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Abstract
Quantum Federated Learning (QFL) is an emerging framework that integrates Federated Learning (FL) with
Quantum Computing (QC), enabling collaborative training of quantum models across distributed and privacy-
preserving environments. While prior work has primarily focused on classical machine learning tasks using
Variational Quantum Circuits (VQCs), the application of QFL to inherently quantum problems remains largely
unexplored. In this work, we investigate QFL in the context of one of the most fundamental tasks in quantum
information theory, namely, Quantum State Discrimination (QSD). We design and evaluate a set of toy yet realistic
scenarios involving small, imbalanced, and noisy quantum datasets, reflecting practical constraints common in
quantum sensing and metrology. Our findings demonstrate that QFL can successfully overcome local dataset
biases and quantum noise, achieving near-optimal performance comparable to analytical results. All code and
experiments are made publicly available at https://github.com/roccobb/QFL4QSD to support reproducibility and
encourage further research.
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1. Introduction

The rapid advancement of both Machine Learning (ML) and Quantum Computing (QC) is transforming
the landscape of modern computing and Artificial Intelligence (AI) [1, 2, 3]. ML has become a cornerstone
of contemporary AI, enabling significant breakthroughs in data analysis, pattern recognition, decision-
making, and many more [1]. However, the explosive growth of data has exposed key limitations of
centralized ML models, including storage bottlenecks, high communication costs, and heightened risks
of data leakage [4, 5]. These concerns, along with increasing emphasis on privacy and compliance with
regulations such as the EU’s General Data Protection Regulation (GDPR), have motivated a shift toward
decentralized, privacy-preserving approaches such as Federated Learning (FL), a paradigm in which
multiple participants collaboratively train a shared model without exchanging raw data [6, 7].

Parallelly, the field of QC has undergone significant advancements, progressing from theoretical
foundations to the realization of Noisy Intermediate-Scale Quantum (NISQ) devices [2]. Unlike classical
systems, quantum computers exploit phenomena such as superposition and entanglement to process
information in fundamentally new ways. These principles have enabled quantum algorithms that offer
computational advantages for specific tasks [8, 9], as well as the development of cryptographic protocols
that guarantee information-theoretic security [10].

However, despite the promising capabilities enabled by QC, practical implementations remain con-
strained by the limitations of current hardware. Today’s quantum devices are characterized by a small
number of qubits, limited coherence times, high error rates, and the absence of full-scale quantum error
correction [11]. These challenges place significant restrictions on the complexity and depth of quantum
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circuits that can be reliably executed, thereby limiting the scope of near-term quantum applications
[12].

In addition, many practical quantum computing scenarios involve datasets that are inherently small,
distributed, and sensitive [13, 14]. This is particularly evident in domains such as quantum sensing
and quantum metrology, where data is often generated across multiple remote quantum devices or
laboratories [15]. In such contexts, centralizing data is not only impractical due to hardware constraints
but may also be undesirable due to privacy concerns or institutional boundaries [16].

These challenges, combined with the growing need for scalable, distributed quantum data processing
[17], have motivated the integration of FL principles into the quantum domain—giving rise to the field
known as Quantum Federated Learning (QFL).

Nevertheless, while QFL offers a promising avenue for collaborative quantum learning, the majority
of existing works have primarily focused on applying it to classical tasks, particularly to standard classifi-
cation problems using Variational Quantum Circuits (VQCs) and classical datasets [18]. In contrast, this
work explores the use of QFL to address Quantum State Discrimination (QSD), a foundational problem
in quantum information theory. We investigate this task under practical constraints, including noisy
and imbalanced quantum datasets distributed across different clients. To the best of our knowledge,
this is the first work to apply a federated learning framework to a genuinely quantum task—namely,
QSD—highlighting the broader potential of QFL for advancing fundamental quantum information
processing problems in realistic settings.

The main contributions of this work are as follows:

1. We introduce, for the first time to the best of our knowledge, the use of QFL to address a
foundational quantum information problem, namely QSD.

2. We design and implement a set of toy but realistic experiments within the QFL framework,
including:

a) Small and imbalanced quantum datasets with varying degrees of class imbalance;
b) Small, imbalanced quantum datasets subject to depolarizing noise, modeling realistic quan-

tum noise in state preparation.
3. We demonstrate that QFL can effectively mitigate local bias and noise, achieving strong perfor-

mance in QSD tasks. Our results are benchmarked against an analytical solution, validating the
robustness and accuracy of the QFL approach.

4. To promote transparency and reproducibility, we release a public repository containing all code,
experiments, and results available at https://github.com/roccobb/QFL4QSD.

The rest of this paper is organized as follows. Section 2 reviews related work in both QFL and QSD.
Section 3 provides the necessary background on these two domains. In Section 4, we define the problem
under study and detail the assumptions and challenges involved. Section 5 presents and discusses our
experimental results. Finally, Section 6 concludes the paper and outlines potential directions for future
work.

2. Related Work

QFL has quickly become a growing area of research at the intersection of quantum computing and
distributed learning. Since its initial formulation in the early 2020s [19], QFL has attracted increasing
interest for its potential to enable collaborative quantum model training without requiring centralized
access to data, making it a promising candidate for real-world applications using current NISQ devices
[20, 17, 18].

While some studies have explored the use of QFL to enhance communication security—leveraging
quantum cryptographic techniques such as Quantum Key Distribution (QKD) to enable more private and
robust federated protocols [21, 22, 23, 24, 25]—the predominant research focus has been on optimization,
particularly in the context of classical classification tasks [18]. Thus, the vast majority of works in the
field typically use quantum models, most often VQCs, to classify classical datasets such as MNIST or



CIFAR-10 within a federated framework (see [19, 26, 27, 28, 29, 30, 31, 32, 33, 34], to name a few). In this
sense, the primary goal of most works is to obtain better convergence or improved efficiency within a
federated framework, rather than to address a problem that is inherently quantum in nature.

Among the growing body of QFL literature, only a handful of works explicitly address the use of
quantum data, in particular, [35] and [36]. However, these studies adopt relatively simple settings in
which quantum data is artificially generated by applying single-qubit rotations, with labels assigned
based on whether the resulting state exceeds a predefined excitation threshold. Although VQCs are
employed within a federated learning framework, the classification tasks remain straightforward. In
contrast, our work addresses a significantly more complex and foundational challenge, namely QSD,
while incorporating practical constraints such as noisy states, class imbalance, and heterogeneous data
distributions across clients.

On a different note, QSD stands out as a particularly important and impactful problem among the
many challenges in quantum information theory [37, 38]. Its relevance spans a wide array of applications,
including quantum communication, quantum cryptography, quantum metrology, and quantum sensing,
where reliable state identification is essential to system performance and security [39].

A few recent works have explored the use of VQCs for QSD. Chen et al. [40] introduced a framework
where parameterized quantum circuits are trained to approximate generalized quantum measurements,
also known as Positive Operator-Valued Measure (POVM), enabling discrimination of non-orthogonal
quantum states with strong generalization to unseen inputs. Similarly, Lee et al. [41] proposed a frame-
work which learns the optimal POVM for minimum-error discrimination using a cost-function-based
variational approach, showing performance close to semidefinite programming solutions. Lastly, [42]
tested the performance of noisy quantum neural networks for QSD, showing that effective discrimination
is possible even under realistic noise conditions.

These works establish the feasibility of using VQCs for QSD. Nevertheless, they typically assume
access to centralized quantum data and rely on idealized settings, often involving large or even infinite
datasets. In contrast, we address a more realistic and practical setting where multiple clients each
hold small, finite quantum datasets that may be imbalanced and subject to noise. This decentralized
approach better reflects the constraints faced in current quantum technologies and distributed quantum
applications [14].

3. Fundamental Concepts

3.1. State Discrimination

QSD is the task of identifying an unknown quantum state, 𝜌, chosen from a known set of possible states
𝜌 ∈ {𝜌1, 𝜌2, ..., 𝜌𝑛}. The objective is to design an optimal measurement that best identifies 𝜌.

In this work, we focus on quantum states represented by density matrices acting on a 2-dimensional
complex Hilbert spaceℋ, that is, single-qubit states. In addition, we restrict our attention to the binary
classification case, where the unknown state belongs to the set 𝜌 ∈ {𝜌𝐴, 𝜌𝐵}.

Thus, the goal is to construct a quantum measurement that, upon receiving an unknown qubit state
drawn from {𝜌𝐴, 𝜌𝐵} identifies it as either class A or class B with the smallest possible probability of
error.

Let the measurement, 𝐸𝑖, with 𝑖 ∈ {0, 1}, be described by a 2-element POVM. A measurement
outcome of 𝑖 = 0 is interpreted as a guess that the system was prepared in state 𝜌𝐴, and similarly, a
measurement outcome of 𝑖 = 1 is interpreted as having received state 𝜌𝐵 .

Assuming the state has been prepared in 𝜌𝐴 or 𝜌𝐵 with prior probabilities 𝑝𝐴 and 𝑝𝐵 , respectively,
the probability of correctly identifying the state is:

𝑃𝑐𝑜𝑟𝑟 = 𝑝𝐴𝑇𝑟[𝜌𝐴𝐸0] + 𝑝𝐵𝑇𝑟[𝜌𝐵𝐸1]. (1)

If the states are orthogonal (i.e., 𝑇𝑟[𝜌𝐴𝜌𝐵] = 0), they can be perfectly distinguished. However, in a
more realistic and general scenario, 𝜌𝐴 and 𝜌𝐵 are not orthogonal (i.e., 0 < 𝑇𝑟[𝜌𝐴𝜌𝐵] < 1), and it is



impossible to distinguish them with certainty.
The optimal strategy for this particular case was provided by Carl W. Helstrom (i.e., [43]).
Since

∑︀
𝑖𝐸𝑖 = I for all POVMs, Eq. 1 can be written as

𝑃𝑐𝑜𝑟𝑟 = 𝑝𝐴𝑇𝑟[𝜌𝐴𝐸0] + 𝑝𝐵𝑇𝑟[𝜌𝐵I− 𝜌𝐵𝐸0] = 𝑝𝐵 + 𝑇𝑟[(𝑝𝐴𝜌𝐴 − 𝑝𝐵𝜌𝐵)𝐸0]. (2)

To maximize Eq. 2, the trace needs to be maximized. This is achieved when 𝐸0 is a projector on the
positive eigenspace of 𝑝𝐴𝜌𝐴 − 𝑝𝐵𝜌𝐵 .

Moreover, in this case, the solution is equivalent to finding a rotation in the Bloch sphere that aligns
the optimal measurement direction with a given fixed measurement basis such that 𝐸𝑖 = 𝑈 † |𝑖⟩ ⟨𝑖|𝑈 .

Finding this optimal rotation effectively reduces the problem of QSD to a variational optimization
task. In this work, we employ a Variational Quantum Circuit (VQC) to learn the unitary transformation
that implements the desired rotation. The quantum circuit is trained to minimize a suitable loss function
that quantifies the discrimination error, allowing the model to approximate the optimal measurement
strategy directly from data.

3.2. Quantum Federated Learning

FL is a decentralized machine learning paradigm that enables multiple clients to collaboratively train a
shared model without exchanging their raw data. This approach addresses critical concerns around
data privacy, communication costs, and scalability by performing local training on each client’s dataset
and aggregating model updates centrally [7].

Generally, a FL framework comprises a central server and a set of 𝐾 parties, commonly referred to
as clients, each holding a subset of the dataset. The goal is to collaboratively train a machine learning
model without disclosing any local data. To accomplish this, each client performs local training and
sends its model parameters to the central server, which aggregates the updates and returns the revised
global parameters to all clients:

𝑤𝑡+1 ←
𝐾∑︁
𝑘=1

𝑛𝑘

𝑛
𝑤𝑘
𝑡+1, where 𝑤𝑘

𝑡+1 ← 𝑤𝑘
𝑡 − 𝜂∇𝑓(𝑤𝑘

𝑡 ), ∀𝑘, (3)

where 𝑛𝑘
𝑛 represents the fraction of dataset holded by client 𝑘, 𝑤𝑘

𝑡 are the model parameters of client
𝑘 at step 𝑡, 𝜂 is the learning rate, 𝑓(·) represents the machine learning model, and 𝑤𝑡 are the global
model parameters at step 𝑡.

This process is repeated iteratively until a convergence or stopping criterion is met.
Despite its advantages, FL also introduces several challenges, including statistical heterogeneity across

clients, communication inefficiencies, and vulnerabilities to adversarial behavior or data poisoning
attacks [4].

QFL emerges from the intersection of FL and Quantum Machine Learning (QML) and aims to address
some of FL’s mentioned challenges while leveraging the potential advantages of QC.

As discussed in Section 2, typical implementations of QFL combine QML models—most notably
VQCs—at the client level to boost performance, while employing quantum communication protocols to
address privacy concerns and mitigate communication bottlenecks. Nonetheless, we believe that QFL
is particularly well-suited for scenarios where quantum data is inherently distributed across different
devices or institutions and where data centralization is infeasible or undesirable.

4. Problem Definition

As stated in Section 3.1, the goal in binary QSD is to identify the true label 𝑦 ∈ {0, 1} of an unknown
quantum state 𝜌 ∈ ℋ, which is known to be prepared from one of two possible sources: 𝜌𝐴 (class A) or
𝜌𝐵 (class B). The optimal strategy for minimizing the probability of misclassification is given by Eq. 2,
whose success probability depends on both:



• The actual quantum states 𝜌𝐴 and 𝜌𝐵 .
• Their respective prior probabilities 𝑝𝐴 = 𝑃𝑟(𝑦 = 0) and 𝑝𝐵 = 𝑃𝑟(𝑦 = 1), with 𝑝𝐴 + 𝑝𝐵 = 1.

In this work, we consider a more constrained and realistic version of this problem.
Let there be 𝐾 clients {𝐶𝑘}𝐾𝑘=1, each holding a private dataset of labeled quantum states:

𝐷𝑘 = {(𝜌(𝑘)𝑗 , 𝑦
(𝑘)
𝑗 )}𝑀𝑗=1, where 𝑦

(𝑘)
𝑗 ∈ {0, 1},

with 𝑀 being the number of training samples per client (for simplicity, we assume that all clients
have the same number of samples, i.e, |𝐷𝑘| = 𝑀, ∀𝑘).

Moreover, it is important to know that in our scenario, each client:

• Does not know the actual quantum states 𝜌(𝑘)𝑗 , only the corresponding class labels 𝑦(𝑘)𝑗 .
• Does not know the prior probabilities 𝑝𝐴, 𝑝𝐵 of the true population from which the unknown

test state is drawn.
• May have a class imbalance in their local dataset, such that the empirical class ratio

𝑟𝑘 =
1

𝑀

𝑀∑︁
𝑗=1

⊮[𝑦(𝑘)𝑗 = 0],

differs from the true class prior 𝑝𝐴.
• May also have noisy quantum states in their local datasets due to imperfections in state preparation

or transmission.

These constraints make the learning problem significantly more challenging. The presence of noise
can degrade the training signal and introduce uncertainty, especially since clients lack access to state
fidelity information and cannot correct for errors explicitly.

Similarly, although clients may suspect that their local datasets are imbalanced, and thus not rep-
resentative of the true population, they cannot estimate or adjust for the true class priors due to the
decentralized setup and privacy-preserving constraints. Collectively, these factors complicate the task
of collaboratively learning an optimal global measurement strategy, such as the Helstrom measurement,
making this problem both realistic and nontrivial.

We consider a VQC of a single trainable rotation gate 𝑅𝑌 (𝜃) and a final measurement in the
computational basis in order to learn the optimal rotation for the aforementioned state discrimination
task.

While this model could be extended to higher-dimensional state spaces, more complex circuits, or
multi-class settings, we deliberately focus on a minimal configuration. This ensures that we can isolate
and analyze the fundamental effects of federated optimization, data imbalance, and quantum noise,
without conflating them with circuit complexity or optimization instability, while being able to compare
our results with analytical solutions.

5. Experiments and Discussion

In this section, we evaluate the performance of our quantum model in both federated and non-federated
training settings, and compare the results against the known analytical solution given by the Helstrom
bound.

We consider two experimental configurations:

• Data Imbalance Only. Clients are affected only by varying local class ratios, with no quantum
noise applied. This isolates the effect of statistical bias in local datasets.

• Data Imbalance and Depolarizing Noise. Clients experience both class imbalance and depo-
larizing noise during state preparation. This setting reflects a more realistic challenge, where
both data heterogeneity and quantum noise are present.



In our experiments, we consider a binary QSD task between the states 𝜌𝐴 = |0⟩ ⟨0| and 𝜌𝐵 = |+⟩ ⟨+|,
where |+⟩ = 1√

2
|0⟩+ |1⟩, with prior probabilities 𝑝𝐴 = 𝑝𝐵 = 0.5. While this symmetric distribution

simplifies the setup and provides a clear reference point, our methodology is applicable to any other
class distribution, as will be discussed later.

In this particular setup, the optimal measurement corresponds to a rotation around the Y-axis
by an angle of 𝜃 = 𝑎𝑟𝑐𝑐𝑜𝑠(1/

√
2) ≈ 0.7854 radians. This known analytical solution allows us to

quantitatively assess how well our quantum variational model, trained under different conditions,
approximates the optimal decision boundary.

Thus, for each configuration, we compare:

• Local Training. Each client trains its VQC independently using only local data.
• Federated Training (QFL). Clients participate in a federated optimization loop where only

model parameters are shared with a central server. No raw data or quantum states are exchanged,
preserving privacy and reducing communication complexity.

These experiments aim to assess whether QFL enables a collaborative and privacy-preserving learning
process that converges to near-optimal discrimination performance, even under realistic constraints.

5.1. Experiment 1: Imbalanced Datasets

We begin by analyzing the impact of class imbalance across clients in the absence of quantum noise. In
this setup, each client receives a local training dataset of size 𝑀 = 100, consisting of 1-qubit states
labeled according to class 𝐴 or class 𝐵. During training, we use a single shot per circuit evaluation.
However, since gradients are estimated using the parameter-shift rule, each input state is effectively
used twice. Equivalently, we may regard the dataset as comprising 100 pairs of state inputs, with each
pair corresponding to the two shifted evaluations required for gradient estimation.

The class distribution is not globally uniform but varies across clients, simulating a realistic FL
scenario with non-identically distributed data. The class imbalance for client 𝑘 is determined by
a parameter, 𝜎, that controls the variability of local class ratios. Specifically, each client’s class-A
proportion 𝑟𝑘 ∈ [0, 1] is sampled as:

𝑟𝑘 =
1

1 + 𝑒𝑥𝑝(−𝑧𝑘)
, with 𝑧𝑘 ∼ 𝒩 (0, 𝜎2).

Thus, the corresponding labels are drawn with class probabilities (𝑟𝑘, 1 − 𝑟𝑘). Larger values of 𝜎
yield greater diversity in class imbalance across clients. Note that while the true population priors are
assumed to be 𝑝𝐴 = 𝑝𝐵 = 0.5, each client’s empirical distribution may significantly deviate from this,
especially when 𝜎 is large.

Nevertheless, the methodology applies to any class distribution, provided that the local class ratios
are sampled from a Gaussian centered at the true population prior.

To better understand the impact of class imbalance on the local learning process, we conduct an
experiment where a single client trains its VQC model on its 100 samples with varying proportions
of class 𝐴 states ratios. For each class ratio, the training is repeated 50 times with different random
samples to account for statistical variability. The metric reported is the angular distance between the
learned rotation and the analytically optimal solution.

As shown in Figure 1, high imbalances significantly degrade performance, while class ratios closer to
the true prior 𝑝𝐴 = 0.5 yield more accurate models with lower angular deviations, as expected.

Next, we investigate how well a single client and a federated setup with 10 clients learn the optimal
rotation for the QSD task under a highly imbalanced and heterogeneous data distribution (using 𝜎 = 4).

Fig. 2a shows the training dynamics of a single client, which updates its model parameter after each
individual state measurement and does not participate in any FL process. In contrast, Fig. 2b illustrates
the evolution of the global model in a QFL setup. In this setting, each client performs local updates
after every state measurement, but communicates its model parameter to a central server after every 5
measurements. The server aggregates these parameters by averaging and broadcasts the updated global



Figure 1: Effect of class imbalance on model accuracy for a single client. Each boxplot shows the distribution of
angular distances (in radians) between the learned rotation and the optimal solution, over 50 runs. Performance
degrades as the local class ratio deviates from the true prior 𝑝𝐴 = 0.5.

(a) Learning dynamics of a single client. (b) Learning dynamics of a QFL setup with 10 clients
and 20 communication rounds.

Figure 2: Evolution of the angular distance to the optimal Helstrom rotation under strong class imbalance
(𝜎 = 4). Shaded areas denote standard deviation across 50 runs.

model back to all clients. Thus, the QFL setup accounts for 100/5 = 20 communication rounds. As
before, both experiments are repeated 50 times to account for statistical variability.

As shown in Figure 2, the federated setup significantly outperforms the single-client case. Not only
does the QFL model converge to a parameter much closer to the optimal rotation, but it also exhibits
considerably lower variance across runs. This highlights the ability of QFL to mitigate the effects of local
imbalance by leveraging information aggregated from multiple clients without the need to centralize or
share local data.

5.2. Experiment 2: Imbalanced and Noisy Datasets

To simulate realistic hardware conditions, we also introduce quantum noise in the form of depolarizing
noise. This noise is applied immediately after the state preparation stage, and acts as a quantum channel:

ℰ(𝜌) = (1− 𝑝)𝜌+
𝜌

3
(𝑋𝜌𝑋 + 𝑌 𝜌𝑌 + 𝑍𝜌𝑍),

where 𝑝 ∈ [0, 1] is the depolarization probability. This models a common and challenging form of
noise present in many current quantum devices [15], and serves to test the robustness of QFL under



noisy conditions.
Figure 3 shows the angular distance between the learned and optimal rotation as the noise probability

increases for a single client setup. Fig. 3a corresponds to the case of balanced datasets (𝜎 = 0) while
Fig. 3b illustrates the performance under high imbalance (𝜎 = 4). In both scenarios, we observe a
consistent degradation in accuracy as the noise level increases. However, the degradation is significantly
more pronounced when both imbalance and noise are present, highlighting their compounding effect.

(a) Balanced datasets (𝜎 = 0). (b) Imbalanced datasets (𝜎 = 4).

Figure 3: Performance degradation of a single client under increasing depolarizing noise levels. All results are
averaged over 50 independent trials to ensure statistical robustness.

As done in Section 5.1, we replicate here the training evolution analysis from Fig. 2 but under more
challenging conditions. In particular, we consider a highly imbalanced setting (𝜎 = 4) combined with
strong depolarizing noise (𝑝 = 0.5).

(a) Learning dynamics of a single client. (b) Learning dynamics of a QFL setup with 10 clients
and 20 communication rounds.

Figure 4: Evolution of the angular distance to the optimal Helstrom rotation under strong class imbalance
(𝜎 = 4) and strong depolirizing noise (𝑝 = 0.5). Shaded areas denote standard deviation across 50 runs.

Fig. 4a shows the evolution of a single client’s model parameter under a highly imbalanced and noisy
scenario, while Fig. 4b shows the evolution of the QFL framework using 10 clients and 20 federated
rounds. As before, each curve represents the average angular distance to the optimal rotation over 50
trials. We observe that the single-client setup struggles to find a good approximation to the optimal
rotation, with large variance across trials. In contrast, the QFL setup converges more effectively and
exhibits significantly reduced variance, demonstrating its robustness in the presence of both data
imbalance and quantum noise.



These experiments demonstrate that QFL is a valuable framework for QSD under realistic constraints.
By effectively mitigating the detrimental effects of data imbalance and depolarizing noise, QFL enables
more accurate and stable training compared to isolated, local approaches. This highlights its potential
for scalable and privacy-preserving quantum information processing in practical settings.

6. Conclusion and Future Work

In this work, we have demonstrated that QFL can be effectively employed to mitigate the impact of
data imbalance and quantum noise in a decentralized and privacy-preserving setting. While most
prior research on QFL has focused on classical machine learning tasks using quantum models, our
results show that QFL can also benefit genuinely quantum problems—such as QSD—by enabling robust
learning in scenarios where clients have limited, biased, and noisy access to quantum data. Given the
constraints of current and near-term quantum hardware, QFL presents a promising framework for
practical distributed quantum learning applications.

Looking ahead, several directions for future research emerge. First, a systematic study of key
hyperparameters—such as the number of clients, the amount of data per client, the number and
frequency of federated rounds, and the aggregation strategies used—could help identify configurations
that optimize performance across different quantum learning scenarios. In our experiments, these
choices were made heuristically; a more principled exploration could yield deeper insights into the
dynamics of QFL and its limitations.

Another natural direction for future research is to increase the complexity of the QSD problem
itself. This could involve extending the task to multi-qubit systems, introducing more than two classes,
or simulating more realistic quantum environments by incorporating multiple, heterogeneous noise
sources. These extensions would not only bring the problem closer to real-world quantum applications
but also further test the scalability and robustness of the QFL framework in more demanding scenarios.

Along the same lines, future work could also examine the role of quantum model architecture in
distributed learning. While this study focused on a simple VQC to allow for analytical comparison,
more expressive ansätze—potentially involving entanglement or deeper layers—could enhance learning
performance in more complex settings. Understanding how circuit design influences learning dynamics
and generalization in QFL could provide useful guidelines for building more powerful and adaptable
quantum models for distributed applications.
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