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Abstract

As cybersecurity threats grow in scale and sophistication, traditional defenses increasingly struggle to detect
and counter them. Recent work applies reinforcement learning (RL) to develop adaptive defensive agents, but
challenges remain, particularly in how agents learn, the environments used, and the strategies they adopt. These
issues are amplified in multi-agent settings, where coordination becomes especially complex. This paper presents
an empirical analysis of collaborative RL for cybersecurity defense, focusing on environment models, RL methods,
and agent policies. Specifically, it compares several multi-agent RL algorithms in the context of CAGE Challenge 4
to identify effective defense configurations. The study also evaluates the learned policies to assess their real-world
applicability and highlight gaps between agent behavior and practical defense strategies.

1. Introduction

As cybersecurity threats grow in volume and complexity, traditional detection and defense methods face
increasing challenges. Advances in machine learning, especially deep learning and reinforcement learn-
ing, have improved cybersecurity practices [1]. RL, in particular, has gained attention for automating
defense mechanisms and testing strategies [2].

Given this progress, it is crucial to explore how reinforcement learning can be effectively applied
to cybersecurity, focusing on methods with real-world applicability. This is especially important in
complex environments with multiple agents collaborating to defend a system. This study addresses two
key research questions in the context of CAGE Challenge':

« RQ.1: Which reinforcement learning methods are the most effective for intrusion prevention in
the chosen baseline environment?

« RQ.2: How can collaborative reinforcement learning policies be extracted and applied to defend
against intrusion in a selected environment?

2. Background

2.1. Multi-Agent Reinforcement Learning

This section discusses Multi-Agent Reinforcement Learning (MARL) as per Albrecht et al. [3]. MARL
offers robustness and scalability since the system can handle agent failures and new agents can be easily
added [4]. In intrusion prevention, a multi-agent setup naturally accommodates multiple attackers and
defenders, thereby enhancing simulation realism.

MARL configurations include fully cooperative agents working toward a shared reward, competi-
tive agents opposing each other, or mixed settings where groups cooperate internally but compete
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Table 1
Overview of the multi-agent reinforcement learning methods used in this study, highlighting key differences in
training paradigms, coordination mechanisms, and architecture.

IPPO MAPPO QMIX MADDPG
On-policy, On-policy, Off-policy, Off-policy,
Policy-based  Policy-based  Value-based Actor-Critic

Method type

Framework DTDE CTDE CTDE CTDE
Collaboration Low High High High
Scalability High Low Low Low

externally. Training frameworks in MARL range from Decentralized Training and Decentralized Ex-
ecution (DTDE), where each agent learns independently, to centralized approaches that use global
information. These can be a fully Centralized Training and Centralized Execution (CTCE) model with
a single policy controlling all agents, or a hybrid Centralized Training and Decentralized Execution
(CTDE) framework, which trains individual policies together for coordinated, decentralized action. Key
challenges in MARL stem from these designs, including the credit assignment problem, non-stationarity
in DTDE, scalability issues in CTCE, and achieving robust coordination in CTDE.

2.1.1. Dec-POMDP

The Markov Decision Process (MDP) provides a formal framework for single-agent decision-making
in fully observable environments. This is extended to the Partially Observable Markov Decision Process
(POMDP) when the agent’s view is incomplete. For multi-agent systems, particularly in the fully
cooperative setting where agents work towards a common goal, the Decentralized POMDP (Dec-POMDP)
offers a suitable formalization. A Dec-POMDP models a team of agents, each receiving only a local
observation of the environment and acting decentrally. This inherent challenge of coordinating with
limited information is central to our intrusion prevention scenario. More details on our implementation
are provided in Section 2.3.

2.2. Reinforcement Learning Methods

Our study evaluates a selection of representative MARL algorithms. As a DTDE baseline, we employ
Independent PPO (IPPO) [5], where each agent learns its policy entirely separately. The majority of our
analysis focuses on the CTDE framework, for which we examine both policy-based and value-based
methods. For policy-based CTDE, we include: MAPPO [6], which uses a single centralized critic to train
decentralized policies, and MADDPG [7], a deterministic actor-critic method where each agent’s policy
is trained using a dedicated critic that has access to global information. For value-based CTDE, we use
QMIX [8], which learns a monotonic joint action-value function through a central mixing network.
Table 1 highlights the key differences among these methods.

2.3. CAGE Challenge 4 and CybORG

CAGE Challenge 4 features a network divided into four subnetworks connected via the internet, as
shown in Figure 1. These include two deployed networks (each with restricted and operational zones), a
Headquarters network with three security zones, and a contractor network used by red team attackers.
Server, host, and service distributions across zones are randomized. Hosts contain information ranging
from basic system details to session credentials, which red agents can exploit to gain user or root
access. Each of the four blue agents defends one subnetwork, and the fifth agent (Agent 5) defends
three subnetworks.

The challenge proceeds in episodes, and each episode is non-uniform. Episodes progress through
phases that prioritize missions in specific deployed networks, guiding agent actions accordingly. There
are three different phases with varying levels of priorities over the missions the agents can carry on:
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Figure 1: Implemented Network layout based on CybORG CAGE Challenge 4.

Phase 1, Phase 2A, and Phase 2B. In line with the CAGE Challenge 4 [9], we employ the CybORG
environment in our study. As with most multi-agent environments, CybORG models the challenge
scenario as a Dec-POMDP. In what follows, we will detail its components as outlined in Section 2.
Agents: In a multi-agent environment, Red and Blue team agents operate within the network summa-
rized previously. The Red Agent aims to disrupt availability by infecting hosts, while the Blue Agent
works to prevent this. Fach agent can perform a specific set of actions (> 80), such as Sleep or Restore
each of which take a certain number of (time) ‘ticks’ to execute—simple actions occur immediately,
while more complex ones take longer. One of the blue agents (agent 4) is special since it has an action
set of more than 200 actions.

One of the key features of CAGE Challenge 4 is the inclusion of green agents, representing standard
network users vulnerable to possible attacks, such as phishing, by red agents. Maintaining network
availability for these green agents is crucial, with penalties applied to blue agents if access to the
network by green agents is disrupted.

Lastly, the red agent is modeled as a Finite State Machine (FSM), with states representing host
interactions based on discovery and other offensive actions.

Rewards: As mentioned earlier, the rewards for the blue agent are based upon the network’s
availability and the quality of work performed by the green agents at any given time. To minimize
these disruptions, the blue agent begins with a reward of 0, which gradually decreases each time
the green agents are unable to perform their tasks or if there are any disruptions caused by the
red agents. Furthermore, Phase 2A focuses on maintaining operational activities for Zone A, while
Phase 2B pertains to maintaining operational activities for Zone B. Consequently, failure to ensure
service availability for these operational zones during their respective phases will result in significant
penalties for the blue agents. In summary, the blue agents can achieve a maximum reward of 0 if they
successfully prevent all red agent attacks proactively.

Observations: The observation space for agents is a key consideration in CAGE 4. At each time
step, agents receive observations that include the current mission phase, details about each observable



subnet (such as its state, communication policy, and any detected malicious activity), and 8-bit long
messages from other agents to support coordination. The observation space size varies by agent, as
those defending multiple subnets receive more information. Most agents have a flat observation space
of size 92, while agent 4, which oversees multiple subnets, has a space of size 210.

3. Methodology

3.1. Reinforcement Learning Methods

In our analysis, we employed various variants of RL algorithms that enhance the methods presented
in Section 2. In this section, we provide an overview of these methods in relation to the original RL
methods and the CybORG environment, as they are relevant to the experiments.

Global State Representation: Yu et al. [6] highlight inefficiencies in MAPPO’s standard global state
representation, which concatenates all agent observations. To reduce redundancy, they propose a
more compact method to combine message states and initial mission values. We adopt this approach
in our study, referring to it as C_MAPPO, which results in a global state that is approximately 20% smaller.

Exploration Strategy: For an alternative approach to the e-greedy exploration strategy commonly
used in QMIX, we considered the Boltzmann softmax action selection operator [10]. Unlike e-greedy,
whose exploration consists of selecting an action uniformly at random and can thus be suboptimal,
Boltzmann softmax assigns a weighted probability distribution to actions based on their Q-values
(expected cumulative reward of taking a joint action in the multi-agent setting), with the balance
between exploration and exploitation controlled by a temperature parameter 7. Higher values of
T increase exploration by making action probabilities more similar, while lower values emphasize
exploitation by favoring actions with higher Q-values (Q¢(a)) as can be seen from Equation 1. As a
result of the discussion of this study, we will refer to the QMIX implementation using the Boltzmann
softmax as B_QMIX.

Qela)/r

Cea e
Prioritized Experience Replay: Previously, we introduced QMIX and MADDPG as off-policy methods
for the CybORG use case, both of which rely on replay buffers. Instead of using standard uniform
sampling, we adopt Prioritized Experience Replay (PeR) as proposed by Schaul et al. [11], allowing
more informative transitions, based on Temporal-Difference (TD) error, to be sampled more often. To
prevent overfitting to high-TD transitions, prioritization (p;) is balanced using a formula (Equation 2)
with a tunable o parameter. New transitions are initially assigned the highest priority to ensure they
are sampled at least once. We refer to these modified implementations as PeR-QMIX and PeR-MADDPG
in the remainder of the paper.

Pr(a) = (1)

Py = 2

2k Pi
Hyperparameter search: Hyperparameter selection is critical for training RL agents, especially
in complex environments like CybORG. Full tuning is computationally costly—each training run
takes approximately 30 hours on an Intel Core i7-1065G7. However, the main bottleneck lies in the
environment steps rather than agent training itself. This can be mitigated using GPUs and parallelized
methods such as PPO. We focused on two key hyperparameters: the discount factor v and learning rate
Ir. Based on tuning with IPPO, the best values were v = 0.99 and Ir = 0.00025 (Table 2).

(2)



Table 2
Hyperparameter search performed on the CybORG environment with IPPO

Parameter Values
Discount Factor () [0.6, 0.9, 0.99]
Learning Rate (Ir) ~ [0.00025, 0.005, 0.01]

3.2. Recurrency in CybORG

A key enhancement to the methods discussed is adding recurrence to the network architecture. This is
especially useful in partially observable environments, such as CybORG, where actions have delayed
effects and temporal dependencies are crucial. We train on full episodes without truncation, so there
is no need to store hidden states mid-sequence. Hidden states are reset at the start of each episode,
keeping the buffer and algorithm logic unchanged.

We implemented recurrent versions of PPO variants and QMIX, using the R prefix (e.g., R_QMIX).
For the recurrent layers, we use LSTM for PPO-based methods and GRU for QMIX to compare both
architectures in the CybORG setting.

3.3. Messages

As detailed earlier, CybORG allows blue agents to send 8-bit messages to support coordination. We
designed three message types based on coordination theory, falling into two categories: action messages
and state messages. Action messages inform others of intended actions, helping reduce non-stationarity
due to delayed action effects. Each action is encoded in 8 bits. State messages share subnetwork status.
A 2-bit version signals the presence of malicious activity, while the 8-bit version provides counts of
infected processes and events (4 bits each). These strategies improve coordination without expanding
the observation space or sharing sensitive data, maintaining decentralized training and secure network
separation.

3.4. Rewards

A key challenge in MARL is attributing rewards when all agents share the same global reward. This
can make it difficult for agents to identify whether their actions directly influenced the outcome or if it
was due to others. Atrazhev et al. [12] emphasize that different reward structures can significantly
impact agent performance, especially in cooperative settings.

Individual Rewards: CybORG uses a shared global reward based on network-wide outcomes. We
propose an alternative reward system where each agent receives a reward based on its own actions
and the state of its assigned subnet, thereby keeping the total reward unchanged but distributing it
differently. Additionally, we introduce a hybrid reward combining both individual and scaled global
rewards. The scaling is proportional to the number of subnetworks controlled by each agent, balancing
local feedback with the overall network performance. This approach helps agents better understand
their contributions while maintaining coordination.

Intrinsic Rewards: Besides external rewards from the environment, intrinsic rewards encourage
exploration, which is especially useful in environments with sparse feedback. We incorporate the Never
Give Up (NGU) module [13], which combines two components:

« Episodic novelty: rewards agents for encountering states that differ from those seen earlier in
the current episode.

+ Life-long novelty: uses Random Network Distillation (RND) to reward states that remain novel
over the agent’s lifetime by measuring prediction errors against a fixed random network.

The combined intrinsic reward is added during training to promote exploration and improve learning.
Algorithms using NGU include the suffix in their names (e.g., IPPO_NGU).



4. Results

4.1. Results for RQ.1

With RQ.1, we aim to evaluate the performance of various RL methods in the baseline CybORG
environment. Agents were trained using different seeds, each over 500-step episodes, and results were
averaged across five runs. Figure 2 shows that PPO-based methods consistently outperform others,
with centralized versions starting stronger but converging similarly to decentralized ones. Recurrent
versions (Figure 3) perform slightly worse than non-recurrent ones.

Figure 4 compares different message types, revealing no significant benefit from adding messages to
the observation space; in fact, the 2 Bits message type performed worse. Figure 5 shows that QMIX
struggles to learn effectively, though improved exploration boosts the method slightly. Figure 6 presents
MAPPO with two global state representations, and Figure 7 shows that altering the reward structure
or adding the NGU module negatively impacts IPPO’s training, confirming the baseline reward setup
yields the best performance.
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Figure 2: Results obtained from using different reinforcement learning methods in the baseline CybORG
environment.
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Figure 3: Results obtained from using different reinforcement learning methods and their recurrent versions in
the baseline CybORG environment.
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Figure 4: Results obtained from using different reinforcement learning methods with different message versions
in the baseline CybORG environment.



-=2000
—— B_QMIX (+ 289.06)

PeR_QMIX (£ 505.03)
—3000 —— QMIX (+ 629.20)

|
IS
1=}
S
=)

Sum of Rewards
S 4
3 3
S 3
3 3

—7000

—8000

0 50 100 150 200 250 300 350 400
of 10-Epi Wind.

Figure 5: Results obtained from using QMIX with different buffer and exploration configurations in the baseline
CybORG environment.
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Figure 6: Results obtained from using MAPPO with a different global state representation in the baseline
CybORG environment with the inclusion of Action Messages.
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Figure 7: Impact of different reward structures on the performance of the IPPO algorithm. The y-axis shows
the mean episodic return, averaged over 5 independent runs. Shaded regions denote the standard deviation.
The results demonstrate that global reward signals (Global_reward and Global_NGU) lead to substantially
higher performance and faster convergence compared to the Hybrid and purely Individual reward schemes,
highlighting the critical role of a shared team objective in solving the credit assignment problem for this task.

4.2. Results for RQ.2

RQ.2 aims to analyze the policies learned by agents in the baseline CybORG environment and its
variations (Section 3). We focus on the most frequently selected actions by trained blue agents across
different methods and message implementations. The Sleep action was masked in order to allow for
clearer interpretation of agent behavior. We also evaluated blue agent reactions to red agent activity but
found no meaningful or consistent correlations. Similarly, policy patterns remained largely unchanged
across different environment modifications and reward schemes, indicating that agent behavior was
generally robust to these variations.



Figure 8 presents a simplified Finite State Machine (FSM) of the red agent’s behavior. It captures key
states in the red agent’s attack process, from discovering host IPs (states K/KD), identifying services
(S/SD), gaining user access (U/UD), to achieving root access (R/RD). Transitions between these states
reflect the actions of the red agent. While the figure provides a structural view of red agent behavior, it
primarily serves as context for interpreting the blue agent’s defensive responses across environments.

4.3. Discussion
4.3.1. Discussion for RQ.1

Our results show that PPO-based methods consistently outperform off-policy approaches like MAD-
DPG and QMIX in the CybORG environment. This is likely due to PPO’s on-policy learning and its
inherently stochastic policy, which promotes more effective exploration in partially observable and
dynamic environments. In contrast, the deterministic policies used by off-policy methods, even when
enhanced with strategies like epsilon-greedy or Gumbel-Softmax, often struggle, especially when
combined with large replay buffers that can introduce outdated data. While Boltzmann exploration
improved QMIX’s performance, it still performs worse than PPO.

Between PPO variants, IPPO slightly outperformed MAPPO, though both converged similarly. This
echoes findings from prior work [14][6], where a centralized critic, like in MAPPO, can introduce
unnecessary complexity without clear benefits. Our use of a new global state representation did not
improve MAPPO’s performance, nor did adding messages to the observation space; this suggests that
agents already learn effectively without this added complexity.

The use of recurrent layers, designed for partially observable environments, did not improve perfor-
mance in our setup, possibly due to implementation details or a lack of architectural enhancements.
Message passing also showed limited benefits; while richer message types, such as 8-bit and action-based
messages, helped early in training, they did not lead to long-term gains. This suggests that the messages
were either insufficiently useful to change learning trajectories, or that PPO agents quickly converged
to local optima, where added information was ineffective.

Finally, restructuring the reward scheme to use individual or hybrid rewards also failed to outperform
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Figure 8: Most chosen action of Blue Agent per each state of the network host as presented in the red agent
FSM where transitions between these states are labeled with the action numbers of the agents as described in
CybORG CAGE Challenge 4 [9]



the global reward baseline. Sparse feedback in individual rewards, especially for agents with fewer
responsibilities, hinders learning. Even normalization or hybrid schemes could not consistently improve
results, likely due to local maxima or a limited additional learning signal.

In summary, PPO’s simplicity, built-in exploration, and compatibility with the global reward setup
explain its strong performance. Attempts to improve learning through message passing, recurrent
models, or modified rewards did not yield clear benefits in this environment.

4.3.2. Discussion for RQ.2

We analyzed the learned defensive policies by examining the red agent’s finite state machine and the
response of blue agents in each state. Figure 8 reveals that blue agents tend to take more decisive
actions when the red agent has escalated access, such as deploying stronger defenses in user or root
shell states (U, R, RD), while preferring milder actions like Analyze or Deploy Decoy in earlier states
(K, S). However, suboptimal patterns persist. For instance, analysis actions are frequently used even
in critical RD states, suggesting a lack of appropriate threat response. Agents trained independently
showed more consistent per-state actions but still failed to develop truly effective policies. Overall,
while the FSM-based analysis reveals some alignment between threat level and response, the learned
policies still fall short of cybersecurity best practices.

5. Conclusions

In this paper, we evaluated different reinforcement learning methods for intrusion prevention in the
context of CAGE Challenge 4 and analyzed the resulting policies to assess the viability of collaborative
RL agents for real-world cybersecurity applications.

A key finding is the lack of a standardized multi-agent RL library with diverse implementations,
reflecting the relative immaturity of the field. Among the tested methods, those using stochastic policies
(PPO-based methods) for balancing exploration and exploitation performed best. However, they still fell
short of top-performing CAGE 4 solutions—highlighting the need for further tuning and configuration.
Policy analysis showed that current defensive strategies are not yet suitable for real-world deployment.
Extracting and evaluating learned policies remains challenging, though training agents directly in
CAGE 4 environment may improve results. The interpretation and validation of these policies against
operational standards is also challenging.

In conclusion, while collaborative reinforcement learning holds promise, it is still in its early stages
of development. Significant refinement is needed before such systems can reliably support or automate
network defense. Future research can focus on creating standard libraries for MARL, which would
facilitate easier comparison of methods and more reproducible results. Additionally, exploring combined
simulation and emulation-based environments could make experiments more realistic and help apply
learned policies more effectively in real-world cybersecurity.
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