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Abstract

Quantum circuits must be error-resilient, yet LLMs like Granite-20B-Code and StarCoder often output flawed Qiskit
code. We fine-tuned the Qwen2.5-Coder-32B model with two RL methods, Group Relative Policy Optimization
(GRPO) and Odds-Ratio Preference Optimization (ORPO), using a richly annotated synthetic dataset. On the Qiskit
HumanEval benchmark, ORPO reaches 56.29% Pass@1 (= +10 pp over Granite-8B-QK) and GRPO hits 49%, both
beating all general-purpose baselines; on the original HumanEval they score 65.90% and 63.00%. GRPO performs
well on basic tasks (44/78) and excels on intermediate ones (41/68), but neither GRPO nor ORPO solves any of the
five advanced tasks, highlighting clear gains yet room for progress in Al-assisted quantum programming.
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1. Introduction

Imagine writing a quantum teleportation protocol with just a natural language prompt. Although
this might sound futuristic, recent advancements in Al bring us closer to such a reality. Quantum
computing has the potential to solve certain classes of problems faster than classical computing, but
programming quantum computers remains a specialized and challenging task [1]. Developing correct
and optimized quantum programs requires expertise in quantum mechanics, quantum algorithms,
and software engineering, a combination that is not widespread among developers. Even with high-
level frameworks like IBM’s Qiskit [2], which provide libraries to design and run quantum circuits,
writing quantum code is often an error-prone process that requires careful handling of quantum-specific
concepts (for example, superposition, entanglement, non-cloning) and resource constraints. As quantum
hardware scales up, the complexity of the software needed to harness it also increases, calling for more
sophisticated development methodologies [3].

In recent years, researchers have begun to explore how advances in artificial intelligence, particularly
large language models (LLMs), can help make quantum programming more accessible and efficient
(see [4] and [5, Sec. 4.7] for review). Early work in this area, such as Cruz-Benito et al. [6], demonstrated
that deep learning-based approaches could effectively provide customized assistance during the quantum
coding process, paving the way for more advanced Al-driven tools.

Large language model (LLM) based coding assistants have already transformed classical software
development by providing code autocompletion, generation, and error detection. However, applying
these models to quantum programming presents unique challenges. Quantum programming uses a
distinct set of languages, libraries, and idioms (such as constructing quantum circuits gate by gate) that
differ significantly from classical programming [5].

The code examples available for training are scarce compared to the vast repositories of classical code
since quantum computing is an emerging field with relatively few expert developers and open-source
projects. Moreover, quantum code must adhere to the rules of quantum mechanics and often requires
domain knowledge (for example, understanding the effects of certain gate sequences or the need for
qubit reuse and error mitigation). As a result, even advanced coding Als may generate incorrect or
suboptimal quantum code without domain-specific training. In fact, the need for specialized tooling
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in quantum software has been highlighted by the Quantum Software Engineering community [5, 7],
which argues that simply porting classical development techniques to the quantum realm is insufficient
due to fundamental differences in how quantum programs operate.

To bridge this gap, our work proposes a Qiskit-based quantum computing coding assistant, an
Al-driven tool designed to help developers write and refine quantum programs using the Qiskit SDK.
QSpark! focuses specifically on Qiskit, IBM’s widely used quantum SDK, and supports tasks such as
circuit construction, optimization, and code debugging. We envision a system that can understand
high-level intentions (e.g., “prepare a Bell state” or “optimize this circuit section”) and provide context-
sensitive suggestions or code snippets, much like modern code assistants do for classical languages.
Using a large language model trained on quantum programming data, the assistant can generate Qiskit
code, recommend quantum algorithmic patterns, and catch common mistakes, all within the developer’s
workflow. The goal is to lower the barrier to entry for quantum programming and to accelerate the
development process for experts and beginners alike.

In this paper, we detail the design of such a Qiskit-based coding assistant, discuss the training and
integration of the underlying LLM model, and evaluate its effectiveness in aiding quantum programmers.
We begin by reviewing related work in two key areas: quantum programming environments and Al-
assisted coding tools for quantum software. This overview will contextualize our contributions and
highlight how our approach builds on recent advances. By merging the power of Qiskit and LLMs, we
aim to push the boundaries of developer tools in quantum computing, making quantum programming
not only more efficient but also more accessible to a broader audience.

2. Literature Review

2.1. Quantum Programming Environments and Tools

Several efforts have been made to create better software environments for developing quantum appli-
cations. IBM’s Qiskit is one of the leading frameworks, providing an open source SDK with tools for
circuit design, simulation, and execution on quantum hardware [4].

In addition to Qiskit, practical resources such as the book by Silva [8] provide essential hands-on
strategies for programming quantum rigs using Python, the quantum assembly language, and cloud-
based platforms, including IBM QExperience. This resource highlights the inherent challenges in
quantum programming and emphasizes the need for developer-friendly methodologies and tools.

Researchers have also acknowledged that improving quantum software development requires higher-
level abstractions and more systematic design approaches. For example, Ammermann et al. [9] introduce
a view-based development approach that unifies diverse stakeholder perspectives within a quantum
IDE. This model suggests that future quantum IDEs may provide synchronized views, such as algorithm
logic, circuit layout, and hardware mapping, to better manage the complexity of quantum programs.

Another notable platform is QuantumPath, developed by Hevia et al. [10], which takes an engineering-
oriented approach to quantum software creation. QuantumPath provides an application lifecycle
management platform for quantum software, supporting developers from algorithm conception through
testing, deployment, and maintenance. Providing an ecosystem of modules and enforcing best practices,
it simplifies the development of hybrid quantum-classical solutions for real-world use.

These efforts highlight a common theme: quantum software development requires more than just
programming libraries. It also needs robust tools and processes, similar to classical software engineering,
but tailored for the quantum domain. Our proposed Qiskit-based assistant complements these initiatives
by focusing on the coding phase of quantum development. It can be viewed as a plugin designed to
enhance quantum programming environments such as Qiskit, providing intelligent support during the
development process.

!To facilitate reproducibility, we release our full implementation at https://github.com/TMUDeV/QSPARK.
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2.2. Al-Assisted Quantum Code Generation

With the growing use of Al in coding-related tasks, it is natural that researchers have started applying
LLMs to quantum programming. Dupuis et al. [4] introduced the Qiskit Code Assistant, an Al model
specifically trained to generate Qiskit code and help quantum programmers. Their research highlighted
the challenges in training a code model for quantum computing, such as understanding quantum gate
operations and circuit semantics, as well as the limited availability of training data. Despite these
challenges, their specialized model outperformed general-purpose code generation models on Qiskit
programming tasks.

Similarly, Vishwakarma et al. [3] developed Qiskit HumanEval, a benchmark suite designed to
evaluate how well different LLMs can generate correct quantum code. Their results showed that
advanced LLMs, like GPT-style models, can produce executable quantum programs from prompts,
successfully passing many tests in the suite. This finding is encouraging, as it confirms the potential of
Al-assisted quantum coding and provides a benchmark for future improvements.

Beyond Qiskit-focused tools, researchers have also explored broader applications of Al in quantum
algorithm design. For example, Liang et al. [11] examined how LLMs, such as GPT-4, can be used
to suggest viable quantum circuit structures. Their work suggests that Al can play a key role in
supporting the design of quantum architectures when guided appropriately. Similarly, Aragonés-Soria
and Oriol (2024) introduced C4Q, a specialized chatbot that uses pre-trained language models for
user request classification and then utilizes its own engine to generate accurate responses [12]. This
approach highlights the potential of Al to streamline the development of quantum algorithms. It also
demonstrates how such tools can make quantum computing more accessible to beginners by simplifying
the learning curve and coding process.

These studies contribute to a growing consensus that generative Al can be a valuable tool in the
quantum software development process. Our work builds directly on these prior developments. In
particular, we utilize the insights from the Qiskit Code Assistant and the Qiskit HumanEval benchmark
to train and evaluate our coding assistant. While prior models have demonstrated the viability of
quantum code generation, our contribution lies in tightly integrating this model with the Qiskit user
experience by embedding it directly into IDE workflows and extending its capabilities with features
tailored to better support quantum developers. These features include recognizing when a qubit needs
to be measured or reset, suggesting circuit optimizations, and aligning with Qiskit’s latest API.

By positioning QSpark within existing quantum programming environments and Al coding tools,
we aim to advance the support available to quantum computing developers. Ultimately, this work
contributes to the broader goal of quantum software engineering: to bring the productivity and reliability
benefits of modern software development to the field of quantum computing [5], thereby accelerating
innovation and adoption.

3. Methodology

Our Qiskit-based code assistant is built upon the Qwen2.5-Coder-32B model, a 32-billion-parameter
large language model (LLM) specialized for code generation. It was selected for its strong performance
in both general-purpose programming and domain-specific reasoning. We fine-tune the model using a
curated dataset of Qiskit programs, detailed in the following subsections.

3.1. Generation of Training Data

To enable robust supervised and reinforcement learning, we construct a high-quality dataset, for training
purposes, comprising 522 Qiskit programming tasks. The data set was created through a multistage
pipeline that includes code retrieval, function extraction, annotation, validation, deduplication, and
formatting. The entire process is automated and designed to ensure consistency, reproducibility, and
broad coverage of real-world quantum programming challenges.



We start by collecting approximately 10,819 Qiskit-related source code samples from public reposito-
ries. Source files are parsed to extract quantum-relevant functions along with accompanying docstrings
and structural metadata. The extracted functions are filtered for completeness and relevance, and each
is assigned a unique task identifier.

For each function, a natural language prompt is derived from its docstring or signature. This prompt
is paired with the corresponding canonical implementation, a designated function entry point, and a
difficulty score. The difficulty rating is calculated using a set of code-level features such as circuit depth,
gate complexity, use of measurement or entanglement, and algorithmic structure. This scoring system
enables the construction of a curriculum-aligned dataset that spans tasks ranging from basic quantum
operations to advanced algorithmic workflows (see Table 2).

Table 1
Difficulty scale with representative Qiskit programming tasks.
Level Criteria and Example Task
Basic Simple circuits with few gates and minimal measurement. Example:

prepare a single qubit in superposition using an H-gate.

Intermediate Circuits with measurement, moderate depth, or algorithmic structure.
Example: implement a 4-qubit Quantum Fourier Transform (QFT).

Difficult Complex circuits involving entanglement, variational methods, or hy-
brid workflows. Example: build a Variational Quantum Eigensolver
(VQE) ansatz circuit and connect it to a classical optimizer.

To ensure correctness, each solution is automatically validated through simulation-based unit tests.
These tests verify the functional behavior of the quantum circuit, including correct output shape, gate
behavior, and fidelity of simulation results. Tasks that fail validation are excluded from the final dataset
or flagged for manual inspection.

To improve training diversity and reduce redundancy, we apply structural and semantic deduplication
techniques. Near-duplicate solutions or trivial variants are filtered out using syntactic similarity and
abstract syntax tree (AST) comparisons, ensuring a more diverse set of training signals. To illustrate the
filtering process, approximately 10,819 raw Qiskit-related functions were initially collected, of which
fewer than 5% passed all validation steps. The majority of rejections were due to incomplete docstrings,
missing test coverage, or trivial circuits (e.g., functions that only returned an empty register). The final
curated set of 522 tasks was therefore deliberately biased toward code that was both executable and
semantically meaningful. Difficulty scores were computed automatically using heuristics: basic tasks
had depth < 3 and no entanglement; intermediate tasks required either measurements or circuit depth
> 3; and difficult tasks contained multi-qubit entanglement or hybrid classical-quantum structures.
Unlike the QHE benchmark, which evaluates generalization, this dataset was designed for training, and
thus prioritizes diversity and coverage across circuit patterns.

Each finalized task in the dataset consists of:

+ A unique identifier,
« A natural language task description,
« A validated Qiskit implementation,

Table 2

Difficulty Scale and Distribution of Qiskit Programming Tasks
Level Criteria Number of Tasks
Basic Simple circuits with a few gates, no measurement, no entanglement. 259
Intermediate ~ Circuits with measurements, moderate depth, or basic algorithmic structure. 223

Advanced Complex circuits involving entanglement, variational algorithms, or multi-step workflows. 40




o A unit test suite,
« A function entry point, and
« A difficulty level categorized as basic, intermediate, or advanced.

Based on this curated dataset, we derived two specialized training subsets to support preference-based
reinforcement learning. For the Odds-Ratio Preference Optimization (ORPO) setting, we constructed a
collection of pairwise comparisons consisting of a preferred ("chosen”) and a suboptimal ("rejected”)
output for the same prompt. The chosen samples were selected on the basis of code correctness,
readability, and alignment with quantum programming best practices, while the rejected examples
were synthetically perturbed or drawn from lower-quality outputs. For the Group Relative Policy
Optimization (GRPO) setting, we generated multiple candidate completions per prompt and assigned
relative scores based on their simulated execution fidelity and resource efficiency. These two subsets
enable distinct learning objectives: ORPO promotes human-aligned code generation through direct
preference modeling, while GRPO reinforces code quality by optimizing for group-level performance
differentials.

3.2. Reinforcement Learning with Preferences

To further refine the behavior of the model, we employ two independent reinforcement learning
strategies: Group Relative Policy Optimization (GRPO) and Odds-Ratio Preference Optimization (ORPO),
each targeting a different aspect of quantum code quality.

Odds-Ratio Preference Optimization (ORPO) ORPO aligns the model with human-like coding
preferences, focusing on readability and maintainability. It uses pairwise preference data where a “cho-
sen” response is preferred over a “rejected” one, based on manual review and synthetic annotations [13].

The ORPO objective increases the likelihood of preferred output while regularizing the divergence
from the original (pre-trained) policy. The loss is defined as

(Y | x)
m(y | x)

Zoreo = KL(mglmo) — plog, (1)
Here, 7y is the current policy, 7 is the pre-trained policy, x is the input prompt, yis the chosen output,
and yis the rejected one. The hyperparameter 8 controls the strength of the preference signal relative to
the regularization term. The term KL(m|,) represents the Kullback-Leibler (KL) divergence between
the current policy 7y and the pre-trained policy 7. For two discrete probability distributions P and Q,
the KL divergence is generally defined as:
. P()
KL(PI) = ¥ P log (o) @)
i Q)
In this context, it measures how much 7y deviates from 7, acting as a regularization to prevent the
current policy from straying too far from the original model’s capabilities.

ORPO Reward Construction. Odds-Ratio Preference Optimization (ORPO) aligns the model with
human-like coding preferences, focusing on readability and maintainability. For each prompt, we
construct a pairwise comparison between a chosen output y and a rejected output y. The chosen output
is correct, executable, and stylistically aligned with Qiskit best practices. while the rejected output is
either synthetically perturbed or sampled from lower-quality generations.

Group Relative Policy Optimization (GRPO) GRPO improves execution fidelity by ranking
outputs within a group of candidates generated for each prompt[14]. Each output y; is evaluated using
Qiskit v.2.0.0 and Qiskit Aer simulations v. 0.17.1 and assigned a reward r(y;). G represents the number of



candidate outputs in a group generated for each prompt. The group mean p and the standard deviation
o are used to compute the normalized advantage:

1 < 1< ) r() — p
p= g o, o= S 0 -t AG) = = — 3)
i=1 i=1 o
The policy is updated using a clipped objective to ensure training stability:
[ m(y | x) - m(y [ x)
Zerro = Exyzy [mln (y—A(y) clip (y—, 1—¢,1+€e|Aly) |- (4)
Tq (¥ | %) 70,0y | X)

The clip function clip(v, L,U) = max(L, min(v, U)) bounds ry, and € (e.g., 0.1-0.2) sets the range [1—¢, 1+
€]. This process guides the model toward producing more executable and resource-efficient quantum
circuits by emphasizing outputs that outperform others in the same generation group.

GRPO Reward Construction. For each prompt, we generate a group of candidate completions.
Each candidate is executed with Qiskit v2.0.0 and Qiskit Aer v0.17.1 simulators. The execution
is scored using three criteria:

1. Unit test pass rate (r;): fraction of test cases passed (primary correctness signal).

2. Circuit depth penalty (r;,): normalized inverse of circuit depth to reward more efficient solutions.

3. Qubit count penalty (r3): normalized inverse of the number of qubits used, discouraging wasteful
allocations.

These are combined into a single scalar reward:

r(y)=a-rn+p-rpty-n, (5)

with weights @ = 0.7, f = 0.2, and y = 0.1 chosen empirically to emphasize correctness while still
encouraging efficiency.
Within each group, rewards are normalized using the group mean and variance:

A(M)=’WT_H, u—(l; r(yz \/ Z(r(y,) 1?2, (6)

i=

where G is the number of candidates. This normalization ensures that the rewards are relative: a
candidate only receives a high advantage if it is better than its peers, even if all solutions are weak.
The policy update (Eq. 4) then uses this normalized advantage to push the model towards consistently
producing correct and efficient circuits.

In practice, this setup allows GRPO to prefer structurally sound and resource-efficient quantum
circuits for simple tasks, while avoiding overfitting to a single absolute scoring heuristic.

4. Results and Discussion

4.1. Evaluation Setup

We evaluated our models using the Qiskit HumanEval (QHE) benchmark introduced by Vishwakarma
et al. [3], which extends the original HumanFEval benchmark to assess LLMs on quantum programming
tasks. Following the evaluation framework used in that work, we compare our GRPO and ORPO
fine-tuned models to both general-purpose open-source LLMs and a specialized QHE-tuned baseline,
using the following key metrics:

1. Pass@1 Accuracy: The percentage of completions that pass a unit test on the first attempt.



Table 3
Hyperparameter Settings for GRPO and ORPO Fine-Tuning

Hyperparameter GRPO ORPO
Learning Rate 5x107° 4x107°
Weight Decay 0.1 0.1
Warmup Ratio 0.1 0.1

LR Scheduler Cosine Linear
Batch Size 64 32
Sequence Length 2048 tokens 2048 tokens
Optimizer adamw_8bit adamw_8bit
Training Epochs 3 3

2. Performance by Difficulty Level: Evaluation of the accuracy of the model in the tasks labeled
Basic, Intermediate, and Advanced.

3. General-Purpose vs. Domain-Specific Models: A comparison to understand the impact of
domain adaptation on performance.

Since the original evaluation script was not publicly released and the HumanEval [15] framework was
incompatible with QHE tasks, we implemented a custom benchmarking script customized for the QHE
setting. Although the QHE paper reports 101 tasks, the publicly released dataset contains 151 entries.
This resulted in 78 Basic, 68 Intermediate, and 5 Advanced tasks. This script automatically executes
model completions against the associated unit tests and logs pass/fail outcomes, enabling consistent and
scalable evaluation across all models. Our results are therefore based on a fully automated, reproducible
evaluation pipeline that faithfully adheres to the QHE benchmark structure.

We compared our GRPO and ORPO models with the following strong baseline models.

+ General-Purpose Open-Source LLMs: These models, such as CodeLLaMA-34B [16], DeepSeek-33B
[17], StarCoder2-15B [18], and CodeGemma-7B [19], are large language models trained on vast
datasets of general programming code. They serve as a benchmark for how well unspecialized
models perform on quantum programming tasks.

« Granite-8B-Base[20]: This is a general-purpose base model. Its performance helps to understand
the impact of any quantum-specific fine-tuning.

+ Granite-8B-QK (QHE-tuned baseline)[3]: This model is a specialized version of Granite-8B, fine-
tuned specifically for the Qiskit HumanFEval benchmark. It represents the state-of-the-art in
domain-adapted models for Qiskit code generation and provides a direct comparison to our
preference-based fine-tuning approaches.

The results for the baseline models are taken from [3].

Fine-Tuning Hyperparameters: Table 3 summarizes the hyperparameter settings used during
fine-tuning for both approaches that we ran on the A100 GPU with 80 GB for VRAM.

4.2. Results

We evaluated the performance of our GRPO and ORPO models on the Qiskit HumanEval (QHE)
benchmark, comparing them to several strong general-purpose code LLMs and the QHE-tuned baseline.
Table 4 reports the Pass@1 accuracy on both HumanEval (HE) and QHE under greedy decoding.

Our models achieve significant improvements over all baseline models in QHE. ORPO achieves
the highest Pass@1 accuracy at 56.29%, outperforming the domain-adapted Granite-8B-QK model by
nearly 10 percentage points. GRPO also performs competitively, achieving 49.00%, and surpasses all
general-purpose models. These results demonstrate the effectiveness of preference-based fine-tuning in
the quantum domain, even compared to models trained specifically for QHE.



Table 4
Pass@1 on HumanEval (HE) and Qiskit HumanEval (QHE) with Greedy Decoding. The results for models other
than ours are taken from [3].

Model HE QHE

CodelLLaMA-34B  52.43%  26.73%
DeepSeek-33B 49.39%  39.60%
StarCoder2-15B 45.12%  37.62%
CodeGemma-7B  42.68% 24.75%
Granite-8B-Base 39.02%  28.71%
Granite-8B-QK 38.41%  46.53%

GRPO (Ours) 63.00%  49.00%
ORPO (Ours) 65.90% 56.29%

Table 5
QHE Pass Counts by Difficulty Level (78 Basic, 68 Intermediate, 5 Advanced). The results for models other than
ours are taken from [3].

Model Basic Intermediate Advanced
CodeLLaMA-34B-Python  19/54 8/45 0/2
DeepSeek-Coder-33B 30/54 10/45 0/2
StarCoder2-15B 26/54 12/45 0/2
CodeGemma-7B 20/54 5/45 0/2
Granite-8B-Code-Base 21/54 8/45 0/2
Granite-8B-Code-QK 32/54 15/45 0/2
GRPO (Ours) 42/78 32/68 0/5
ORPO (Ours) 44/78 41/68 0/5

Interestingly, both GRPO and ORPO also show strong generalization on the original HumanEval
benchmark, with Pass@1 scores of 63.00% and 65.90%, respectively, outperforming larger models like
CodeLLaMA-34B and DeepSeek-33B. This suggests that preference optimization not only improves
performance on domain-specific tasks but also may enhance general code generation capabilities.

To better understand the behavior of the model across the complexity of tasks, Table 5 presents pass
counts grouped by difficulty level. ORPO ranks third in basic-level tasks with 44/78 (slightly behind
Granite-8B-Code-QK at 32/54 and DeepSeek-Coder-33B at 30/54 in terms of completion percentage),
achieves the highest pass count on intermediate tasks (41/68), and outperforms others in total com-
pletions. GRPO performs worse than ORPO but still surpasses many baseline models. Neither model
succeeds on the five advanced tasks, consistent with all other baselines.

These results offer complementary insights: GRPO appears to be more effective for simpler structurally
consistent circuits, benefiting from group-level ranking rewards, while ORPO demonstrates stronger
reasoning and robustness on moderately complex tasks due to its fine-grained preference alignment
objective.

Both models perform on par with or exceed these reference rates, further validating their practi-
cal utility. Overall, the results highlight the strength of preference-driven optimization in quantum
programming and emphasize the importance of evaluating across difficulty levels to capture nuanced
model capabilities.

4.2.1. Training Dynamics

Figure 1 illustrates the training dynamics of our preference-optimized models. The plot on the left

shows the reward trajectory for GRPO, while the plot on the right presents the loss curve for ORPO.
In the GRPO setup (left), the model is optimized using group-based reinforcement signals derived

from task-specific XML output properties. The observed rewards display high variance throughout
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Figure 1: Training dynamics of QSpark fine-tuning. Left: GRPO reward trajectory with normalized advantage
values (y-axis) across training steps (x-axis). Right: ORPO pairwise ranking loss (y-axis) across training steps
(x-axis). Legends and axis labels are explicitly provided to highlight reward and loss behavior.

training, a result of simulation-based reward assignment and the stochastic nature of quantum program
outputs. Despite fluctuations, the trend demonstrates that the model is able to consistently explore and
exploit high-reward completions. Importantly, this noisy, yet bounded, reward signal is characteristic
of preference-driven reinforcement learning in sparse-reward domains.

The ORPO training curve (right) exhibits more stable and gradual convergence. The pairwise ranking
loss steadily decreases as the model learns to align its output with preference-labeled completions. The
initial sharp drop is followed by continued fine-tuning and refinement, reflecting effective optimization
using contrastive supervision. Huang et al. [21] provide theoretical insights into pairwise learning for
ranking, supporting our observation of a smooth convergence process under such loss formulations.
This steady progression contrasts with the volatility of GRPO and highlights the complementary
strengths of the two methods. GRPO encourages exploration and robustness through output diversity,
while ORPO guides the model toward aligning with desired behavior patterns.

Together, these training signals validate the design of our preference learning pipeline. GRPO
encourages structural diversity and correctness in simpler tasks, while ORPO promotes nuanced
alignment and interpretability in more complex scenarios.

4.3. Discussion

Our updated evaluation highlights the effectiveness of reinforcement learning with preferences, through
GRPO and ORPO, for quantum code generation. Both models substantially outperform general-purpose
LLMs on the Qiskit HumanEval (QHE) benchmark under greedy decoding. ORPO achieves the highest
QHE pass@1 score at 56.29%, surpassing even the domain-specific Granite-8B-Code-QK baseline
(46.53%), while GRPO also delivers a strong 49.00%. These improvements were achieved without explicit
supervised instruction tuning or access to the original QHE fine-tuning scripts, emphasizing the strength
of our preference optimization pipeline. At the task difficulty level, ORPO consistently outperforms
GRPO.

Interestingly, even the benchmark reference implementation, executed via the latest version of Qiskit,
only achieves 69/78 on Basic, 63/68 on Intermediate, and 2/5 on Advanced tasks. This highlights potential
fragility and version sensitivity in quantum execution environments. It also raises a critical point: our
models were tested under realistic run-time conditions and still matched or exceeded these reference
pass counts, reinforcing their practical applicability. Compared to previous work by Vishwakarma et
al. [3], our results are competitive despite several evaluation challenges. Although their paper reports
101 tasks, the public release contained 151 files. Furthermore, their evaluation script was not released.
To address this, we wrote our benchmark evaluation script and validated completions using the unit
tests provided, ensuring consistent and reproducible results.

Finally, the persistent failure across all models, including ours and the benchmark baseline, on the five
advanced tasks (0/5) underscores the difficulty of complex quantum reasoning. These results suggest
that success in advanced quantum programming likely requires novel strategies, potentially involving
curriculum learning, richer supervision signals, or domain-specific memory mechanisms.



Our findings validate reinforcement learning with preferences as a promising direction for quantum
LLMs. They also highlight the urgent need for standardized, version-controlled benchmarks and tooling
in quantum code generation research.

4.4. Challenges and Ethical Considerations

Although the integration of Al into quantum computing offers significant promise, it also introduces
important challenges, both technical and ethical, that must be carefully considered [22].

Lim et al. [23] and Hernandez and Patel [24] highlight the dual role of generative Al in education,
portraying it as both a transformative enabler and a potential threat to traditional learning paradigms.
This perspective aligns with our work, where reinforcement learning is used not to replace human
quantum programmers but to augment their workflows. Our use of preference optimization explicitly
reflects this balance: the goal is to guide Al-generated code toward human-aligned styles, best practices,
and interpretable solutions, rather than generate opaque or overly optimized outputs that lack usability.

Ahmadi [25] explores the convergence of quantum computing and artificial intelligence, emphasizing
the revolutionary potential of this union in fields such as cryptography and optimization. However, he
also underscores several concerns, ranging from algorithmic reliability to ethical deployment, which
are directly relevant to our work. In particular, issues like execution fidelity, qubit resource constraints,
and reproducibility are amplified in the quantum domain, where small errors in Al-generated code can
lead to significant deviations in output. Our manual validation of test cases, necessitated by the lack of
standardized evaluation tools, further reflects the importance of transparency and accountability in
quantum Al development.

Looking ahead, we advocate for the development of community-driven benchmarks, shared evaluation
pipelines, and stronger documentation practices. These are critical steps not only for reproducibility
but also for building trustworthy Al systems that can be safely and ethically deployed in quantum
research and education.

5. Conclusion and Future Work

In this work, we present a Qiskit-based quantum code assistant built on the Qwen2.5-Coder-32B
model, fine-tuned using reinforcement learning with preferences. By introducing Group Relative
Policy Optimization (GRPO) and Odds-Ratio Preference Optimization (ORPO), we explore how domain-
aligned feedback can improve quantum code generation beyond conventional supervised fine-tuning.
Our models demonstrate competitive performance on the Qiskit HumanEval benchmark, particularly
excelling at Basic and Intermediate tasks, where they outperform several general-purpose LLMs. These
results underscore the promise of preference-based optimization for aligning large language models
with quantum programming best practices.

However, this work also presents important challenges. We encountered inconsistencies in benchmark
releases, missing evaluation scripts, and had to manually run and validate test cases, which affected
reproducibility. Furthermore, none of the evaluated models, including ours, succeeded in the Advanced-
level tasks, pointing to the need for better instruction tuning, longer-horizon reasoning, and deeper
integration with quantum hardware constraints. Although our results demonstrate the potential
for preference-based optimization for quantum code generation, there are several limitations to be
acknowledged. First, the training data remains relatively small compared to classical code datasets,
which may restrict generalization to novel quantum tasks. Second, due to the absence of an official
evaluation script and inconsistencies in the published benchmark, we relied on manual validation for
scoring, introducing potential subjectivity, and making direct comparisons to other models less precise.

In future work, our aim is to:

« Integrate GRPO and ORPO into a unified reward framework [26].
+ Develop sampling-based decoding strategies that align with human-in-the-loop workflows.



« Broaden the data set to encompass a wider range of quantum use cases, including error correction,
hybrid quantum-classical algorithms, and hardware-specific optimizations.

In addition, we intend to work with a more comprehensive and clearly defined benchmark and
develop a robust, automated evaluation pipeline to support consistent testing and comparison across
models. We also advocate for the open release of standard evaluation tools to support fair benchmarking
and collaborative development in quantum LLM research.

By addressing these open challenges, we hope to push the boundaries of Al-assisted quantum
programming, making it more accessible, reliable, and aligned with human intent.
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