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Abstract

A small but growing body of work has shown that machine learning models which better align with human vision
have also exhibited higher robustness to adversarial examples, raising the question: can human-like perception
make models more secure? If true generally, such mechanisms would offer new avenues toward robustness. In
this work, we conduct a large-scale empirical analysis to systematically investigate the relationship between
representational alignment and adversarial robustness. We evaluate 144 models spanning diverse architectures
and training paradigms, measuring their neural and behavioral alignment and engineering task performance
across 105 benchmarks as well as their adversarial robustness via AutoAttack. Our findings reveal that while
average alignment and robustness exhibit a weak overall correlation, specific alignment benchmarks serve as
strong predictors of adversarial robustness, particularly those that measure selectivity toward texture or shape.
These results suggest that different forms of alignment play distinct roles in model robustness, motivating further
investigation into how alignment-driven approaches can be leveraged to build more secure and perceptually-
grounded vision models.

1. Introduction

Representational alignment—how closely a model resembles biological vision—has been studied exten-
sively with the goal of measuring, bridging, or increasing alignment in machine learning models [1].
Recent observations [2, 3] suggest that alignment may have implications beyond neuroscience: models
that are more aligned with human perception have also exhibited increased robustness to adversarial
examples—inputs with near-imperceptible perturbations that induce model misclassification— hinting
at a deeper connection between alignment and security.

However, the relationship between representational alignment and adversarial robustness remains
poorly understood. While the former seeks to align models with human cognition, adversarial examples
in security highlight a fundamental misalignment: imperceptible perturbations can drastically degrade
model accuracy while leaving human perception unaffected. Prior robustness techniques, such as adver-
sarial training [4], are computationally expensive and potentially vulnerable to new attack strategies.
Although recent work has suggested links between perceptual alignment and robustness, especially
in models incorporating biological priors [2, 3], a broad and systematic evaluation of this relationship
across diverse models and alignment benchmarks is still lacking. A fundamental question remains: do
these objectives complement each other, leading to better-aligned and more robust models, or do they
introduce conflicting trade-offs?

In this work, we investigate the relationship between human alignment and robustness to adversarial
examples in vision models through a diverse, large-scale empirical analysis. In our analysis, we study
144 models across different architectures and training schemes, and measure their alignment across 105
different benchmarks on neural, behavioral, and engineering tasks via the BrainScore library [5]. We
then evaluate the robustness of these models using AutoAttack [6], a state-of-the-art ensemble attack.

Our analysis reveals that while robustness is only weakly correlated with average vision alignment,
specific alignment benchmarks are strongly predictive of adversarial robustness. We also find that models
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with similar alignment profiles exhibit similar robustness. Together, these findings suggest that different
forms of alignment contribute differently to robustness, highlighting the value of alignment-driven
approaches for improving security in vision systems.

« Average alignment, particularly for behavioral benchmarks, poorly predicts robustness (explaining
6% of variance), demonstrating that not all methods of alignment increase robustness.

+ Individual benchmarks are much better indicators of robust accuracy, but the specific benchmark
matters; we found instances of benchmarks that contributed positively and ones that contributed
negatively to robustness in every alignment category.

+ The top benchmarks that are most indicative of robust accuracy show clear trends that inform
the factors leading to higher robustness: (1) robust models process texture information specifically
more similarly to humans than non-robust models to and (2) models’ ability to recognize objects
without global structures intact actually hurts their robustness.

» t-SNE visualizations reveal that robustness is structured in alignment space, with similar models
forming robustness-consistent clusters and demonstrating that alignment on certain benchmarks
is a good indicator of robustness.

In summary, we uncover specific features of alignment that closely tie with model robustness and
show that increasing alignment on these benchmarks offers a new avenue for building more robust and
human-aligned models.

2. Background

2.1. Representational Alignment

Representational alignment studies the extent to which internal representations of machine learning
models correspond to human cognitive processes. Early studies found that deep neural networks
(DNN5s) trained on large-scale image datasets develop hierarchical feature representations similar to
those observed in the primate ventral stream, particularly in high-level visual areas like the inferior
temporal (IT) cortex [7, 5]. This led to efforts to quantify the alignment between artificial and biological
vision, using techniques such as Representational Similarity Analysis (RSA) [8] and Centered Kernel
Alignment (CKA) [9]. To improve alignment, researchers have proposed strategies that incorporate
cognitive constraints or psychological priors into model architectures [2]. Supervised fine-tuning with
human-annotated datasets [10] ensures that learned representations align more closely with human-
understandable features. Furthermore, novel techniques [11, 3, 12] have been developed to encourage
similarity between model activations and human neural responses as recorded through fMRI and EEG
experiments. In this study, we use a comprehensive set of neural, behavioral, and engineering alignment
metrics to quantify representational alignment.

2.2. Adversarial Examples

Although machine learning models have shown strong capabilities to achieve high accuracy in various
tasks [13, 10, 14, 15], they remain vulnerable to adversarial examples [6, 4, 16, 17, 18]. Adversarial
examples are specially crafted inputs that contain perturbations which are imperceptible to humans, yet
can significantly decrease model accuracy. In computer vision systems, there have been many studies
on developing attack algorithms, such as FGSM [17], PGD [4], and AutoAttack [6]. These methods aim
to maximize model’s loss subject to constraints of perturbations defined by certain /,-norms:

Tady = argmaxs <. L(z +6,y)

where = and y represent the original image and its predicted label, respectively, d is the perturbation
to solve for, and L is the model’s loss function. The perturbation constraint € is measured through an



{p-norm—most commonly £,. While many works have historically evaluated the robustness of their
model through PGD [4], it has been shown that “robust” models can often suffer from gradient masking,
causing gradient-based attacks like PGD to fail [19], and leading to a sense of overestimated robustness.
To overcome this, multiple attacks, including both white- and black-box attacks should be used [20].
Thus, the AutoAttack ensemble [6] has become the de-facto standard for evaluating robustness.

3. Methods

This section details how we measure the alignment and robustness of machine learning models with the
goal of assessing if more human-like vision models are also more resilient to security vulnerabilities.

3.1. Alignment.

To measure alignment and download candidate models, we leverage the BrainScore [5] library. Brain-
Score provides a standardized framework for evaluating model similarity to biological vision through
a set of neural, behavioral, and engineering benchmarks, supplying 106 benchmarks in total. These
benchmarks quantify how closely a model’s internal representations and outputs correspond to neuro-
physiological recordings, human psychophysical behavior, and performance on engineered vision tasks.
Neural alignment is measured by comparing activations from DNNs to neural recordings from primate
visual cortex regions (e.g., V1, V2, V4, and IT), using similarity metrics like Representational Similarity
Analysis (RSA) [8]. Behavioral alignment assesses whether models replicate human psycho-physical
responses in object recognition and perturbation tests, while engineering alignment evaluates model
robustness to controlled distortions, such as contrast reductions, or performance on out-of-distribution
data. We use 105 benchmarks by discarding one of them, which has NaN value for all the selected
models.

In total, the BrainScore library has documented benchmark scores for 434 models. Out of those,
there are 240 models available in their registry (the remaining models were either submitted privately
or have been deprecated). From the 240 models in the registry, we further removed an additional 89
models that were either incompatible with ImageNet (e.g., do not output 1000 classes or expect video
streams) or could not be run on RobustBench due to gradient masking. After this, we had to discard an
additional 7 models, which represented all the VOne class models [2] because they were not able to
run on AutoAttack due to gradient alteration or masking, suggesting that previous results finding that
VOne models are more robust to adversarial examples could have been due to overestimated robustness
and highlighting the importance of evaluating robustness under comprehensive attack strategies. After
this filtering process, we were left with 144 models for our evaluation.

Model diversity is critical for evaluating the generalization of alignment-robustness relationships.
Thus, the 144 models selected for our evaluation are representative by covering a broad spectrum of
architectures and training recipes. The majority of architectures are convolutional neural networks
(CNNs) [21] such as various ResNet [15] and VGG variants [22]. We also include more recent architec-
tural designs such as Vision Transformers (ViTs) [10], which uses self-attention mechanisms to capture
global dependencies in images, its variants [23], and hybrid models [13, 24] (i.e., a combination of CNNs
and ViTs). This architectural diversity is complemented by models trained with different strategies such
as standard supervised learning and self-supervised learning (e.g., contrastive learning [25]). Notably,
the evaluated models also include those specifically designed or trained with properties relevant to the
study’s central hypothesis: some models have undergone adversarial training [4], which improves ro-
bustness against adversarial examples, while others use mechanisms to emphasize shape bias [26, 27, 28],
shifting model reliance from texture to shape information. This design has been shown to be more
aligned with human perception. The comprehensive model set allows for a thorough exploration of how
architectural design and training methods impact the relationship between representational alignment
and adversarial robustness.



3.2. Robustness.

To evaluate the robustness of our models, we use AutoAttack [6, 29], which serves as the standard for
evaluating the robustness of neural networks due to its strong attack performance and fully automated
parameter-free design. AutoAttack contains 4 attacks: APGD-CE, APGD-DLR, FAB, and Square Attack.
By evaluating on AutoAttack, we are not only evaluating on the most performant attacks, but also
integrating in both white-box attacks and black-box attacks which has been recommended in previous
works to combat reporting overestimated robustness due to gradient masking or obfuscation [16].

To better understand how the relationship between adversarial robustness and alignment changes
as attacks change, we evaluate the /., robustness of our models at three different epsilon levels:
€= {%, %, %5} to represent adversaries at different capability levels and small, medium, and large
image distortion levels. While these values are typically lower than what would be benchmarked on
platforms such as RobustBench [29], we choose these values with the goal of having a wide distribution
of robust accuracies to identify separability between models, rather than the goal of bringing the model

down to 0% accuracy as is typically done.

4. Results

In this work, we hypothesize that there is a relationship between model robustness and alignment, due
to the inherent similarity of the goals in each of these spaces. Here, we focus on answering the question
are more aligned machine learning models more robust to adversarial examples?

To address this, we conduct a series of experiments. We use the BrainScore library v2.2.4 to measure
alignment [5] and load models. Details on models evaluated can be found in section 3. Once these
models have been loaded and their alignment has been measured across the 105 alignment benchmarks,
we evaluate their robustness using AutoAttack [6] from the TorchAttacks [30] library v3.5.1. The
ImageNet [31] validation set is used for clean inputs to the model and serves as the starting point to
generate adversarial examples. All experiments are run across 12 A100 GPUs with 40 GB of VRAM
and CUDA version 11.1 or greater. Our code is available for download at https://github.com/kyangl/
alignment-security.

4.1. Average Alignment

We first investigate how well different classes of alignment—neural alignment, behavioral alignment,
and engineering task performance—predict model robustness. For each class, we take the average score
across all the benchmarks, giving us a single score for each model in the class. While many works
have typically studied average vision alignment overall (i.e., the average of all the benchmarks across
all classes), it has been shown that this can overemphasize behavioral alignment at the cost of neural
alignment [32].

We then assessed each model’s robust accuracy against AutoAttack at three different values of epsilon
e = {0.001,0.00196,0.00392}, which corresponds to {322, %2 L} respectively. In Figure 1, we
analyze the average score for neural alignment, behavioral alignment, and engineering task performance

1 ® €=0.001 (R?=0.094, p=0.0008) e €=0.001 (R*=0.194, p=0.0000)
e €=0.00196 (R?=0.040, p=0.0315) g

.
> 054 €=0.00392 (R?=0.029, p=0.0698) ) : © > 0.5+ €=0.00392 (R?=0.000, p=0.8840)
o, b

e €=0.001 (R?=0.057, p=0.0087)

o
o

e €=0.00196 (R?=0.002, p=0.6597) 1 o €=0.00196 (R?=0.074, p=0.0027) L}
€=0.00392 (R?=0.023, p=0.0988)

>

Robust Accuracy
o © o o o
[N

o

X 8

%2 r 2 Bl Tt REE () 3
0.0 1 ® 0 (0@ 095981 EINTNIIGIIUS & @A S

010 015 020 025 030 035 040 0.1 0.2 0.3 0.4 0.5
Neural Vision Alignment Score Behavior Vision Alignment Score Engineering Vision Alignment Score

o
o

(a) Neural Alignment (b) Behavioral Alignment (c) Engineering Task Performance

Figure 1: Average vision alignment score vs robust accuracy on neural, behavioral, and engineering benchmarks.
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Figure 2: Heatmap of each of the BrainScore benchmarks, ordered and separated (black bars) by area of
alignment (neural, behavioral, engineering) vs the robust accuracy. Each cell represents the correlation between
a benchmark and the robust accuracy across models.

on the x-axis and the robust accuracy on the y-axis. Each dot represents a model, and the 3 colors
correspond to the model’s robust accuracy at the three different epsilon values. We perform linear fits
for each epsilon value and report the statistical significance.

We find statistically significant (p < 0.05) correlations for: the two lowest € values for neural
alignment (explaining up to 9% of variance), ¢ = 0.001 for behavioral alignment (6% of variance),
and at the two lowest € values for engineering task performance (up to 19% of variance). Overall, the
relatively low R? values, coupled with the difficulty of getting statistically significant correlations at
higher epsilon values, suggest that average alignment scores are, at best, a weak indicator of robust
accuracy. This counter-intuitive finding leads us to study further on individual benchmarks.

4.2. Individual Benchmarks

Motivated by the previous experiment where we find that average alignment is weakly correlated with
robust accuracy, we hypothesize that averaging scores across different benchmarks may obscure that
some individual benchmarks are stronger predictors of robust accuracy than others. Here, certain
alignment benchmarks could be more indicative of robust accuracy than others.

To examine this hypothesis, we collect all models’ scores on individual benchmarks for the three
classes (neural alignment, behavioral alignment, and engineering task performance) and compute the
correlation between each of these scores and robust accuracy at our three different e values. Figure 2
shows a heatmap of the 105 different benchmarks on the x-axis and robust accuracy at three different ¢
values on the y-axis. In each cell, we report the Spearman correlation coefficient between the selected
benchmark score and robust accuracy across models.

From this figure, we find multiple interesting trends. First, we see a wide range of correlations
between different benchmarks, confirming our hypothesis that not every current alignment metric is a
good indicator of robust accuracy. Additionally, we sometimes see significant changes to the correlation
of robust accuracy and a benchmark as the € value increases (and thus becomes a stronger attack). These
changes appear to cluster by class of alignment. Roughly speaking, the neural alignment benchmarks
(shown from the first to the second black bar) seem highly dependent on the task, with benchmarks in
this category having correlations at both ends of the spectrum. The behavioral benchmarks (shown from
the second to third black bars) tend to be, surprisingly, often negatively correlated with robust accuracy
at mid and high € values, and the correlation mostly decreases as € increases. Finally, engineering task



performance (shown from the third black bar to the end of the figure) tends to have more stable (and
more positive) correlations as € increases.

Furthermore, we identified specific benchmarks that are strongly correlated with robust accuracy.
Interestingly, many of these benchmarks that exhibit strong positive correlations with robust accuracy
even at high epsilon values measure, to some degree, a model’s selectivity towards texture information,
meaning that models which are more robust to adversarial examples tend to process texture information
more similarly to humans. Below, we highlight and discuss the benchmarks we found to be most strongly
(positive or negative) correlated with robust accuracy.

In the neural category, we found the correlation between robust accuracy and alignment to be highly
dependent on the area of visual processing. At small to medium values of €, correlations are strongest
in benchmarks that measure alignment to V4 and IT areas of the visual system. At later values of
€, which represents a stronger attack, FreemanZiemba2013.V2-pls which measures responses to
naturalistic texture stimuli in V2 [33], was the metric with the strongest positive correlation. This
suggests that processing texture more similarly to biological vision systems in later visual areas is even
more important than early visual areas to yield robust models. Interestingly, we found that metrics
utilizing fMRI data were typically the most negatively correlated.

In the behavioral category, we see many strong positive correlations at low values of €. The sets of
benchmarks that stand out the most are the BMD and Baker [34] groups, which measure the ability
to recognize objects by silhouettes when the shape has been distorted. In Baker and Elder [34], it was
found that humans are less able to recognize objects when shape information is distorted than neural
networks are, demonstrating that machine learning models have a certain degree of insensitivity to
changes in shape information and thus don’t rely as heavily on it as humans do for object recognition.
This finding further supports the notion that neural networks may rely more on texture information
rather than shape information [26]. The strong positive relationship between these benchmarks and
performance on adversarial examples suggests that models’ ability to recognize objects without spatial
relationships actually hurts their overall robustness.

Finally, on engineering tasks, we see strong positive correlations across nearly all benchmarks with
low €. However, these correlations decrease as € increases for most benchmarks. The benchmarks
that remain most strongly positively correlated with high e are both related to bias towards shape
over texture information. First is the Geirhos2021cueconflict-top1 benchmark [26], which
measures the probability of a model classifying an object using shape information rather than texture
via texture-shape conflicted images. The other is the set of benchmarks from [28]: Hermann 2020 cue
conflict shape _bias and Hermann2020cueconflictshape_match, which similarly measures
the probability of a model classifying an object using shape information and the percentage of the times
the model classifies according to the shape class, rather than texture or other classes. In all, these results
show that when models are able to classify inputs according to their shape information, as humans do,
rather than texture information, they will be more robust to adversarial examples.

Across all categories of visual alignment, we find that models which exhibit a stronger reliance on
shape information and robust processing of texture cues (i.e., more aligned to how humans process
information) tend to be more resilient to adversarial examples. These results suggest that increasing
alignment towards preferring and processing high-level visual features, particularly textures, in the way
biological vision systems do, serves as a fruitful direction for creating more robust and more aligned
models.

4.3. Robustness in Alignment Space

Building on our finding that certain alignment benchmarks (especially those measuring texture sen-
sitivity) are strongly correlated with adversarial robustness, we next explore whether models with
similar alignment profiles also exhibit similar levels of robust accuracy. The goal of this analysis is to
see if model similarity on alignment benchmarks is predictive of model performance against adversarial
examples, which would support the hypothesis that aligning models under certain metrics results in
better robustness.
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Figure 3: t-SNE plot of principal components from benchmark features for each model colored by the model’s
robust accuracy.

To compare the similarity of model performance across benchmarks, we utilize t-SNE to reduce the
dimensions of the results and project them into a subspace that can be visualized. In Figure 3, each point
represents one of our 144 models, colored by its robust accuracy under ¢, adversarial perturbations
with € = 0.001. We observe that the models are distributed across the embedding space with clustering
patterns that are unique to their robustness.

Analyzing the non-robust models (blue dots), we find that while some cluster in the upper left,
many are scattered broadly throughout the space. This dispersion suggests that poor robustness is not
associated with a single alignment profile. Rather, there are many different ways in which models can
fail to defend against adversarial examples. That is, vulnerability appears to be distributed across a range
of misaligned configurations.

In contrast, the robust models (red dots) form a tight, well-separated cluster. These models not only
share a similar alignment profile, but their separation from the rest of the models suggests that robust
behavior is tied to a specific region of alignment space. This strongly supports the view that certain
alignment characteristics are predictive of robustness.

These findings offer a new perspective on adversarial robustness; rather than unique quirks of the
model resulting in vulnerability to adversarial examples, there are specific, isolated properties that allow
models to more robustly process inputs. In other words, it’s not that specific misalignment will lead to
model vulnerability, but rather specific alignment will lead to robustness. Furthermore, these properties
can be measured in alignment metrics, and thus optimized for in order to build more robust models.

5. Related Work

There has been substantial progress in bridging the representational differences between humans and
machine learning models over the last few years. Geirhos et al. [35] show that many of the high-
performance models match or exceed human feedforward performance on OOD datasets. Several works
suggest that more human-aligned model architectures may also be more robust. Dapello et al. [2] design
the biologically inspired VOne block to simulate V1 processing, improving robustness to adversarial and
common corruptions. Li et al. [3] regularize models based on neural recordings from mice to increase
robustness and alignment.

Furthermore, Subramanian et al. [36] show that differences in spatial frequency processing explain
both shape bias and adversarial vulnerability. Models with higher human alignment show improved
performance on datasets like ImageNet-A [37]. Other works highlight that models tend to rely on
texture over shape [26, 28], a bias that increases susceptibility to natural adversarial samples [38, 39].

Our work expands on these findings with a large-scale empirical study across diverse architectures and



benchmarks. Unlike prior work that focuses on specific models or alignment methods, we systematically
analyze how different forms of alignment relate to adversarial robustness, discovering meaningful
connections between model perception and security.
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