
Scalable Quantum Optimisation using HADOF:
Hamiltonian Auto-Decomposition Optimisation
Framework
Namasi G. Sankar1,2,*, Georgios Miliotis3 and Simon Caton1,2

1School of Computer Science, University College Dublin, Ireland
2Centre for Quantum Engineering, Science, and Technology, University College Dublin, Ireland
3Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, University of Galway, Galway, Ireland

Abstract
Quantum Annealing (QA) and QAOA are promising quantum optimisation algorithms used for finding ap-
proximate solutions to combinatorial problems on near-term NISQ systems. Many NP-hard problems can be
reformulated as Quadratic Unconstrained Binary Optimization (QUBO), which maps naturally onto quantum
Hamiltonians. However, the limited qubit counts of current NISQ devices restrict practical deployment of such
algorithms. In this study, we present the Hamiltonian Auto-Decomposition Optimisation Framework (HADOF),
which leverages an iterative strategy to automatically divide the Quadratic Unconstrained Binary Optimisa-
tion (QUBO) Hamiltonian into sub-Hamiltonians which can be optimised separately using Hamiltonian based
optimisers such as QAOA, QA or Simulated Annealing (SA) and aggregated into a global solution. We com-
pare HADOF-with Simulated Annealing (SA) and the CPLEX exact solver, showing scalability to problem sizes
far exceeding available qubits while maintaining competitive accuracy and runtime.. Furthermore, we realize
HADOF for a toy problem on an IBM quantum computer, showing promise for practical applications of quantum
optimisation.

Keywords
Scalable Quantum Optimisation, Quantum Approximate Optimisation Algorithm (QAOA), Quantum Annealing
(QA), Simulated Annealing (SA), Cplex, Divide and Conquer

1. Introduction

The Quadratic Unconstrained Binary Optimisation (QUBO) model provides a unified framework for
formulating many combinatorial optimization problems—such as the Travelling Salesman Problem
(TSP), graph partitioning, and scheduling—which are often NP-hard and difficult to scale using classical
exact solvers [10]. While specialized heuristics exist (e.g., Lin–Kernighan for TSP) [16], they lack
generality. In contrast, general-purpose QUBO solvers, including IBM Cplex [4] and other MILP/QP
engines 1, offer flexibility but struggle with large instances [10]. QUBO also has the advantage of being
represented as a Hamiltonian naturally, which can then be optimised via quantum computing [11] and
classical Simulated Annealing (SA) [9].

Quantum algorithms theoretically provide a scaling advantage for certain optimisation problems over
classical methods [1, 15]. Some quantum QUBO algorithms include Quantum Approximate Optimisation
Algorithm (QAOA) [5] , Quantum Annealing (QA) [18] and Grover Adaptive Search (GAS) [6]. QAOA
and QA provide multiple approximately optimal solutions in parallel, by taking advantage of quantum
superposition. This is useful for many applications as it allows the domain expert to choose the best
fitting solution for their particular problem and also compare different solutions.

3rd International Workshop on AI for Quantum and Quantum for AI (AIQxQIA 2025), at the 28th European Conference on Artificial
Intelligence (ECAI), October 25-30, 2025, Bologna, Italy
*Corresponding author.
$ namasivayam.gomathisankar@ucdconnect.ie (N. G. Sankar); georgios.miliotis@universityofgalway.ie (G. Miliotis);
simon.caton@ucd.ie (S. Caton)
� 0009-0000-7787-7490 (N. G. Sankar); 0000-0002-0944-2206 (G. Miliotis); 0000-0001-9379-3879 (S. Caton)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
1GNU Linear Programming Kit, available at: http://www.gnu.org/software/glpk/glpk.html, last visited: January 7, 2026

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

published 2026-01-20

mailto:namasivayam.gomathisankar@ucdconnect.ie
mailto:georgios.miliotis@universityofgalway.ie
mailto:simon.caton@ucd.ie
https://orcid.org/0009-0000-7787-7490
https://orcid.org/0000-0002-0944-2206
https://orcid.org/0000-0001-9379-3879
https://creativecommons.org/licenses/by/4.0/deed.en
http://www.gnu.org/software/glpk/glpk.html


However, current quantum devices in the NISQ era have a limited number of qubits and cannot
(yet) be used for practical and scalable applications [6]. In this study, we propose the Hamiltonian
Auto-Decomposition Optimisation Framework (HADOF), a framework for the automatic decomposition
of a global Hamiltonian into sub-Hamiltonians, using an iterative optimisation process. The HADOF
framework can be used to scale up many QUBO based algorithms such as QAOA, QA, Feedback-Based
Quantum Optimisation (FALQON) [13] and SA [18]. Algorithms which produce a probability distribution
over the solution space, from which solutions can be sampled - where good solutions are more likely to
be sampled (approximately) are compatible with HADOF.

HADOF recovers more information from the sampling distribution, beyond merely the single best
solution, enabling HADOF to scale to problem sizes much larger than the available number of qubits.
We demonstrate, through classical simulation of QAOA within our framework, that HADOF surpasses
Cplex on QUBO instances out of reach under the same classical hardware conditions, producing multiple
high-quality solutions concurrently. Moreover, we argue that on actual quantum hardware, HADOF
would exhibit even greater performance acceleration, combining quantum advantage with heuristic
flexibility. Our results show promise for HADOF both as a quantum-inspired classical algorithm and as
a scalable method on NISQ-era and future quantum devices.

2. Related Work

QAOA [5] and QA [18] are foundational quantum methods for tackling QUBO problems. QAOA is
a variational, gate-based algorithm alternating between cost and mixer Hamiltonians, generating a
probability distribution over solutions favoring low-cost solutions [11, 8]. QA, on the other hand, is
an analog adiabatic method evolving a quantum system from an initial to the problem Hamiltonian.
Both produce biased sample distributions over candidate solutions, offering practitioners flexibility
when selecting among high-quality alternatives. However, NISQ hardware limits QAOA/QA to small
problem sizes due to qubit and connectivity constraints [8]. This motivates hybrid and decomposition
approaches.

In classical optimization, divide-and-conquer and decomposition heuristics are standard for scaling
to large problems. General purpose solvers (e.g., IBM Cplex [4]) can struggle QUBO problems beyond
hundreds of variables [10], motivating decomposition and hybrid quantum-classical methods. The
multilevel QAOA of Maciejewski et al. [12] splits a large QUBO into manageable sub-QUBOs that are
solved iteratively or in parallel and then recombined. These techniques enable practical scaling and lay
the foundation for distributed quantum optimization.

Recent strategies distribute or decompose QAOA across subproblems. Recursive QAOA (RQAOA) [3]
uses QAOA to iteratively fix qubits and shrink the problem, focusing quantum resources on the hardest
sub-instances. The QAOA-in-QAOA (QAOA2) and related parallel QAOA heuristics [19] decompose a
large graph (e.g., MaxCut) into subgraphs, solve each with QAOA in parallel, and merge the results,
exploiting high-performance computing (HPC) for scalability. Early approaches worked best on sparse
or weakly coupled problems [8], but dense QUBOs require advanced coordination to manage strong
variable interactions.

The Distributed QAOA (DQAOA) framework [8] extends parallelization further. Large QUBOs are
decomposed into sub-QUBOs, solved on quantum or classical resources in parallel, with an aggregation
policy reconciling overlaps and correlated interactions. This iterative approach scales to large, dense
QUBOs; for example, Kim et al. report 9̃9% approximation ratios on 1,000-variable instances within
minutes, outperforming prior methods in both quality and time-to-solutionon. DQAOA leverages
quantum-centric HPC platforms to update a global solution iteratively, demonstrating that distributed
computing augments quantum optimization for practical problem sizes.

HADOF and DQAOA overcome standard QAOA scalability limits via decomposition. DQAOA relies
on explicit partitioning and parallel aggregation, excelling on HPC or distributed platforms. HADOF
uses adaptive, iterative refinement with a probabilistic global view, reducing quantum requirements
per step. While DQAOA is optimal for raw parallelism and wall-clock minimization, HADOF provides



efficient sequential scaling and solution diversity. Both frameworks represent the cutting edge of
distributed quantum optimization, and hybrid approaches combining their strengths are promising
future directions.

3. Approach

General Overview

HADOF proceeds iteratively::

1. Encode the full QUBO as a Hamiltonian.
2. Apply an optimisation algorithm (like QAOA or QA) that produces a probability distribution to

sample approximate solutions.
3. Approximate sub-Hamiltonians using the marginal probability of the binary variables (qubits).
4. Solve each sub-Hamiltonian iteratively.
5. Aggregate sampled solutions from sub-Hamiltonians to guide the next iteration.

Implementation Details

HADOF introduces a new problem decomposition method, leveraging probabilistic state information,
using an iterative refinement mechanism similar to classical optimisation loops.

Let the global problem be represented in the standard QUBO form:

min
𝑥∈{0,1}𝑛

𝑥𝑇𝑄𝑥 (1)

where 𝑄 ∈ R𝑛×𝑛 is an upper triangular cost matrix, and 𝑛 is the dimensionality of the binary decision
variable 𝑥. The corresponding quantum Hamiltonian 𝐻𝑄 encodes the QUBO in the computational
basis.

To scale the optimisation process, 𝐻𝑄 is decomposed into a set of sub-Hamiltonians, each defined
over a subset of the full variable set. Let 𝑆𝑖 ⊂ {𝑥1, ..., 𝑥𝑛} denote the variables of subproblem 𝑖, with
‖𝑆𝑖‖ = 𝑘 << 𝑛. The sub-Hamiltonian 𝐻𝑖 is defined by:

𝐻𝑖 = E𝑥𝑆𝑖
= 𝑃 (𝐻𝑄

⃒⃒
𝑥𝑆𝑖 , 𝑥𝑆𝑖

) (2)

Here, 𝑆𝑖 denotes the complement of 𝑆𝑖, and 𝑃 (𝑥𝑆𝑖
) is a distribution over unsampled variables. We use

E[𝑥𝑘] = 𝑃 (𝑥𝑘) as the marginal probability that variable 𝑥𝑘 is 1, estimated from previous iterations or
prior knowledge. Ideally, this expectation is estimated using a weighted average over all states the rest
of the QUBO can assume. In this study, E[𝑥𝑘] is approximated as the expected value of each qubit, by
sampling it.

This transformation embeds global context into each subproblem while keeping the computational
cost tractable. To estimate E[𝑥𝑖], we use a modified QAOA and SA procedure. We use the same 𝛽-
schedule for both QAOA and SA.. For each subproblem 𝑖, a QAOA circuit is constructed using the cost
and mixing unitaries, as in Figure 1:

𝑈(𝐻𝑖, 𝛾) = 𝑒−𝑚𝛾𝑚𝐻𝑖 (3)

𝑈(𝑀,𝛽) = 𝑒−𝑚𝛽𝑚
∑︀𝑘

𝑗=1 𝑋𝑗 (4)

Here, we implement QAOA as a trotterisation of QA, using the Annealing Parametrisation [17], to
avoid the classical optimisation loop required to find 𝛽𝑚 and 𝛾𝑚. We start in the ground state |+⟩⊗𝑘 of
the mixer Hamiltonian 𝑋 and move to the ground state of the cost Hamiltonian 𝐻𝑖 slowly enough to
always be close to the ground state of the Hamiltonian, as in Figure 2. This rate is determined by the
number of layers 𝑝. We initialize the 𝛽𝑚 and 𝛾𝑚 in this way, moving 𝛽𝑚 from 1 to 0 and 𝛾𝑚 from 0 to 1.



Figure 1: Standard QAOA circuit with alternating cost and mixer Hamiltonians[14]. The output produces a
probability distribution over the solution space which can be samples with the shots parameter of the quantum
simulation or backend. Higher sampled solutions are more likely to be solutions with better objective value.

Figure 2: Trotterised QAOA parameters based on Ref [14], [17]. We move 𝛽𝑚 from 1 to 0 and 𝛾𝑚 from 0 to 1
allowing the system to stay close to the ground state of the mixer Hamiltonian to the Cost Hamiltonian.

However, instead of applying the QAOA procedure completely, two changes are made to iteratively
estimate the sub-Hamiltonians. In each iteration of the loop, every sub-Hamiltonian is solved using
QAOA, however, the whole circuit is not applied. In the 𝑙𝑡ℎ iteration, only layers 1 to 𝑙 are applied.

To approximate the value of E[𝑥𝑖], individual qubits are sampled instead of sampling from all possible
solutions of the QAOA in every iteration. The average for each qubit is used as a proxy for E[𝑥𝑖].
We follow the same procedure for beta scheduling while using SA HADOF. The optimisation process
unfolds over 𝑝 global iterations as in Figure 3.

4. Parametric Details

Step-by-step Procedure (Pseudocode)

1. Initialisation:
• Create a global probability vector 𝑃 (𝑥𝑘) ∈ R𝑛, with all values initialised to 0.5, except for

the first subset 𝑆𝑖

2. Iterative QAOA Loop: For 𝑙 = 1, 2, . . . , 𝑝:
a) Initialise QAOA circuit with 𝑙 layers with the first 𝑙 values of 𝛽𝑚 and 𝛾𝑚
b) For each model 𝑖 ∈ {0, . . . ,𝑀 − 1}:

• Replace inactive variables 𝑆𝑖 by fixed expected values from previous iterations
• Construct sub-QUBO for subset 𝑆𝑖 using the expected values 𝑃 (𝑥𝑆𝑖

) from previous
iteration.



Figure 3: General overview of the HADOF framework. Here, we use QAOA as the optimiser, which is called
iteratively. (1) We choose subsets of sizes 5 and 10 from the binary variables of the global problem. (2) These
are used to form the sub-Hamiltonians using 𝑃 (𝑥𝑖), approximated as the expected value of each qubit. (3) The
QAOA circuit set up with 𝑡 = 1 layers and in every iteration we add a layer. In this study, we use 10 layers.
(4) Once the 𝑛/𝑘 sub-Hamiltonians are optimised, we sample them and use an aggregation policy to form the
global solution probability distribution.

• Convert to Ising form: 𝑄 → (ℎ, 𝐽) and get the sub-Hamiltonian corresponding to the
sub-QUBO

• Apply QAOA circuit of depth 𝑙 on 𝑘 qubits where 𝑘 = ‖𝑆𝑖‖ :
• Update 𝑃 (𝑥𝑘) vector by measure expected values of each qubit for current model:

𝑃 (𝑥𝑖) = E[𝑥𝑖] (5)

3. Final Output: After the final iteration, run full QAOA with full depth - all the layers in the beta
schedule - to extract binary samples. Collect and store final solutions from all models. These
solutions and their probabilities can be aggregated to form the global solution.

We generate QUBO problems by filling an upper triangular matrix using a uniform random
number generator between -10 and 10. We present comparisons with CPLEX for problems with
𝑛 = 10, 20, ..., 100 binary variables, and scale up to larger problems of size 𝑛 = 100, 200, ..., 500
variables for the SA and HADOF methods. We choose 𝑘 = 5 and 𝑘 = 10, where number of QAOA and
SA circuits per iteration will be 𝑛/𝑘.

We initialise 𝑃 (𝑥𝑖) = 0.5 for all 𝑖. Circuits use 10 layers with 𝛽𝑚 = 1− (𝑚/10) and 𝛾𝑚 = 𝑚/10.
After each sweep of the 𝑛/𝑘 circuits, we add one layer. To measure the individual qubits to update
𝑃 (𝑥𝑖) we use 500 shots per qubit.

Finally, we sample each circuit over all 𝑘 qubits using 5000 shots per circuit, to produce a distribution
over each sub-solution. In this study, we only aggregate the solutions in a rudimentary manner. We
form 5,000 global solutions by concatenating sampled sub-solutions in sampling order and then evaluate
their objective values.

5. Results and Discussion

We evaluated HADOF on randomly generated QUBO instances of varying sizes. We compared its
performance with Pennylane [2] classically simulated QAOA circuits, SimulatedAnnealingSampler



Figure 4: Time to solution as a function of problem size for CPLEX (exact classical solver), SA, HADOF QAOA and
SA with 5 variable and 10 variable sub-QUBOs for problem sizes 𝑛 = 10 to 𝑛 = 80. CPLEX exhibits exponential
scaling. SA scales the best in time as problem size increases. The inset shows the other algorithms, excluding
CPLEX for clarity.

Figure 5: Time to solution as a function of problem size for SA, HADOF QAOA and SA with 5 variable and 10
variable sub-QUBOs for problem sizes 𝑛 = 100 to 𝑛 = 500.

from the D-Wave Ocean SDK 2 and the classical IBM Cplex solver [4].
For each problem size, we generated 100 independent QUBO instances. The 5 and 10 qubit HADOF

QAOA, 5 and 10 variable HADOF SA, global problem SA and global problem CPLEX methods were
run on identical problem sets. This allows us to compare SA on the global problem directly against SA
using HADOF. The results were scaled such that the CPLEX objective value was set to one for problem
sizes from 10-80. Beyond 80 variables, CPLEX became intractable and the solutions are scaled such that
SA objective value is set to 1. We perform all the simulations on an Apple M3 Pro device. We produce a
distribution of 5000 sample solutions for each algorithm, except CPLEX. This allows us to calculate
2D-wave ocean software, available at: https://docs.ocean.dwavesys.com/, last visited: January 7, 2026

https://docs.ocean.dwavesys.com/


the average solution objective value of the distribution. We also define two individual solutions from
these as best objective value and most probable objective value. The best objective value is the solution
with the best objective from the 5000 global solutions. The most probable solution is defined as the
aggregation of the most probable sub-solutions from each circuit. These values are used to compare the
accuracies of the algorithms.

Scalability and Runtime Figure 4 shows the time to solution for CPLEX, SA and the 5-qubit and
10-qubit HADOF approaches using QAOA and SA for 10-100 variable problems. The classical CPLEX
solver demonstrates exponential scaling with problem size, as expected for exact solvers on NP-hard
combinatorial problems [10]. CPLEX is nearly instantaneous up to 40 variables, but runtime rapidly
increases at larger sizes. In contrast, the four HADOF approaches and SA display better scaling even
upto problem sizes of 500 as shown in Figure 5. This indicates that HADOF can outperform exact solvers
like CPLEX in runtime for moderate sizes, even when QAOA is classically simulated. The 5-qubit QAOA
version is consistently faster than the 10-qubit QAOA. This could be because simulation of QAOA
classically is expensive as the circuit size increases. We see that the 10 variable (HADOF SA) HSA is
faster than the 5 variable HADOF. We note that SA takes the least time to solve all of the problems.

Solution Quality Figures 6, 7, and 8 display the scaled objective values for the most probable solutions,
best solutions and average solutions across the algorithms respectively. These objective values are
scaled to CPLEX solution for the 10-80 variable problems and scaled to SA solution for 100-500. Across
all problems from 10-80, SA and CPLEX find the most optimal solution. The HADOF methods initially
decrease in accuracy of best and most probable solutions as the problem size increases (10-80), but their
average accuracies tend to stay stable around 0.86 and 0.90 for the 10 and 5 qubit QAOA. It stays above
0.98 using HSA. The sampling-based nature of HADOF preserves not only high solution quality but
also solution diversity, as in SA, which is valuable in practical combinatorial settings [5].

Modularity HADOF is a framework that uses an optimisation process within it, to scale up the
problem sizes that can be solved by it. In this research, we tested it using SA and QAOA. The framework
requires that the algorithm produces a probability distribution over the solution space, from which
solutions can be sampled - where good solutions are more likely to be sampled. Similar algorithms such
as QA and FALQON [13] may be compatble with HADOF as well.

Testing on a Real Device We generated a single 20-variable QUBO and executed HADOF QAOA on
IBM’s cloud-accessible quantum device through QiskitRuntimeService [7] using 5-qubit circuits. Using
the same beta scheduling parameters with 10 layers resulted in a solution with 0.84 objective value of
the CPLEX solution. It took 6m and 42s to run including the classical calculation of sub-Hamiltonians
and the queueing time on the real device. The Pennylane circuits were directly executable by changing
the backend. Further rigourous evaluation is required to understand how HADOF performs on real
NISQ devices, and with larger problem sizes.

Summary HADOF achieves hardware-efficient optimization by requiring only small quantum circuits
regardless of global problem size, scaling to 𝑛 = 500 and beyond. The framework delivers not only
near-optimal objective values but also a diversity of high-quality solutions, thanks to its iterative and
sampling-based design. HADOF is also modular and may be able to improve the scalability of many
different algorithms.

6. Conclusion and Future Work

We introduced HADOF, a Hamiltonian Auto-Decomposition Optimization Framework, and demon-
strated its capability to solve large-scale QUBO problems efficiently by iteratively dividing them into
tractable subproblems. Our results show that HADOF outperforms the classical CPLEX solver in runtime



Figure 6: For small problems, we note that SA finds the exact solution offered by CPLEX all the time. The
HADOF based methods decrease in scaled objective value. However for larger problem sizes, they stay around
0.98 for HSA and around 0.975 for QAOA, with the 5 qubit circuits performing better than the 10.

Figure 7: The HADOF based methods decrease in scaled objective value for small problem sizes. However
for larger problem sizes, they stay around 0.98 for HSA but keep reducing for QAOA, with the 5 qubit circuits
performing better than the 10 for all problem sizes.

and scalability, solving problems up to 500 variables that are otherwise infeasible for CPLEX under
the same hardware constraints. Notably, HADOF maintains near-optimal solution quality and delivers
multiple high-quality solutions in a single run.

HADOF offers several potential advances for quantum optimisation. It is extremely hardware efficient
by taking advantage of only 𝑘 << 𝑛 qubits at any time to explore a high-dimensional QUBO space,
allowing NISQ based algorithms to explore large problems irrespective of qubit availability. It yields
a distribution of high-quality solutions instead rather than a single optimum. Another interesting
perspective of exploration could use HADOF to understand QUBO decomposition, as it iteratively
creates sub-QUBOs that can be optimised separately and aggregated. This could be useful for improving
or parallelising even classical algorithms which produce a distribution of solutions such as SA.

HADOF is also modular with many different optimisation algorithms that can be used under the
framework to scale up beyond the available number of qubits or other device limitations that restrict
the number of variables that can be solved at once.

Another key finding is that HADOF based QAOA is highly scalable even while simulating it on a



Figure 8: For small problems, we note that SA produces a distribution of 5000 solutions that is near optimal.
The HADOF based methods exhibit stable average objective values with above 0.85 for all methods.

classical device. We are able to solve large size problems beyond classical solver limits (e.g., Cplex) on
the same machine, in simulation. Real device implementation of HADOF may show speedups even over
fast and approximate classical algorithms like SA HADOF based SA. It would be useful to study how
HADOF fares against classical approximate and heuristic solvers.

While our simple aggregation—combining subproblem samples—was sufficient to surpass classical
solvers in some regimes, future work will develop more robust policies to assemble sub-Hamiltonian
samples into a coherent global distribution. We anticipate that adopting ideas from distributed QAOA
(DQAOA) [8] and multi-level frameworks [12], such as adaptive coarse-to-fine decomposition and
weighted aggregation, will allow us to better capture variable dependencies and further improve global
sampling.

Following a similar sub-problem selection and aggregation strategy as in DQAOA [8] may help
parallelise HADOF to run on multiple classical or quantum cores simultaneously. This ability to run
large problems using small circuit sizes in embarrassingly parallel loops may allow us to further speed
up and scale up the problems we can solve on current NISQ hardware.

Our results are based on simulated quantum circuits. Validation on real gate-based and annealing
hardware is needed to quantify potential advantages in scalability and speed. It is important to quantify
how the algorithm is affected under noisy NISQ hardware.

In addition, HADOF’s decomposition scheme can be leveraged as a general divide-and-conquer
technique for large QUBO problems. We plan to explore its use as a modular component within
hybrid quantum-classical solvers, extending its scalability to industry-scale optimization. As quantum
hardware advances, deploying HADOF with larger sub-circuits will also be investigated. Ultimately, our
goal is to integrate enhanced aggregation strategies and multi-level learning to realize a fully scalable
quantum-classical hybrid solver capable of addressing practical, large-scale combinatorial optimization.

Declaration on Generative AI

During the preparation of this work, the authors used ChatGPT in order to: Grammar and spelling
check, Paraphrase and reword. After using this tool, the authors reviewed and edited the content as
needed and takes full responsibility for the publication’s content.



References

[1] Amira Abbas et al. “Challenges and opportunities in quantum optimization”. In: Nature Reviews
Physics 6.12 (Dec. 2024), pp. 718–735.

[2] Ville Bergholm et al. PennyLane: Automatic differentiation of hybrid quantum- classical computa-
tions. Nov. 2018.

[3] Sergey Bravyi et al. “Obstacles to State Preparation and Variational Optimization from Symmetry
Protection”. In: Quantum 4 (2020), p. 204.

[4] IBM ILOG Cplex. “V12. 1: User’s Manual for CPLEX”. In: International Business Machines Corpo-
ration 46.53 (2009), p. 157.

[5] Edward Farhi, Jeffrey Goldstone, and Sam Gutmann. A Quantum Approximate Optimization
Algorithm. 2014.

[6] Austin Gilliam, Stefan Woerner, and Constantin Gonciulea. “Grover Adaptive Search for Con-
strained Polynomial Binary Optimization”. en. In: Quantum 5.428 (Apr. 2021), p. 428.

[7] Ali Javadi-Abhari et al. Quantum computing with Qiskit. 2024.
[8] Seongmin Kim et al. “Distributed Quantum Approximate Optimization Algorithm on a Quantum-

Centric Supercomputing Architecture”. In: arXiv preprint arXiv:2407.20212 (2025).
[9] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. “Optimization by Simulated Annealing”. In: Science

220.4598 (1983), pp. 671–680.
[10] Gary Kochenberger et al. “The unconstrained binary quadratic programming problem: a survey”.

In: J. Comb. Optim. 28.1 (July 2014), pp. 58–81.
[11] Andrew Lucas. “Ising formulations of many NP problems”. In: Frontiers in physics 2 (2014), p. 5.
[12] Filip B Maciejewski et al. “A multilevel approach for solving large-scale qubo problems with noisy

hybrid quantum approximate optimization”. In: 2024 IEEE High Performance Extreme Computing
Conference (HPEC). IEEE. 2024, pp. 1–10.

[13] Alicia B. Magann et al. “Feedback-Based Quantum Optimization”. In: Phys. Rev. Lett. 129 (25 Dec.
2022), p. 250502.

[14] Alejandro Montanez. Quadratic Unconstrained Binary Optimization (QUBO). https://pennylane.ai/
qml/demos/tutorial_QUBO. Date Accessed: 2025-07-05. Feb. 2024.

[15] Humberto Munoz-Bauza and Daniel Lidar. “Scaling Advantage in Approximate Optimization
with Quantum Annealing”. In: Phys. Rev. Lett. 134 (16 Apr. 2025), p. 160601.

[16] Christos H. Papadimitriou. “The Complexity of the Lin–Kernighan Heuristic for the Traveling
Salesman Problem”. In: SIAM Journal on Computing 21.3 (1992), pp. 450–465.

[17] Vishal Sharma et al. OpenQAOA – An SDK for QAOA. 2022.
[18] Sei Suzuki. “A comparison of classical and quantum annealing dynamics”. In: J. Phys. Conf. Ser.

143 (Dec. 2009), p. 012002.
[19] Zeqiao Zhou et al. “QAOA-in-QAOA: Solving Large-Scale MaxCut Problems on Small Quantum

Machines”. In: Phys. Rev. Appl. 19 (2 Feb. 2023), p. 024027.

https://pennylane.ai/qml/demos/tutorial_QUBO
https://pennylane.ai/qml/demos/tutorial_QUBO

	1 Introduction
	2 Related Work
	3 Approach
	4 Parametric Details
	5 Results and Discussion
	6 Conclusion and Future Work

