎𝑖 with respect to ≤.

For each argument 𝑎𝑖, the penalty function 𝑃 𝑖
𝑡 enforces the logical constraint

𝑡𝑖 =
⋁︁

𝑎𝑗→𝑎𝑖

𝑥𝑗𝑢𝜂(𝑎𝑗),𝜂(𝑎𝑖).

To express this constraint in QUBO, three “ingredients” are needed. The function

𝑂𝑅(𝑧, 𝑥, 𝑦) = 𝑧 + 𝑥+ 𝑦 + 𝑥𝑦 − 2𝑧(𝑥+ 𝑦) (6)

is used to express the constraint that the binary variable 𝑧 is the disjunction 𝑧 = (𝑥 or 𝑦) of the binary
variables 𝑥, 𝑦 by means of a quadratic function, as shown in [26].

Each product of the form 𝑥𝑗𝑢𝜂(𝑎𝑗),𝜂(𝑎𝑖) must be replaced by a single binary variable 𝜑𝑗𝑖, for 𝑗 =
1, . . . , 𝑛 such that 𝑎𝑗 → 𝑎𝑖. The constraints 𝜑𝑗𝑖 = 𝑥𝑗𝑢𝜂(𝑎𝑗),𝜂(𝑎𝑖) for 𝑗 = . . . , 𝑛 are enforced by the
penalization term

𝑃 𝑖
𝜑 =

∑︁
𝑎𝑗→𝑎𝑖

𝐴𝑁𝐷(𝜑𝑗𝑖, 𝑥𝑗 , 𝑢𝜂(𝑎𝑗),𝜂(𝑎𝑖)).

Each penalty function 𝑃 𝑖
𝑡 requires max{ℎ𝑖 − 2, 0} auxiliary variables 𝛼𝑗

𝑖 , where ℎ𝑖 is the number
of possible attackers of 𝑎𝑖, to represent the

⋁︀
operator as a composition of 𝑂𝑅 functions. If ℎ𝑖 ≤ 2,

no additional variable is required, as explained in [10]. On the other hand, if ℎ𝑖 > 2 and the possible
attackers of 𝑎𝑖 are 𝑎𝑖1 , . . . , 𝑎𝑖ℎ , then



Set Size
{𝑥𝑖} 𝑛
{𝑡𝑖} 𝑛

{𝑢𝑖𝑗} 𝑘2 − 𝑘
{𝜔𝑖𝑗𝑙} 𝑘3

{𝑦𝑖𝑗}
∑︀𝑛

𝑖=1 ℎ𝑖

{𝜑𝑗𝑖}
∑︀𝑛

𝑖=1 ℎ𝑖

{𝜃𝑗𝑖}
∑︀𝑛

𝑖=1 ℎ𝑖

{𝛼𝑗𝑖}
∑︀𝑛

𝑖=1 max(ℎ𝑖 − 2, 0)
{𝛿𝑗𝑖}

∑︀𝑛
𝑖=1 max(ℎ𝑖 − 2, 0)

𝑃 𝑖
𝑡 = 𝑂𝑅(𝑡𝑖, 𝜑[𝑖1, 𝑖], 𝛼

1
𝑖 ) +𝑂𝑅(𝛼1

𝑖 , 𝜑[𝑖2, 𝑖], 𝛼
2
𝑖 ) + . . .+𝑂𝑅(𝛼ℎ𝑖−3

𝑖 , 𝜑[𝑖ℎ𝑖−2, 𝑖], 𝛼
ℎ𝑖−2
𝑖 )+

𝑂𝑅(𝛼ℎ𝑖−2
𝑖 , 𝜑[𝑖ℎ𝑖−1, 𝑖], 𝜑[𝑖ℎ𝑖

, 𝑖]), (7)

The binary variables 𝑑1, . . . , 𝑑𝑛 denote the arguments that are defended by 𝐸: 𝑑𝑖 = 1 if and only if
𝑎𝑖 is defended (from all successful attacks) by some arguments of 𝐸.

The penalty function 𝑃 𝑖
𝑑 forces 𝑥𝑖 to be 1 if and only if 𝑎𝑖 is defended by 𝐸 respecting ≤, i.e.,

𝑑𝑖 =
⋀︀

𝑎𝑗→𝑎𝑖
(𝑡𝑗 ∨ ¬𝑢𝜂(𝑎𝑗),𝜂(𝑎𝑖)).

In fact, 𝑎𝑖 is defended if for each possible attacker 𝑎𝑗 , either 𝑎𝑗 is attacked by 𝐸 or the attack is not
successful, i.e., 𝑢𝜂(𝑎𝑗),𝜂(𝑎𝑖) = 0. In addition, in this case, each term (𝑡𝑗 ∨ ¬𝑢𝜂(𝑎𝑗),𝜂(𝑎𝑖)) must be replaced
by the binary variable 𝜃𝑗𝑖, for 𝑗 = 1, . . . , 𝑛 such that 𝑎𝑗 → 𝑎𝑖.

The constraints 𝜃𝑗𝑖 = (𝑡𝑗 ∨ ¬𝑢𝜂(𝑎𝑗),𝜂(𝑎𝑖)), for 𝑗 = 1, . . . , 𝑛, are enforced by the penalization term

𝑃 𝑖
𝜃 =

∑︁
𝑎𝑗→𝑎𝑖

𝑂𝑅(𝜃𝑗𝑖, 𝑡𝑗 , 1− 𝑢𝜂(𝑎𝑗),𝜂(𝑎𝑖))

Each penalty function 𝑃 𝑖
𝑑 requires max{ℎ𝑖 − 2, 0} auxiliary variables 𝛿𝑗𝑖 , for 𝑗 = 1, . . . , ℎ𝑖 − 2 to

express the
⋀︀

operator as a composition of the 𝐴𝑁𝐷 function.
When ℎ𝑖 > 2 the penalty function is

𝑃 𝑖
𝑑 = 𝐴𝑁𝐷(𝑥𝑖, 𝜃[𝑖1, 𝑖], 𝛿

1
𝑖 ) +𝐴𝑁𝐷(𝛿1𝑖 , 𝜃[𝑖2, 𝑖], 𝛿

2
𝑖 ) + . . .+𝐴𝑁𝐷(𝛿ℎ𝑖−3

𝑖 , 𝜃[𝑖ℎ𝑖−2, 𝑖], 𝛿
ℎ𝑖−2
𝑖 )+

𝐴𝑁𝐷(𝛿ℎ𝑖−2
𝑖 , 𝜃[𝑖ℎ𝑖−1, 𝑖], 𝜃[𝑖ℎ𝑖

, 𝑖]) (8)

To encode that 𝐸 is a complete extension, the constraint 𝑥𝑖 = 𝑑𝑖 must hold for 𝑖 = 1, . . . , 𝑛.
Hence, the penalty function for complete sets is

𝑃𝑐𝑜 = 𝑇 + 𝑃𝑐𝑓 + 𝑃𝑦 +

𝑛∑︁
𝑖=1

(𝑃 𝑖
𝑡 + 𝑃 𝑖

𝑑) +
𝑛∑︁

𝑖=1

∑︁
𝑎𝑗→𝑎𝑖

(𝑃 𝑗𝑖
𝜑 + 𝑃 𝑗𝑖

𝜃 ) +
𝑛∑︁

𝑖=1

(𝑥𝑖(1− 𝑑𝑖) + 𝑑𝑖(1− 𝑥𝑖))

The sets of binary variables appearing in 𝑃𝑐𝑜 are listed in Tab. 3. The number of these variables is
𝑁 = 2𝑛+𝑘2−𝑘+𝑘3+3

∑︀𝑛
𝑖=1 ℎ𝑖+2

∑︀𝑛
𝑖=1max(ℎ𝑖−2, 0), which can be simplified as 𝑁 = 𝑂(𝑛ℎ+𝑘3),

where ℎ = maxℎ𝑖.
Finally, the encoding of the stable semantics is obtained by adding an additional term to 𝑃𝑐𝑜 which

forces all arguments not belonging to 𝐸 to be attacked by 𝐸:

𝑃𝑠𝑡 = 𝑃𝑐𝑜 +

𝑛∑︁
𝑖=1

(1− 𝑥𝑖)(1− 𝑡𝑖) (9)

It is straightforward to prove that the minimum value of 𝑃𝑠𝑡 is 0 if and only if the corresponding 𝐸
is a stable extension. Hence, this encoding can be used to determine whether a stable extension exists.

Solving the SBA problem for a given argument 𝑎𝑖 is sufficient to minimize 𝑃𝑠𝑡 after setting 𝑥𝑖 = 1. If
the minimum is 0, then 𝑎𝑖 is accepted; the values of variables 𝑥𝑖 indicate the stable/preferred extension,
and the values of 𝑢𝑖𝑗 reveal the order relation ≤.



Table 1
Experimental results on 𝑛 = 20, 25, 30, 35 nodes/arguments graphs generated with Erdős-Rényi [28].

𝑛 𝑛𝑎 #AFs min 𝑒𝑚𝑖𝑛 max 𝑒𝑚𝑖𝑛

20

0 19 0 0
1 16 1 1
2 14 1 1
3 1 1 1

25

0 19 0 0
1 9 1 1
2 6 1 1
3 6 1 1
4 3 1 1
6 1 1 2
7 3 1 2
8 1 1 1
9 1 1 2
10 1 1 2

30

1 2 1 1
3 1 1 1
10 1 1 2
12 2 1 3
16 1 1 3
17 1 1 2
19 2 1 3
20 1 1 4
23 2 1 4
24 1 1 4
30 36 5 212

35 35 50 9 275

4. Experiments

As a proof of concept, we have conducted a preliminary series of experiments using the Simulated
Annealing (SA) [27] algorithm present in the Ocean SDK4 package. As noted in Sect. 2.2, the Hamiltonian
presented in Sect. 3 can be minimized using methods other than SA; however, in the future, we would
like to test the implementation on actual quantum annealers (Sect. 5).

To achieve this aim, we have generated four sets of 50 random directed graphs, each with 𝑛 =
20, 25, 30, 35 nodes/arguments, for a total of 200 graphs. For every graph, representing a different VAF,
we used the Erdős-Rényi random generator [28], and we used an edge/attack probability of 𝑝 = 0.09. In
each VAF, we have randomly assigned a value 𝜂(𝑎) to all arguments among the ⌊𝑛/2⌋ possible values
𝑣1, . . . , 𝑣⌊𝑛/2⌋. In this way, the average number of arguments that share the same value is two. Then, we
have tested whether, in all the cycles of the graph, the arguments are assigned to at least two different
values, as required by Prop. 2.1. In the negative case, we generate another argument-value assignment
𝜂 until the VAF satisfies the condition.

For each VAF, we have tested the acceptance of each argument by running the SA on 1000 reads
of the corresponding QUBO model. We denote by 𝑒𝑚𝑖𝑛 the minimum value of the energy (i.e., the
objective function) obtained in all reads for a given VAF and a given argument 𝑎.

The aggregate results are shown in Tab. 1, where 𝑛 is the number of arguments, 𝑛𝑎 is the possible
number of not accepted arguments, #AFs denotes the number of AFs of 𝑛 arguments in which the
number of not accepted arguments is 𝑛𝑎, min 𝑒𝑚𝑖𝑛 and max 𝑒𝑚𝑖𝑛 are respectively the minimum value
of 𝑒𝑚𝑖𝑛 and the maximum value of 𝑒𝑚𝑖𝑛 computed for all not accepted arguments.

The results can be summarized as follows. For 𝑛 = 20, in 19 VAFs all the arguments are accepted, in

4Ocean SDK: https://docs.dwavequantum.com/en/latest/ocean/index.html.

https://docs.dwavequantum.com/en/latest/ocean/index.html


Table 2
Size of QUBO models for each set of graphs, in the number 𝑁 of variables.

𝑛 min𝑁 avg 𝑁 max𝑁
20 416 718.16 1016
25 638 1291.92 1761
30 1187 2381.96 3379
35 2343 3577.60 4908

Figure 6: Average 𝑒𝑚𝑖𝑛 compared to the number of variables 𝑁 .

16 VAFs only one argument is not accepted, in 14 VAFs two arguments are not accepted, and in one
VAF three arguments are not accepted. It is interesting to see that the 𝑒𝑚𝑖𝑛 = 1 in the AFs when the
argument is not accepted.

For 𝑛 = 25, again in 19 VAFs all arguments are accepted. In the remaining 24 VAFs, the number
of arguments not accepted ranges from 1 to 4. Also, in these cases, 𝑒𝑚𝑖𝑛 = 1 when the argument is
not accepted. The same value for the minimum energy was found in an AF with 𝑛𝑎 = 8 and in an AF
with 𝑛𝑎 = 7 (the latter data does not appear in Tab. 1). The situation is different for the remaining
5 VAFs with 𝑛 = 25. In fact, we have found that in these VAFs, 𝑒𝑚𝑖𝑛 is 2 for at least one argument.
Currently, we do not know whether 2 is the correct value of the objective function when the argument
is not accepted. Hence, we cannot determine whether the value 2 indicates that either the argument is
unacceptable or the SA was unable to find a lower-energy solution.

For 𝑛 = 30, apparently, in no 𝐴𝐹 are all arguments accepted. We have found 2 VAFs with one
argument not accepted and 3 VAFs with 3 arguments not accepted. In these cases, the minimum energy
is 1. In all the other AFs, the number of arguments not accepted is unclear. In particular, in 36 VAFs, no
argument was accepted, which is highly unlikely. In these combinations, the minimum energy ranges
from 5 to 212. Moreover, in 20 VAFs, we have 𝑒𝑚𝑖𝑛 > 90 for all arguments, which is a very large value
and a strong indication that the SA has not been able to optimize the objective function. Finally, all
experiments with 𝑛 = 35 have a unique outcome: in each AF, none of the arguments are accepted. This
outcome is likely due to the non-optimal solutions found by the SA.

A partial justification can be given by looking at Tab. 2, in which the number of variables 𝑁 appearing
in the corresponding QUBO models is reported for each value of 𝑛. It is evident that the average value
of 𝑁 nearly doubles when 𝑛 increases from 25 to 30. The SA is likely trapped in a local minimum when
𝑁 exceeds 2000.

In fact, a significant correlation between 𝑁 and the average value of 𝑒𝑚𝑖𝑛 can be observed in Fig. 6.



5. Conclusion

This paper elaborates on the research initiated in [10, 11, 12, 13] and introduces the first QUBO encoding
for a preference-based problem in Argumentation, explicitly addressing the Subjective Acceptance
problem in Value-based Argumentation Frameworks. By translating the NP-complete SBA problem into
the QUBO formalism, we enable novel computational approaches to energy-minimization reasoning,
particularly allowing the use of quantum annealers to solve the problem.

The encoding involves defining binary variables for arguments and value preferences and constructing
quadratic penalty functions to enforce various constraints, such as conflict-freeness and defense.

Future research will focus on several directions. First, we plan to explore the scalability of this
QUBO encoding for larger and more complex VAFs, investigating its performance on current and future
quantum annealing hardware. The experimental results presented in this article are preliminary, and
further investigation is necessary in the following steps of this work. For example, we will check the
correctness of the solutions we find against the outputs provided by ASPARTIX [29],5 which consists of
a set of AF/VAF encodings to be solved by Answer-set Programming (ASP) solvers.

Acknowledgments

M. Baioletti has been partially supported by: European Union - NextGenerationEU, Mission 4, Compo-
nent 2, under the Italian Ministry of University and Research (MUR) National Innovation Ecosystem
grant ECS00000041 - VITALITY - CUP J97G22000170005.

F. Santini has been partially supported by: European Union - Next Generation EU PNRR MUR PRIN -
Project J53D23007220006 EPICA: “Empowering Public Interest Communication with Argumentation”,
MUR PNRR project SERICS (PE00000014 AQuSDIT: CUP_H73C22000880001), funded by the Euro-
pean Union – Next Generation EU; University of Perugia - Fondo Ricerca di Ateneo (2022) – Project
RATIONALISTS, WP4.1 on “AI Data Management and Data Science”.

Declaration on Generative AI

During the preparation of this work, the authors used Grammarly to perform grammar and spelling
checks and to reword. After using this tool, the authors reviewed and edited the content as needed and
take full responsibility for the publication’s content.

References

[1] D. Walton, Fundamentals of critical argumentation, Cambridge University Press, 2005.
[2] P. M. Dung, On the acceptability of arguments and its fundamental role in nonmonotonic reasoning,

logic programming and n-person games, Artificial Intelligence 77 (1995) 321–358.
[3] P. Besnard, A. J. García, A. Hunter, S. Modgil, H. Prakken, G. R. Simari, F. Toni, Introduction to

structured argumentation, Argument Comput. 5 (2014) 1–4. URL: https://doi.org/10.1080/19462166.
2013.869764.

[4] T. J. M. Bench-Capon, Value-based argumentation frameworks, in: S. Benferhat, E. Giunchiglia
(Eds.), 9th International Workshop on Non-Monotonic Reasoning (NMR 2002), April 19-21,
Toulouse, France, Proceedings, 2002, pp. 443–454.

[5] F. Glover, G. Kochenberger, Y. Du, A tutorial on formulating and using QUBO models, 2019. URL:
https://arxiv.org/abs/1811.11538. arXiv:1811.11538.

[6] P. Hammer, S. Rudeanu, Boolean methods in operations research and related areas, ökonometrie
und unternehmensforschung/econometrics and operations research, Springer, Berlin 1007 (1968)
978–3.

5ASPARTIX for Value-based Argumentation Frameworks (VAFs): https://www.dbai.tuwien.ac.at/research/argumentation/
aspartix/vaf.html.

https://doi.org/10.1080/19462166.2013.869764
https://doi.org/10.1080/19462166.2013.869764
https://arxiv.org/abs/1811.11538
http://arxiv.org/abs/1811.11538
https://www.dbai.tuwien.ac.at/research/argumentation/aspartix/vaf.html
https://www.dbai.tuwien.ac.at/research/argumentation/aspartix/vaf.html


[7] F. W. Glover, G. A. Kochenberger, Y. Du, Quantum bridge analytics I: a tutorial on formulating
and using QUBO models, 4OR 17 (2019) 335–371.

[8] A. Rajak, S. Suzuki, A. Dutta, B. K. Chakrabarti, Quantum annealing: An overview, Philosophical
Transactions of the Royal Society A 381 (2023) 20210417.

[9] P. E. Dunne, T. J. M. Bench-Capon, Complexity in value-based argument systems, in: Logics in
Artificial Intelligence, 9th European Conference, JELIA, volume 3229 of LNCS, Springer, 2004, pp.
360–371.

[10] M. Baioletti, F. Santini, Abstract argumentation goes quantum: An encoding to QUBO problems,
in: PRICAI 2022: Trends in Artificial Intelligence - 19th Pacific Rim International Conference on
Artificial Intelligence, volume 13629 of LNCS, Springer, 2022, pp. 46–60.

[11] M. Baioletti, F. Santini, On using QUBO to enforce extensions in abstract argumentation (short
paper), in: Proceedings of the International Workshop on AI for Quantum and Quantum for AI
(AIQxQIA 2023), volume 3586 of CEUR Workshop Proceedings, CEUR-WS.org, 2023.

[12] M. Baioletti, F. Rossi, F. Santini, Enumerating extensions in abstract argumentation by using
QUBO, in: Proceedings of the International Workshop on AI for Quantum and Quantum for AI
(AIQxQIA 2024), volume 3913 of CEUR Workshop Proceedings, CEUR-WS.org, 2024.

[13] M. Baioletti, F. Santini, An encoding of argumentation problems using quadratic unconstrained
binary optimization, Quantum Mach. Intell. 6 (2024) 51.

[14] P. Baroni, M. Caminada, M. Giacomin, An introduction to argumentation semantics, The Knowl-
edge Engineering Review 26 (2011) 365–410.

[15] T. J. Bench-Capon, Agreeing to differ: modelling persuasive dialogue between parties with different
values, Informal Logic 22 (2002) 231–246.

[16] S. E. Venegas-Andraca, W. Cruz-Santos, C. McGeoch, M. Lanzagorta, A cross-disciplinary intro-
duction to quantum annealing-based algorithms, Contemporary Physics 59 (2018) 174–197.

[17] A. Lucas, Ising formulations of many np problems, Frontiers in Physics 2 (2014).
[18] G. A. Kochenberger, J. Hao, F. W. Glover, M. W. Lewis, Z. Lü, H. Wang, Y. Wang, The unconstrained

binary quadratic programming problem: a survey, J. Comb. Optim. 28 (2014) 58–81.
[19] S. Mücke, N. Piatkowski, K. Morik, Learning bit by bit: Extracting the essence of machine learning,

in: R. Jäschke, M. Weidlich (Eds.), Proceedings of the Conference on "Lernen, Wissen, Daten,
Analysen", volume 2454 of CEUR Workshop Proceedings, CEUR-WS.org, Berlin, Germany, 2019, pp.
144–155.

[20] A. Verma, M. W. Lewis, Penalty and partitioning techniques to improve performance of QUBO
solvers, Discret. Optim. 44 (2022) 100594.

[21] D. Li, X. Sun, C. Liu, An exact solution method for unconstrained quadratic 0-1 programming: a
geometric approach, J. Glob. Optim. 52 (2012) 797–829.

[22] G. R. Mauri, L. A. N. Lorena, Improving a lagrangian decomposition for the unconstrained binary
quadratic programming problem, Comput. Oper. Res. 39 (2012) 1577–1581.

[23] T. M. Alkhamis, M. Hasan, M. A. Ahmed, Simulated annealing for the unconstrained quadratic
pseudo-boolean function, Eur. J. Oper. Res. 108 (1998) 641–652.

[24] J. Wang, Y. Zhou, J. Yin, Combining tabu hopfield network and estimation of distribution for
unconstrained binary quadratic programming problem, Expert Syst. Appl. 38 (2011) 14870–14881.

[25] Z. Lü, F. W. Glover, J. Hao, A hybrid metaheuristic approach to solving the UBQP problem, Eur. J.
Oper. Res. 207 (2010) 1254–1262.

[26] I. Rosenberg, Reduction of bivalent maximization to the quadratic case, Cahiers du Centre d’Etudes
de Recherche Opérationnelle 17 (1975) 71–74.

[27] S. Kirkpatrick, C. D. Gelatt Jr, M. P. Vecchi, Optimization by simulated annealing, science 220
(1983) 671–680.

[28] P. Erdős, A. Rényi, On the evolution of random graphs, Bull. Inst. Internat. Statist 38 (1961)
343–347.

[29] U. Egly, S. A. Gaggl, S. Woltran, Answer-set programming encodings for argumentation frame-
works, Argument Comput. 1 (2010) 147–177.


	1 Introduction
	2 Background
	2.1 Problems in Abstract Argumentation Frameworks
	2.2 Quantum Annealing and QUBO

	3 Encoding VAFs and Audiences in QUBO
	4 Experiments
	5 Conclusion

