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Abstract

The Traveling Salesman Problem (TSP) is a cornerstone of combinatorial optimization with widespread ap-
plications in logistics and transportation. As problem sizes increase, classical algorithms often fail to deliver
high-quality solutions within practical time constraints. This paper explores the use of the Quantum Approximate
Optimization Algorithm (QAOA), a hybrid quantum-classical algorithm, to address TSP instances under realistic
conditions. We present a QUBO-based formulation of the TSP that integrates practical constraints reflecting
real-world conditions—such as vehicle capacity, road accessibility, and time windows—while maintaining compat-
ibility with limitations of current quantum hardware. Our analysis is conducted in a simulated environment,
leveraging high-performance computing (HPC) resources to evaluate the algorithm’s performance across varying
problem sizes and circuit depths. This approach enables a comprehensive assessment of QAOA’s capabilities and
limitations in solving constrained TSP scenarios, thereby laying the groundwork for its deployment on future
large-scale quantum hardware.

1. Introduction

Logistics optimization plays a central role in several industrial applications, from supply chain man-
agement to urban delivery systems. Many of these problems, such as the Traveling Salesman Problem
(TSP) [1], fall into the class of NP-hard problems, where finding exact solutions becomes computationally
infeasible as the problem size increases [2].

To tackle this challenge, a wide range of heuristic and metaheuristic algorithms [3] have been
introduced to produce solutions of acceptable quality within a reasonable time frame. However, as the
size of the system grows, the quality of these approximate solutions often degrades, and the gap from
the optimal solution widens.

In order to address this scalability issue, recent research has turned to quantum computing as a
promising paradigm for tackling combinatorial optimization problems. Quantum algorithms, indeed,
leverage quantum phenomena such as superposition and entanglement to explore large solution spaces
more efficiently than their classical counterparts. By encoding optimization problems into a quantum
formulation, these algorithms aim to provide high-quality approximate solutions with potentially
reduced computational overhead.

In this work, we focus on the Quantum Approximate Optimization Algorithm (QAOA) [4, 5], a
variational quantum algorithm specifically designed for near-term quantum devices and well-suited
to tackle discrete optimization problems [6, 7, 8, 9, 10, 11, 12, 13] by alternating between quantum
and classical optimization layers. We conduct an extensive analysis of QAOA’s performance on both
synthetic and realistic TSP instances, incorporating logistical constraints inspired by real transportation
networks limitations.

Our main contributions include:

« Enforcing the one-city-per-step canonical constraint by using a Grover-inspired mixer in QAOA.
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« Proposing a constraint formulation for logistical constraints that is compatible with QAOA.
« Evaluating solution quality on a realistic dataset derived from urban transportation data.

The work is divided into the following sections. Section 2 provides background on the TSP, QAOA,
and the problem encoding used to adapt TSP for quantum optimization. Section 3 outlines the
methodology, covering the formulation of real-world logistical constraints compatible with current
quantum hardware limitations (binary node compatibility, road accessibility, and time-step constraints),
the construction of synthetic and realistic datasets, the adoption of a Grover-inspired mixer, the
computational environment with emphasis on the CINECA infrastructure, the configuration of the
QAOA algorithm, and the performance evaluation metrics. Section 4 presents the experimental results,
analyzing the performance of QAOA. Section 5 concludes the paper and outlines directions for future
research.

2. Background and Related Work

This section provides the theoretical and methodological foundations of our work. Specifically, we
review the TSP and QAOA, and then present a Quadratic Unconstrained Binary Optimization (QUBO)-
based encoding of the TSP that enables its integration within the QAOA framework.

2.1. The Traveling Salesman Problem (TSP)

The TSP [1] is one of the most studied problems in combinatorial optimization, with a wide range
of real-world applications, including vehicle routing, logistics, circuit design, and scheduling. In its
classical formulation, the problem involves a salesman who must visit a list of cities, finding the shortest
possible route that visits each city exactly once and returns to the starting point. We refer to the
conditions requiring that each city is visited exactly once and that each time step corresponds to exactly
one visited city as the canonical constraints.

However, in practical scenarios, this classical formulation is often inadequate. Real-world applications
typically involve additional logistical constraints such as:

+ Capacity constraints, where vehicles have limited load or service capacities.
« Time windows, which require visits to occur within specific time intervals.
« Road accessibility, where certain paths may be unavailable or restricted.

Incorporating these constraints transforms the TSP into a more complex and realistic problem, which is
even more challenging to solve [14].

Recent advances in quantum computing have opened new avenues for addressing such complex
optimization tasks. Quantum algorithms, particularly those based on quantum annealing and variational
approaches, have been explored for solving both symmetric and asymmetric versions of the TSP,
including constrained variants. For instance, quantum annealing has been applied to TSP instances
by mapping the problem into a QUBO formulation and embedding it onto quantum hardware such as
D-Wave systems [15]. These approaches have shown promising results for small- to medium-sized
instances, particularly when constraints are encoded directly into the cost function [16].

While quantum annealing has been widely explored for solving the TSP, recent research has in-
creasingly shifted toward gate-based quantum algorithms, which are more compatible with universal
quantum computers. Notably, Lytrosyngounis et al. [17] proposed a hybrid quantum-classical frame-
work that integrates QAOA with classical machine learning techniques to enhance scalability and
resilience to noise. Their results show that, although purely quantum approaches still lag behind classi-
cal solvers, hybrid methods significantly reduce the performance gap and offer promising scalability for
future applications.

These gate-based approaches are particularly well-suited for constrained TSP variants, as they allow
flexible encoding of problem-specific constraints directly into the quantum circuit. Building on this
line of work, we apply QAOA to both synthetic and realistic TSP instances, incorporating practical
constraints inspired by real-world logistical limitations (see Subsection 3.1).



2.2. The Quantum Approximate Optimization Algorithm (QAOA)

The QAOA [4] is a hybrid quantum-classical algorithm developed to tackle combinatorial optimization
problems. It is particularly well-suited for near-term quantum devices, thanks to its shallow circuit
depth and resilience to noise [18].

The algorithm constructs a parameterized quantum state by alternating two types of unitary operators:
one derived from the cost Hamiltonian H,, which encodes the objective function, and one from the
mixing Hamiltonian H,,, which enables a broader exploration of the solution space. These operators
are applied in a sequence of p layers, where p controls the trade-off between approximation accuracy
and circuit complexity.

Starting from an initial quantum state [s), the circuit evolves according to the parameter vectors
¥ =15 yp) and ,E = (1> Bp) reaching the final state:

¥, ﬁ) — ¢ PpHmgivpHe .. e Pilne—inHe), (1)
This quantum state is measured multiple times in order to estimate the expected cost:
Cy,ﬁ = <}73 ﬁ|HC|}7a ﬁ): (2)

and a classical optimizer iteratively adjusts y and E to minimize C, g, thereby allowing the circuit to
produce a final state that minimizes such cost function (the ground state).

A commonly used choice for the mixing Hamiltonian, particularly effective for unconstrained prob-
lems, is the X-Mixer:

H, = ; X;. (3)

This initialization and mixer configuration enable exploration over the entire solution space.
However, for constrained problems, an alternative choice is the Grover mixer [19]. The key idea
behind this approach is to initialize the quantum system in a uniform superposition over feasible
solutions and construct a mixer that preserves transitions within this subspace. Let U; be a unitary
operator that maps the all-zero state to a uniform superposition over the set of feasible solutions F:

U0y®r = ﬁ 3 . ()

x€F

The associated Grover mixer is defined as:
Un(B) = Us (I — (1 — ) lox0]) U (5)

This operator replaces e Al in Equation 1 for each f;. The advantage of the Grover mixer is that it
restricts the quantum evolution to the subspace of feasible solutions, significantly reducing the effective
size of the search space and improving ease of trainability.

QAOA offers several advantages: it is versatile, compatible with NISQ-era hardware [20], and capable
of improving solution quality by increasing the circuit depth p. Nonetheless, its performance is sensitive
to the choice of parameter initialization and to the complexity of the classical optimization process,
especially when strong constraints are embedded in H..

A notable class of problems that can be addressed using QAOA is the family of QUBO [21] problems.
These are NP-hard combinatorial optimization problems, whose general form is given by:

min x'Qx, (6)
x€{0,1}*
where x € {0, 1}" is a binary vector, and Q € R”" is a symmetric (or upper triangular) matrix that defines
the cost landscape.

QUBO problems can be mapped to the task of finding the ground state of a corresponding Hamiltonian
via the Ising model representation [22], enabling their solution through quantum algorithms such as
QAOA. In this case, the resulting Hamiltonian is diagonal in the computational basis, meaning that its
ground state corresponds to one of the basis states. Consequently, the measurement process yields a
bitstring that directly encodes a candidate solution to the original QUBO problem.



2.3. TSP Encoding for QAOA

The QAOA can be adapted to solve instances of the TSP by reformulating the problem as a QUBO
model [23]. In this formulation, binary variables indicate which city is visited at each time step t of
a candidate tour. The total travel cost, measured in terms of distance or time, serves as the objective
function to be minimized within the QAOA framework.

The TSP involves canonical constraints: each time step must correspond to exactly one visited city,
and each city must be visited exactly once. Since the QUBO formulation is inherently unconstrained,
these conditions are enforced by incorporating suitable penalty terms into the cost function, thereby
discouraging infeasible solutions.

Consider a TSP instance involving n cities. In this QUBO formulation, a total of n? binary variables
are required. Each variable x;; indicates whether city i is visited at step ¢ in the tour, and is defined as:

1 if city i is visited at step ¢
Xip = i (7)
0 otherwise

In this formulation, the Hamiltonian encoding the objective function is given by:

n n—1
D(x) = Z W j Z X 4% 415 8)
=1 =1

where @ denotes the cost matrix, whose entries represent the cost w;; of traveling from city i to city /.
To enforce the TSP canonical constraints according to which each city must be visited exactly once and
only one city is visited at each time step, we introduce penalty terms to penalize invalid configurations:

2 2
P(x)=2A, Y (Z X — 1) +g Y, (Z X — 1) , 9)
i t t i

each city once one city per time step

where the first term ensures that each city is visited exactly once, and the second term enforces that
each time step corresponds to a visit to exactly one city. The factors 4, and A, are penalty weights
introduced to penalize infeasible solutions by increasing their associated cost, while leaving the cost of
feasible solutions unchanged.

In our approach, the constraint corresponding to the second penalty term is not enforced via the
cost function but rather through a strategy based on the use of the Grover mixer [19], as described in
Subsection 3.3. Consequently, the only penalty term explicitly included in the cost function is:

P(x) = A, Z (; Xt — 1)2, (10)

which ensures that each city is visited exactly once.
As a result, the complete cost function C(x) for a TSP instance without logistical constraints is given
by:
C(x) = D(x) + P(x). (11)

3. Methodology

This section outlines the experimental setup used to evaluate the performance of QAOA on TSP instances,
describing the logistical constraints, the computational environment, the datasets, the use of the Grover
mixer, the algorithmic configurations, and the performance metrics adopted in our study.



3.1. Logistical Constraints

While the classical TSP has been extensively studied as a combinatorial optimization problem [23, 24,
25, 26], its direct application to real-world scenarios is often limited by practical logistical constraints.
To ensure the relevance and applicability of quantum algorithms to real-world logistics and routing
problems, it is essential to incorporate such constraints into the quantum formulation. However, this
must be done carefully to minimize the impact on circuit depth, qubit count, and overall algorithmic
complexity.

The definition and formulation of the constraints adopted in this work are inspired by [14, 27], but
have been adapted to a binary representation for ease of implementation. This adaptation reduces the
number of required qubits, thereby lowering the overall demand for computational resources.

Binary Node Compatibility

To enable the simulation of a capacitated TSP within the limitations of current quantum hardware and
simulators, we propose a simplified and tractable formulation that approximates capacity constraints,
referred to as Binary Node Compatibility (BNC).

We introduce a binary vector k € {0, 1}, where each element k; represents the operational state of
node (or city) i:

ki = 1 if node i belongs to state A, (12)
0 ifnodei belongs to state B.

This abstraction models scenarios in which nodes are categorized into two distinct types, and transitions
between nodes of the same type incur a penalty. Examples include electric vehicle routing, where
customer visits (1) alternate with charging stops (0), and waste collection, where pickups (1) alternate
with depot unloading (0).

The penalty term can be modeled as:

K(x) = X Y. %i041(1 =k @ k), (13)
it
i#j
where @ denotes the binary sum.

By examining Equation 8, we observe that it shares the same structure as Equation 13. Therefore,
the BNC constraint can be directly incorporated into the cost matrix, avoiding any increase in circuit
complexity:

w(with BNC constraint)

i - wjjt Ak(l -k ® k]) (14)

Road-Related Constraints

Another class of constraints considered in this work involves the possibility that certain pairs of nodes
may not be directly connected, simulating real-world scenarios such as road closures or inaccessible
paths.

To model this, we define a binary road constraint matrix R; ;, where:

S
1 if node i can not be directly connected to node j

R = 15
n 0 otherwise (15)

The corresponding penalty term in the Hamiltonian is given by:

R(x) = Ap Z Xip Xj 41 Rij. (16)
i,jt
i#j
However, since this penalty term shares the same structure as Equation 13, it can be directly incorpo-
rated into the cost matrix. This allows us to avoid increasing the quantum circuit complexity:

(with road constraint)

i j - Wi + ARRi,j' (17)



Time-step Constraints

To incorporate time-related constraints into the TSP while maintaining compatibility with current
quantum hardware limitations, we introduce a simplified variant inspired by the Vehicle Routing Problem
with Time Windows (VRPTW) [28]. In VRPTW, certain nodes must be visited within predefined time
windows due to operational or business requirements. However, a full VRPTW formulation introduces
a large number of additional variables, making it impractical for current quantum hardware [14]. To
address this limitation, we propose a lightweight alternative that enforces simplified time constraints
without increasing the qubit count. Specifically, we define time-step constraints, which restrict certain
cities to appear at predetermined positions in the tour.
To achieve this, we define a binary time constraint matrix T;;, where:

T - 1 if city i is not allowed to be visited at step ¢ (18)
“7lo otherwise

Based on this matrix, we introduce a penalty term in the Hamiltonian to discourage violations of the
time constraints:
T(x) = Ar Z Ti,txi,t- (19)
it

Consequently, the resulting cost matrix becomes:
C(x) = D(x) + P(x) + T(x). (20)

Unlike BNC and road constraints, time-step constraints cannot be directly embedded into the cost
matrix, resulting in a slight increase in the complexity of the quantum circuit.

3.2. TSP Problem Instances

To assess the performance of QAOA under diverse conditions, we consider both synthetic and realistic
TSP datasets. This subsection provides a detailed description of the two datasets.

3.2.1. Synthetic Dataset

The first dataset employed is a synthetic one, generated by sampling from a random distribution.
Specifically, the cost matrix is constructed as an n x n matrix with entries randomly sampled from the
interval [0, 10]. The diagonal elements are set to zero, representing the zero cost of remaining at the
same node. The matrix is allowed to be asymmetric to reflect unbalanced travel costs.

This dataset serves as a benchmark to assess algorithm performance in the absence of inherent
structure. Since the data lacks any natural ordering or patterns, finding optimal solutions is generally
more challenging compared to more realistic datasets.

3.2.2. Realistic Dataset: Milan Subway Network

To evaluate the algorithms in a real-world context, we employed a dataset based on the actual geographic
positions of subway stops in the city of Milan. Specifically, we utilized open-source data provided in
the General Transit Feed Specification (GTFS) format'. Through this dataset, we extracted the precise
locations of Milan’s subway stops, focusing particularly on the most frequently used stations.

After acquiring the stop locations, we constructed a cost matrix using data from OpenStreetMap
(OSM)?, which provides satellite-based geographic data, including the full urban street network. Rather
than relying on straight-line distances between latitude-longitude coordinates, we leveraged OSM to
construct a realistic road network graph that accounts for actual intersections, road segments, and

!Available at https://dati.comune.milano.it/gtfs.zip.
*The cost matrix was computed using the osmnx Python library, available at https://github.com/gboeing/osmnx.
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one-way constraints. On this graph, we computed the pairwise distances between subway stops by
applying Dijkstra’s algorithm [29], ensuring that the computed paths reflect real-world accessibility
and routing.

To better reflect real-world travel conditions, we converted the distance-based cost matrix into a
time-based one. This was achieved by dividing each edge’s distance by the maximum allowed speed on
the corresponding road segment, as provided by OSM metadata. The resulting cost matrix is asymmetric,
capturing the variability in travel times due to differing traffic conditions and road types.

This realistic dataset enables the exploration of practical applications, such as:

+ Inspection and Maintenance Planning: Prioritizing interventions on the most critical or
frequently used subway stops.

« Network Vulnerability Analysis: Identifying shortest paths between major nodes to support
emergency planning, detour strategies, and infrastructure improvements.

Furthermore, we generated multiple datasets of varying sizes using the GTFS data. While the complete
dataset includes up to 130 subway stops, we created smaller subsets by selecting the top-n most visited
stops. This allows for scalability testing and performance evaluation of the algorithms under different
problem sizes.

3.3. Grover Mixer

In the context of the TSP, many bitstrings represent invalid solutions: for example, visiting multiple
cities at the same time step or revisiting the same city. A uniform exploration of all bitstrings, as done
with standard mixers, therefore may waste computational resources on infeasible candidates.

To mitigate this, we adopt a Grover-inspired mixer [19] that restricts mixing to states that (partially)
satisfy the canonical constraints. Although this approach increases the complexity of the initialization
step, it substantially reduces the effective search space and improves the probability of sampling
high-quality solutions.

While one could ideally prepare a superposition of only fully feasible states, the corresponding
unitary becomes intractable to construct, as the number of feasible states grows factorially with n. We
therefore consider a more tractable initialization strategy.

The total system of n? qubits is partitioned into n registers of n qubits each, denoted |g;) fori = 1,...,n.
Each register encodes the position of the i-th city in the tour and must contain exactly one qubit in
the |1) state, with the others in [0), which correspond to the Dicke state |D}). Therefore, each register
is initialized in an equal superposition of all valid one-hot encoded states. For example, when n = 3
(corresponding to a system of 32 = 9 qubits), each register |gi) is initialized as:

gy = D3y = UK0)®3 = % (1100) + 010) + 001)), (21)

where Usk denotes the unitary operator that prepares an equal superposition over all feasible states of
the k-th register. Based on Equation 5, the corresponding mixer unitary for the k-th register is defined
as:

Un(B) = UF (I = (1= ¢7) o)(ol) WHT. (22)

Since each UX(f;) acts on a distinct register, the overall mixer unitary U,,(f;) applied to the full system
can be written as the tensor product:

Un(B) = R UE(R). (23)
k=1

By using the mixer Hamiltonian defined according to Equation 5, we restrict the quantum evolution
to partially feasible subspaces. This construction guarantees that each time step corresponds to exactly
one city being visited, although the final state may still include invalid tours where some cities are



visited multiple times. This approach significantly reduces the size of the search space from 27" to n", in
contrast to using a standard X-Mixer.

Finally, we observe that, due to the construction which guarantees that exactly one city is visited at
each time step, the second term of Equation 9 can be omitted when applying this mixer Hamiltonian.
As a result, the simplified cost in Equation 10 can be used instead.

3.4. Computational Environment

The simulated experiments were conducted using the Qiskit framework. All simulations for problem
sizes up to n = 5 were executed on a local high-performance workstation equipped with 96 CPU cores.
The computational capabilities of this system significantly reduced the overall simulation time, enabling
the execution of a large number of distinct simulations within a feasible timeframe.

As previously discussed, the QUBO formulation of the TSP requires n® qubits, where n is the number of
cities in the problem instance. Simulating such a quantum system entails storing the full quantum state,
which consists of 2" complex amplitudes. Assuming double-precision floating-point representation,
the memory requirements grow exponentially with n, as shown in Table 1.

Table 1
Estimated memory requirements for storing QUBO-based TSP instances. Values are computed assuming double-
precision complex amplitudes.

n  RAM Required [GiB]
4 9.8x107*

5 0.5

6 1024

As shown in Table 1, simulations are feasible on local machines only up to n = 5. For larger instances,
such as n = 6, the exponential growth in memory requirements necessitates the use of more powerful
high-performance computing (HPC) resources.

CINECA Infrastructure

To address these computational demands, we leveraged the Leonardo supercomputing infrastructure
to simulate the TSP instance with n = 6, corresponding to a 36-qubit quantum system. Leonardo is a
pre-exascale supercomputer hosted by the CINECA consortium in Italy, designed to support large-scale
scientific computing and artificial intelligence workloads?®.

For our experiments, we utilized 8 compute nodes, each equipped with 4 NVIDIA A100 GPUs (64 GB
of memory per GPU) and a single CPU. The statevector representation of the quantum system was
distributed across all the involved GPUs, enabling large-scale simulation through the software stack’s
distributed architecture. The use of GPUs was essential for exploiting the distributed simulation capabil-
ities provided by Qiskit’s cusvaer backend, integrated within the NVIDIA cuQuantum Appliance [30],
which supports partitioning the statevector across multiple GPUs and compute nodes.

This functionality allowed us to simulate a 36-qubit system by distributing the memory load across
32 GPUs. Due to the internal memory management strategy of the cuQuantum Appliance, each GPU
was configured to allocate up to 32 GB of its 64 GB memory for storing a portion of the statevector.
The remaining memory was reserved for auxiliary operations such as inter-GPU communication
and memory transfers, which are critical for maintaining consistency and performance in distributed
quantum simulations.

All quantum circuits were transpiled using Qiskit with optimization level 3, the highest available
level, to reduce circuit depth and improve simulation performance.

*https://leonardo-supercomputer.cineca.eu/
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3.5. QAOA Configuration

Following the precedent set by several studies in the literature [13, 31], we choose the COBYLA opti-
mizer [32] due to its favourable balance between solution quality and computational efficiency [33, 34].
The initial values of the parameters y; and f; fori = 1,..., p are randomly sampled from the interval
[0, 27r] and subsequently refined by the classical optimizer. Classical optimization was carried out using
the COBYLA algorithm with a maximum of 200 iterations, which exceeded the convergence threshold
in all cases.

Finally, for the penalty coeflicients associated with the canonical and logistical constraints, we set
the values of )Lp, M AR, and Ar in Equations 10, 13, 16, and 19 as follows:

A = max(w;;) - n.
i,j

This choice follows a common strategy in QUBO formulations, where penalty weights are set so that
any feasible solution has a lower cost than any infeasible one [21, 22, 35]. Specifically, using a value
proportional to the maximum edge weight and the problem size provides a conservative bound that
guarantees any constraint violation incurs a higher cost than any feasible solution.

Alternative approaches in the literature include setting penalties based on the full range of the
objective function or tuning them empirically [35]. However, excessively large penalties can distort the
energy landscape, potentially degrading performance. Choosing an appropriate penalty value remains
a challenging task and may be better addressed in future work.

3.6. Performance Evaluation Metrics

The most widely adopted metric in the literature to assess solution quality is the approximation ratio
(AR) [36], defined as the ratio between the cost of the solution obtained by the algorithm and the cost
of the optimal solution (Cypy).

Given the probabilistic nature of QAOA, each execution yields a distribution over possible solutions.
Therefore, we consider two distinct forms of the approximation ratio:

- (€
ARexp = apt’ (24)
- Coi
ARmin = Cmm’ (25)
opt

where (C) denotes the expected cost at the end of the optimization process (i.e., the average value of the
cost function over sampled solutions), and C;, is the minimum cost observed throughout the entire
optimization.

These metrics capture complementary aspects of solution quality:

. ANReXp reflects the expected quality of a solution sampled from the output distribution, providing
insight into how concentrated the distribution is around low-cost solutions.

« AR, evaluates the best solution sampled during a run, offering a direct measure of the algo-
rithm’s ability to find near-optimal solutions.

However, in constrained optimization problems such as ours, the output distribution may exhibit
high variance. To account for this, we introduce a normalized version of the approximation ratio
by subtracting the worst possible cost (Cy,qrst) from both the numerator and the denominator. This
normalization bounds the metric within the interval [0, 1], where a value of 1 corresponds to an optimal
solution and 0 to the worst-case outcome:

_ <C> - Cworst €

[0,1] (26)
Copt - Cworst

AReyp



Cmin — C
ARin = Zmin _ worst [0,1]. (27)
Copt - Cworst

This adjusted formulation provides a more robust and interpretable metric for evaluating QAOA
performance, especially in the presence of hard constraints and noisy solution landscapes.

Both Cypt and Cyorst Were determined using an exhaustive brute-force approach. Specifically, we
evaluated all possible bitstrings of length n?, recording the absolute minimum value as Copt and the
maximum value as Cy,qpst-

4. Experimental Results and Analysis

We conducted a detailed analysis to observe how the performance metrics vary with two key hyperpa-
rameters:

1. The number of shots used in the quantum circuit execution (see Subsection 4.1).
2. The depth parameter p of the QAOA circuit (see Subsection 4.2).

For the synthetic dataset, all problem constraints defined in the previous sections are explicitly
incorporated into the analysis. A similar evaluation was conducted using the realistic dataset derived
from the Milan subway network. In this case, only the BNC and time-step constraints were explicitly
enforced during the optimization process. Road-related constraints, such as route accessibility, are
inherently embedded in the structure of the cost matrix, as it was constructed using real-world data
from OSM. This implicit incorporation ensures that the cost matrix reflects realistic travel conditions
without requiring additional constraint modeling.

The results obtained on the local workstation for problem sizes n = 4 and n = 5 are presented
separately from those for n = 6, which were obtained using the HPC infrastructure. The latter are
discussed in dedicated paragraphs within both the shot analysis and depth analysis subsections.

Given the limited complexity of problem instances with n = 3, the corresponding results are not
reported.

4.1. Shot Analysis

To evaluate the impact of measurement statistics on solution quality, we conducted experiments with a
fixed QAOA depth of p = 1, varying the number of shots.

It is important to analyze the behavior of the algorithm under these conditions for two main reasons.
First, evaluating performance at p = 1 allows us to determine whether the system can identify the
optimal solution using minimal circuit depth, a desirable property for near-term quantum devices.
Second, by varying the number of shots, we gain insight into the trade-off between solution quality
and computational cost. While increasing the number of shots generally improves solution quality, it
also results in longer simulation times and higher resource usage. Therefore, identifying the minimum
number of shots required to obtain high-quality solutions is crucial for optimizing overall efficiency.

In this analysis, we examine how AR;, evolves as a function of the number of shots, with the goal of
identifying the optimal balance between solution quality and computational effort. For the instances with
n =4 and n = 5, we vary the number of shots across the set shots = [10, 100, 500, 1000, 2000, 5000].

Tables 2 and 3 present the analysis of the approximation ratio of the solution with the minimum cost
sampled, ARy, for n = 4 and n = 5, respectively, across different constraint configurations. It is worth
noting that, in the presented tables, the “Runs” column indicates the number of problem instances
solved under identical constraints and hyperparameters, but with different initial cost matrices.



Table 2

Shot analysis for n = 4 and p = 1. Each entry in the “Shots” column denotes a range of shot counts (e.g., 10-5000)
over which the corresponding data have been averaged. The column (AR,,;,) reports the mean value of AR,
for all runs within each shot range.

Dataset  Constraint Shots Runs ‘ (AR.i)

Random - 10-5000 5 1.000
Realistic - 10-5000 5 1.000
Random BNC 10-5000 15 1.000
Realistic BNC 10-5000 15 1.000
Random road 10-5000 25 1.000
Random time 10 15 0.998
Random time 100-5000 15 1.000
Realistic time 10-5000 15 1.000

Table 3

Shot analysis for n = 5 and p = 1. Each entry in the “Shots” column denotes a range of shot counts (e.g., 10-5000)
over which the corresponding data have been averaged. The column (AR,;,) reports the mean value of AR,
for all runs within each shot range.

Dataset  Constraint Shots Runs ‘ (ARin)

Random - 10 5 0.999
Random - 100-5000 5 1.000
Realistic - 10 5 0.9990
Realistic - 100-5000 5 1.000
Random BNC 10 20 0.987
Random BNC 100-5000 20 1.000
Realistic BNC 10 20 0.992
Realistic BNC 100-5000 20 1.000
Random road 10 25 0.998
Random road 100-5000 25 1.000
Random time 10 25 0.996
Random time 100 25 0.999
Random time 500-5000 25 1.000
Realistic time 10-100 25 0.999
Realistic time 500-5000 25 1.000

The analysis of the results highlights a key insight into the performance of QAOA: the algorithm is
capable of consistently identifying the optimal solution with a relatively low number of measurement
shots. Specifically, the best approximation ratio, AR, reaches the optimal value of 1 under all tested
constraints—requiring as few as 100 shots for n = 4 and 500 shots for n = 5. Furthermore, a key
observation is that the optimal solution is always found even with p = 1 and a relatively small number
of shots.

Results for n = 6 from Simulations on the Leonardo HPC Infrastructure

Similarly, we conducted experiments on TSP instances with n = 6 under various constraint configura-
tions, using the Leonardo high-performance computing infrastructure. These experiments were carried
out with a fixed QAOA depth of p = 1, testing shot counts of 500 and 2000. The results are presented in
Table 4.



Table 4

Shot analysis for n = 6 and p = 1. Each entry in the “Shots” column denotes a range of shot counts (e.g.,
500-2000) over which the corresponding data have been averaged. The column (AR,;,) reports the mean value
of AR, for all runs within each shot range.

Dataset  Constraint Shots Runs ‘ (AR i)

Random - 500 1 0.999
Random - 2000 1 1.000
Realistic - 500-2000 1 1.000
Random BNC 500-2000 1 1.000
Realistic BNC 500 1 0.999
Realistic BNC 2000 1 1.000
Random road 500-2000 1 1.000
Random time 500-2000 1 1.000
Realistic time 500-2000 1 1.000

For the n = 6 instance, 2000 shots are sufficient to sample the optimal solution during the algorithm
execution (i.e., to obtain a value of (ARi,) equal to 1). This shows that high-quality solutions can
be achieved with limited sampling effort. This observation reinforces the finding that QAOA remains
efficient across varying problem sizes and constraint configurations.

Notably, a circuit depth of p = 1 proves sufficient to reach optimal solutions in all tested cases with
n < 6. This is a particularly encouraging result, as it suggests that shallow circuits can deliver strong
performance while keeping computational and hardware demands low. Given that deeper circuits are
more susceptible to noise and decoherence on real quantum hardware, the ability to achieve optimal
performance with minimal depth is a significant advantage. It supports the practical viability of QAOA
in near-term quantum devices, where circuit depth remains a critical constraint.

4.2. Circuit Depth Analysis

We investigated the impact of varying the number of QAOA layers p on the approximation ratio of the
expectation value, AR.y;,, while fixing the number of shots to 500 for instances withn = 4 and n = 5.
The results are presented in Figures 1a, 1b,1c and 1d, along with an analysis of the scaling behavior of
the simulation time.

This analysis is essential to determine whether increasing the circuit depth leads to a meaningful
improvement in solution quality. While deeper circuits may enhance the expressivity of the ansatz, they
also introduce greater computational complexity and increased susceptibility to noise and decoherence,
factors that pose significant challenges when using real quantum devices.

By observing how ARy, evolves with increasing p, we aim to assess whether the probability of
sampling low-cost (i.e., optimal or near-optimal) solutions improves significantly. If such an improve-
ment is observed, it would justify the additional computational overhead introduced by deeper circuits;
otherwise, it would suggest that shallow circuits are sufficient to achieve satisfactory performance
under constrained resources.

The values of p tested range from 1 to 10 for the n = 4 problem instances, and from 1 to 4 for the
n = 5 instances. The reduced range in the latter case is due to the prohibitively high computational cost
associated with high-depth circuits as the problem size increases.

The analysis of ARy, reveals that, as the number of layers p increases, ARy, tends to improve,
indicating a higher probability of sampling low-cost bitstrings. This effect is particularly evident for
n = 4, where the relatively small solution space allows even modest increases in circuit depth to yield
noticeable gains. For larger problem sizes (n = 5), the improvement is less evident, likely due to the
exponential growth of the solution space. Nonetheless, the general trend confirms that deeper circuits
enhance the quality of the sampled solutions, even if the optimal solution is already accessible at lower
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Figure 1: QAOA performance across random and realistic datasets based on the Milan subway system. Each
plot shows AR, (top), total QAOA execution time (bottom left), and execution time per iteration (bottom right).

depths, as shown in the shots analysis.

In parallel, we observe that the total computational time grows approximately quadratically with the
circuit depth p. While the theoretical time complexity of the quantum circuit itself scales linearly with
p, practical considerations introduce additional overhead. In particular, the classical optimizer must
handle a larger number of parameters as p increases, which often leads to a greater number of iterations
required to converge. This results in a superlinear increase in total runtime. These findings underscore
the trade-off between solution quality and computational cost when tuning the depth of QAOA circuits.

Results for n = 6 from Simulations on the Leonardo HPC Infrastructure

Here we present the analysis of the ARy, metric for the n = 6 instance, performed on the Leonardo
HPC infrastructure. The evaluation is conducted by varying the circuit depth p from 1 to 3, with the



number of shots fixed at 2000, under different constraint configurations, as illustrated in Figures 2a

and 2b.
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Figure 2: QAOA performance across random and realistic datasets based on the Milan subway system. Each
plot shows AR,,, (top), total QAOA execution time (bottom left), and execution time per iteration (bottom right).

The analysis of ARy, for the n = 6 instance aligns with the trends observed forn = 4 and n = 5,
indicating that the need for deeper quantum circuits does not significantly increase with problem size
in the tested configurations. This suggests that the proposed approach remains scalable, as high-quality
solutions can be obtained with relatively shallow circuits even for larger instances.

5. Conclusion and Future Work

This work investigated the application of the Quantum Approximate Optimization Algorithm (QAOA)
to the Traveling Salesman Problem (TSP), incorporating realistic constraints such as Binary Node
Compatibility (BNC), road accessibility, and time-step constraints. We introduced a QUBO-based
formulation capable of encoding these constraints without increasing the complexity of the quantum
system. To further reduce the search space, we employed a Grover-inspired mixer, tailored to guide the
algorithm more efficiently toward feasible solutions.

Our experiments, conducted on both synthetic and real-world datasets, demonstrated that QAOA
is capable of finding optimal solutions for problem instances up to n = 5, and preliminary results
for n = 6, obtained using the Leonardo HPC infrastructure, further support this capability. Notably,
optimal solutions were consistently found using a single QAOA layer and a relatively small number of
measurement shots, regardless of the constraint type.

The analysis of the approximation ratio relative to the expectation value, ARy, revealed that
increasing the circuit depth pleads to modest improvements in solution quality. Moreover, unconstrained
TSP instances generally achieved higher AR.y,, values compared to their constrained counterparts. This
discrepancy is likely due to the fact that constraints are enforced through penalty terms in the cost
function, and thus infeasible solutions are not explicitly excluded from the quantum state. Each time a
constraint is violated, the expectation value of the problem Hamiltonian increases significantly, thereby
substantially reducing ARey,. The stricter the constraint, the more pronounced this effect becomes.

Looking ahead, several promising directions emerge for future research. One avenue involves
enhancing the current framework to support the representation of more general real-world constraints
(e.g., those that are not binary in nature), while still preserving efficiency in the use of computational
resources. In parallel, the framework could be generalized to address more complex routing problems,



such as the Vehicle Routing Problem (VRP). Another direction is the exploration of alternative problem
encodings, such as binary one-hot representations, that could reduce the number of required qubits
and enable the simulation of larger instances, taking inspiration from the approach proposed in [37].
Finally, QAOA-based methods could be developed to address larger TSP instances. This could be
achieved by integrating QAOA with classical algorithms (e.g., clustering techniques) to create hybrid
quantum-classical workflows, thereby helping to overcome current hardware limitations that hinder
scalability.

Collectively, these directions aim to bridge the gap between theoretical quantum algorithms and
their practical applicability to real-world problems, paving the way for quantum-enhanced optimization
in complex logistical systems.
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