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Abstract
The growing complexity and interconnectivity of modern power systems have increased their vulnerability to
sophisticated cyberattacks, making real-time anomaly detection a critical challenge. Classical machine learning
approaches, while effective, face limitations in scalability and representation power, especially when dealing with
high-dimensional and temporally correlated data. Quantum autoencoders (QAEs) offer a promising alternative
by leveraging the principles of quantum computing to encode and process information in more compact and
expressive forms. In this work, we investigate the use of a stacked QAE architecture for cyberattack detection
in smart grid environments, aiming to capture both spatial and temporal patterns through quantum-enhanced
learning. Preliminary results show that even with minimal input dimensionality, the quantum model performs
competitively with classical baselines, highlighting the potential of QAEs as a foundation for scalable, next-
generation anomaly detection frameworks in critical infrastructure systems.
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1. Introduction

The digital transformation of power systems [1], driven by the integration of smart devices and
automated control technologies, has significantly enhanced the efficiency and responsiveness of modern
electrical grids [2]. However, this evolution has also introduced new challenges in terms of cybersecurity.
The widespread deployment of Internet of Things (IoT) components in smart grids increases the attack
surface, exposing critical infrastructures to malicious threats capable of disrupting system stability [3].
In such complex and interconnected environments, timely detection of anomalous behaviours becomes
a critical requirement.

Machine Learning (ML) methods have shown promising results in the field of anomaly detection
and cyber-intrusion recognition within smart grids. Classical approaches often rely on deep neural
networks, which are effective but can be computationally intensive and face limitations when applied
to high-dimensional, noisy, or partially labeled data [4]. In recent years, Quantum Machine Learning
(QML) [5] has emerged as a novel paradigm that leverages quantum computing to address some of these
challenges, offering new opportunities in terms of representational power and resource efficiency [6].

Among various QML architectures [7], Quantum Autoencoders (QAE) [8] stand out for their ability
to learn compressed representations of input data using a limited number of qubits. Inspired by their
classical counterparts, QAEs are particularly well-suited for feature extraction and anomaly detection
tasks, making them a valuable tool for cybersecurity in quantum-aware environments. By learning to
map high-dimensional input states into lower-dimensional quantum latent spaces, QAEs can facilitate
efficient detection of outliers or abnormal patterns with reduced quantum resource requirements.

This work explores the quantum implementation of an anomaly detection pipeline for smart grids,
by translating an existing classical neural network model [9] into a stacked Quantum Autoencoder
architecture. The proposed model is designed to compress and reconstruct input data related to critical
events in the power system, thereby learning a meaningful quantum representation that can differentiate
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between normal operations and potential cyber threats. This integration of QML techniques into the
cybersecurity domain aims to open a path toward scalable and quantum-native solutions for next-
generation smart grid protection.

The paper is structured as follows: Section 2 introduces key background concepts, including classical
and quantum autoencoders, and the characteristics of power system cyberattack datasets. Section 3
reviews the reference deep learning model that inspired our quantum approach and the literature review
of QAE for anomaly detection. Section 4 presents the proposed methodology, describing each stage of
the quantum learning pipeline. Finally, Section 5 summarizes the findings and outlines future directions.

2. Background

2.1. Classical Autoencoders

Autoencoders [10] are a class of unsupervised neural networks designed to learn efficient representations
of input data by compressing and reconstructing it. They consist of two main components: an encoder,
which maps the input into a lower-dimensional latent space, and a decoder, which reconstructs the
original input from this compressed representation. The model is trained to minimize the reconstruction
error, typically measured using a loss function such as mean squared error (MSE).

In anomaly detection, autoencoders are trained on normal data only. When presented with anomalous
or outlier data during inference, the model generally exhibits higher reconstruction errors, thus enabling
the detection of deviations from expected patterns. This makes autoencoders particularly suitable for
intrusion detection tasks, where malicious behavior often manifests as statistically rare or unseen input
patterns.

Variants such as denoising autoencoders, variational autoencoders, and stacked autoencoders have
been proposed to improve robustness, generalization, and expressive power. However, as the dimension-
ality of the data and the size of the neural network increase, the training and inference costs become
prohibitive, especially in resource-constrained or real-time environments such as smart grids.

2.2. Convolutional and Recurrent Neural Networks in Autoencoder Architectures

Convolutional Neural Networks (CNNs) [11] and Recurrent Neural Networks (RNNs) [12] are widely
used in modern machine learning due to their ability to extract structured features from high-dimensional
data. When combined with autoencoders, they enhance the model’s capacity to learn meaningful
representations by exploiting spatial and temporal patterns in the input data.

CNNs are particularly effective in identifying local spatial correlations. Originally developed for
image recognition tasks, CNNs apply convolutional filters that move across input data to detect edges,
textures, and other hierarchical features. In autoencoder architectures, a CNN can be used in the encoder
to compress input data into a latent representation that retains the most relevant spatial information.
The decoder then reconstructs the original input by applying transposed convolutional layers. This
approach is especially suitable for grid-like data structures, such as sensor readings organized as matrices
or time-frequency maps.

RNNs, on the other hand, are designed to process sequential data by maintaining a hidden state that
evolves over time. This makes them well-suited for learning temporal dependencies, such as trends
or recurrent patterns in time-series data. In the context of autoencoders, RNNs are typically used in
the encoder and decoder to compress and reconstruct sequences of data, respectively. This allows the
model to capture long-term dependencies that may not be apparent in individual observations.

The integration of CNNs and RNNs into autoencoder frameworks enables the extraction of both
spatial and temporal features from complex datasets [13]. This is particularly useful in domains like
power system monitoring, where anomalies may manifest through subtle variations across multiple
sensors and over time. These capabilities make CNN and RNN based autoencoders valuable building
blocks in anomaly detection architectures, and serve as the foundation for the quantum variants explored
in this work.



2.3. Quantum Autoencoders

In the context of QML, Quantum Autoencoders (QAEs) have been proposed as the quantum analog
of classical autoencoders. QAEs are designed to compress quantum states into lower-dimensional
subspaces using parameterized quantum circuits. By learning an encoding circuit that maps input
quantum states to a smaller number of qubits, and a decoding circuit that reconstructs the original state,
QAEs aim to preserve essential information while reducing quantum resource usage.

From a practical standpoint, QAEs operate within variational quantum circuits, which are trained
using classical optimization methods in a hybrid quantum-classical loop. They are particularly well-
suited for near-term quantum hardware (NISQ devices), as they can be implemented using shallow
circuits and a small number of qubits. In anomaly detection scenarios, a QAE trained on “normal”
quantum states can be used to identify anomalous states by measuring deviations in the reconstruction
fidelity.

The potential of QAEs lies not only in their ability to reduce the dimensionality of quantum data but
also in offering fundamentally different representational capabilities compared to classical autoencoders.
When applied to cybersecurity tasks, QAEs may enable efficient, real-time detection of cyber threats in
quantum-aware infrastructures, such as future quantum-enhanced smart grids.

In analogy with their classical counterparts, various architectural enhancements can be envisioned for
quantum autoencoders to improve their robustness, scalability, and expressive power. Several classical
variants of autoencoders have proven effective in different tasks, each introducing specific inductive
biases tailored to particular data characteristics or learning goals. Extending these ideas to the quantum
domain may further enrich the functionality of QAE models.

For instance, Denoising Autoencoders (DAEs) are designed to learn representations that are robust
to noise by artificially corrupting the input and training the network to reconstruct the original, clean
version. This is particularly relevant in quantum systems, where noise is intrinsic due to decoherence
and imperfect gate operations. A quantum analog of DAE could enable the QAE to learn stable encodings
even in the presence of hardware-level noise.

Another important variant is the Sparse Autoencoder (SAE), which imposes a sparsity constraint
by penalizing activations that exceed a predefined threshold. This forces the network to activate only
a limited number of neurons (or qubits in a quantum context), helping to prevent overfitting and
promoting the learning of essential features. A quantum sparse autoencoder could implement similar
constraints on the activation probabilities of qubits or on the usage of specific quantum gates, potentially
improving generalization while keeping circuit depth low—a critical factor for near-term quantum
devices.

Additionally, Variational Autoencoders (VAEs) introduce a probabilistic framework that learns a
distribution over latent variables, enabling generative capabilities such as sampling new data similar to
the input distribution. While the direct implementation of VAEs in quantum computing is non-trivial
due to differences in probability modeling, research on Quantum Variational Autoencoders is ongoing
and may lead to novel generative models with applications in anomaly synthesis and attack simulation.

Finally, Stacked Autoencoders represent a hierarchical architecture in which multiple autoencoders
are layered, with each level learning increasingly abstract features based on the output of the previous
one. Training typically involves two phases: a pre-training stage where each layer is trained individually
to reconstruct its input, followed by a fine-tuning phase where the entire deep model is optimized jointly.
The quantum analog would involve stacking multiple quantum encoding and decoding layers, potentially
implemented as a sequence of variational circuits, each trained to refine the latent representation.
This design could improve the QAE’s ability to capture complex, high-level patterns associated with
sophisticated attack signatures or temporal correlations in smart grid data.

Integrating these classical strategies into the quantum realm remains an open research direction.
Nevertheless, exploring such variants could lead to more powerful and resilient quantum anomaly
detection models capable of operating under practical constraints and noisy conditions. The flexibility of
the QAE framework makes it a promising candidate for future quantum-native cybersecurity solutions.



2.4. Power System Cyberattack Datasets

In the context of machine learning-based anomaly detection for power systems, the availability of
realistic and diverse datasets is essential for both training and evaluation. A widely adopted dataset
in this domain was developed through a collaboration between Mississippi State University and Oak
Ridge National Laboratory. This dataset [14] provides a rich collection of simulated events designed to
reflect a broad spectrum of real-world scenarios, including both natural system behaviors and malicious
cyberattacks.

The dataset models a simplified yet representative power grid infrastructure, comprising key com-
ponents such as generators, transmission lines, circuit breakers, and Intelligent Electronic Devices
(IEDs). These IEDs are responsible for controlling breakers through distance protection schemes and
are susceptible to both valid operational commands and malicious interference.

The dataset encompasses 37 distinct scenarios, grouped into three main categories: natural distur-
bances, normal system operation, and cyber-induced attack events. Attack types include remote tripping
command injection, relay setting manipulation, and false data injection—each simulating adversarial
strategies aimed at compromising the stability of the power system.

To support various machine learning tasks, the original data was processed into multiple formats and
classification schemes, including binary, three-class, and multiclass versions. This structure facilitates
the development and benchmarking of detection algorithms under different levels of granularity and
complexity, making it a valuable resource for evaluating quantum and classical models in the smart
grid cybersecurity context.

3. State of the Art

3.1. Stacked Autoencoder-Based Deep Learning for Cyberattack Detection in Power
Control Systems

A work that inspired the quantum adaptation presented in this study is the framework proposed in [9].
This work introduces a deep learning architecture specifically designed to detect cyberattacks in electric
power control systems by distinguishing malicious interventions from naturally occurring system
faults.

The model is structured around two sparse autoencoders (SAEs), each integrated with a specific type
of neural network to capture different aspects of the data: a CNN and a RNN. This design enables the
system to learn both spatial dependencies arising from sensor correlations, and temporal dependencies
arising from events occurring over time.

The first component, referred to as CNN-SAE, uses convolutional layers within the encoder-decoder
structure to learn spatial patterns from input data arranged as a two-dimensional matrix, emulating the
layout of an image. This approach facilitates the detection of spatial anomalies across multiple sensor
readings or measurement types.

The second component, RNN-SAE, operates on the latent representation generated by the CNN-SAE.
It leverages a recurrent structure in both encoding and decoding phases to capture temporal correlations
across sequential observations. This layered, stacked autoencoder architecture allows the model to
progressively refine its internal feature representation, enabling the detection of subtle and sophisticated
attack patterns.

The final output of the stacked model is passed through a Softmax classification layer, which produces
a prediction indicating the presence or absence of a cyberattack. One of the key advantages of this
framework is its ability to learn directly from raw monitoring data, without the need for manual feature
engineering or domain-specific preprocessing. This makes it applicable to a wide range of industrial
control systems, provided that a sufficient volume of time-series data is available.

The success of this approach in detecting complex attacks in critical infrastructure motivated the
exploration of a quantum-native counterpart. By adopting a similar architectural principle, stacked
autoencoders enhanced with convolutional and recurrent mechanisms, this work aims to investigate



the feasibility and potential advantages of implementing such a model using quantum computing
components.

3.2. Related Work on Quantum Autoencoders for Anomaly Detection

Recent years have seen increasing interest in the application of quantum autoencoders for anomaly
detection across a variety of domains. These models leverage the unique properties of quantum
computing, such as high-dimensional feature representation and entanglement, to improve the efficiency
and performance of machine learning tasks.

In [15], the authors explore the use of variational quantum circuits for anomaly detection for physics
purposes. Their quantum autoencoder demonstrates superior performance compared to classical models
in identifying anomalous physics events, while also showing that such results are reproducible on
current quantum hardware. This work highlights the potential of QAEs in high-energy physics for
learning complex background distributions in a fully unsupervised manner.

In [8], quantum autoencoders are applied to time series anomaly detection. The authors evaluate
performance across multiple ansätze and show that quantum models outperform classical autoencoders
while using significantly fewer parameters and training steps. This reinforces the hypothesis that QAEs
can be more efficient than classical models, even on sequential data.

A hybrid approach is presented in [16], where a classical autoencoder is augmented with a
parametrized quantum circuit (PQC) inserted into the bottleneck layer. Applied to standard benchmark
datasets and a predictive maintenance use case in gas power plants, the hybrid model improves precision,
recall, and F1-score. This demonstrates how embedding quantum modules into classical pipelines can
enhance anomaly detection performance in industrial settings.

In the domain of network security, [17] proposes three quantum anomaly detection frameworks
by integrating QAEs with quantum classifiers such as quantum SVM, random forest, and k-nearest
neighbor. These hybrid models are tested on benchmark IoT and computer network datasets and
demonstrate promising detection capabilities, especially the QAE-kNN combination, which achieves
the highest accuracy.

Another notable application is credit card fraud detection, as presented in [18]. The proposed QAE-
based fraud detection model (QAE-FD) achieves high performance metrics, including a G-mean of 0.946
and an AUC of 0.947. The study shows that quantum autoencoders can effectively address the challenge
of imbalanced datasets and offer efficient, scalable solutions for real-time detection.

While all these works underline the strong potential of quantum autoencoders in anomaly detection,
it is important to note that none of them focus on the domain of power systems or smart grids. To the
best of our knowledge, no existing work has applied QAEs to cyberattack detection in interconnected
power control environments, despite the critical importance of securing such infrastructure. The present
study fills this gap by proposing and evaluating a quantum autoencoder-based architecture specifically
tailored for anomaly detection in smart grid systems. Inspired by a classical deep learning framework
based on stacked convolutional and recurrent autoencoders, this work investigates the advantages of
its quantum counterpart using real-world power system attack datasets.

4. Methodology

The proposed system is designed as a structured pipeline composed of multiple stages, each fulfilling a
specific role within the learning and classification process. The goal is to replicate and evaluate, in a
quantum context, the structure presented in prior reference implementations [9] and to analyze the
results comparatively to a classic version implementation. The pipeline consists of the following phases:

• Data preprocessing
• A quantum autoencoder (QAE) with a quantum convolutional neural network (QCNN) at its core
• A second QAE using a quantum recurrent neural network (QRNN)
• A classifier for supervised learning and output generation



Throughout the experimentation, a fine-tuning process was performed on the main hyperparameters,
including:

• learning rate (lr)
• batch size (batch_size)
• number of qubits used for encoding (n_qubits)
• number of quantum layers (n_layers)

The following metrics were recorded to evaluate performance:
• final training and test accuracy (final_train_acc, final_val_acc)
• final training and test loss (final_train_loss, final_val_loss)

These metrics were stored for analysis and comparison between quantum and classical classifiers
under optimized conditions.

4.1. Data Preprocessing

The preprocessing stage prepares the data for training and testing within the quantum learning pipeline.
A random sample of 2,000 examples was selected from the dataset to balance computational efficiency
and data variability. Columns exhibiting highly skewed distributions or extremely large values were
log-transformed using the log1p function to stabilize the distributions. Outliers were clipped at an
upper threshold, and missing values were imputed using the mean of each column.

The dataset was split into training and test sets using an 80/20 ratio. A StandardScaler was
applied to center and normalize the data, ensuring zero mean and unit variance across all features. This
transformation improves convergence during training and enables compatibility with dimensionality
reduction techniques such as Principal Component Analysis (PCA).

PCA was used to reduce dataset dimensionality while preserving at least 95% of total variance. After
PCA, a MinMaxScaler normalized the resulting features into the [0, 1] interval, preparing them for
the quantum circuits. The transformed data was divided into fixed-size blocks of 4 features.

4.2. Quantum Autoencoder with QCNN

The first QAE utilizes a quantum convolutional neural network (QCNN) as its encoder. The QCNN
transforms each input block into a quantum feature representation. A quantum simulator was instan-
tiated with 4 qubits, and a 6-layer variational quantum circuit was constructed. Each layer applied
parameterized rotations to each qubit, followed by entangling operations modeled through random
layers composed of rotation gates and CNOT gates.

The encoding process involved mapping classical values to quantum states using RY rotations,
followed by entangling layers. At the output, each qubit was measured via the Pauli-Z operator, yielding
four numerical values representing the quantum-transformed features.

A decoder stage was implemented symbolically by applying a transformation that inverts the encoded
outputs (i.e., 1−measurement), completing the QAE reconstruction phase. The entire dataset was passed
through the encoder-decoder pair, generating a set of quantum feature matrices used in subsequent
stages.

4.3. Quantum Autoencoder with QRNN

The second QAE adopts a quantum recurrent neural network (QRNN) architecture to capture depen-
dencies between adjacent qubits, analogously to how classical RNNs handle sequential data. Each
input block was encoded using AngleEmbedding with RY rotations, initializing the quantum state for
processing.

The encoder then applied three types of parameterized single-qubit rotations (RX, RY, RZ) on each
qubit, followed by entangling only adjacent qubits via CNOT gates. This localized entanglement mimics
the recurrence in sequential learning. The decoder, mirroring the encoder, applied another set of RX,
RY, and RZ rotations to complete the reconstruction of the data.



Figure 1: Test accuracy and loss plot comparing the proposed hybrid model to a fully classical classifier

4.4. Classifier and Training

After the autoencoding stages, the reconstructed outputs were used as input to a classifier. Two distinct
models were introduced:

• A hybrid quantum-classical classifier, incorporating the stacked QAEs
• A fully classical classifier used as a baseline for comparison

A unified train_model function was implemented to encapsulate training, test, and performance
tracking. The models were trained over multiple epochs using mini-batch gradient descent. For quantum
models, the learning rate was set to 1× 10−3, while for classical models it was set to 1× 10−2.

The training loss included CrossEntropyLoss for classification, and additionally, Mean Squared
Error (MSELoss) for quantum models to measure reconstruction error within the QAE. Each epoch
consisted of random shuffling of training data, forward pass, loss calculation, backpropagation, and
parameter update using the Adam optimizer.

4.5. Performance Evaluation and Comparison

Upon completion of training, both models were evaluated based on test accuracy and loss. The results
indicate that both approaches converged to a similar accuracy of approximately 72%. Despite the
simplicity of the input—only four features and a relatively small sample size—the quantum-enhanced
model demonstrated encouraging behaviour, showing greater stability in the later epochs and a steady
improvement trend.

Visual analysis was performed through two comparative plots in Figure 1:

• A test accuracy plot showing performance trends across epochs
• A test loss plot reflecting optimization behaviour and robustness

Regarding test loss, the quantum model exhibited a consistently decreasing profile, while the classical
model, although initially lower, showed signs of instability and degradation over time. These observa-
tions suggest that the quantum model may be more robust under the current experimental conditions.
Nevertheless, further experimentation with larger datasets, more complex feature sets, and extended
training is required to draw definitive conclusions about its generalization capability.



5. Conclusion

This paper presents a novel approach for anomaly detection in smart grid systems based on stacked
quantum autoencoders, integrating quantum convolutional and recurrent neural network components.
Our results demonstrate that quantum-enhanced models can achieve performance comparable to
or better than classical baselines, despite the use of reduced feature sets and limited training data.
These findings support the feasibility of leveraging quantum representations to capture meaningful
spatial-temporal dependencies in cyber-physical systems.

While the results are promising, this work serves primarily as a proof of concept. Additional
experimentation on larger and more complex datasets, exploration of alternative quantum circuit
designs, and real-device testing are required to further assess the advantages of quantum approaches in
operational settings. Nevertheless, this study highlights the potential of quantum machine learning as a
valuable tool for enhancing the robustness and adaptability of cybersecurity mechanisms in modern
power infrastructures.
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