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Abstract

Prompt injection attacks insert malicious instructions into large language model (LLM) input prompts to bypass
their safety measures and produce harmful output. While various defense techniques, such as data filtering and
prompt injection detection, have been proposed to protect LLMs, they primarily address natural language attacks.
When faced with unusual, unstructured, or non-natural language (Non-NL) prompt injection, these defenses
become ineffective, leaving LLMs vulnerable. In this paper, we present a methodology for evaluating LLMs’ ability
to handle Non-NL prompt injections, and also propose defense strategies against these attacks. To demonstrate
the usability of our methodology, we tested 14 common LLMs to evaluate their existing safety capabilities. Our
results showed a high attack success rate across all LLMs when faced with Non-NL prompt injection, ranging
from 0.38 to 0.52, which emphasizes the need for stronger defense measures.

1. Introduction

Large Language Models (LLMs) have become increasingly powerful and achieved remarkable advance-
ments in natural language processing. Due to their capabilities, they are widely utilized in various areas.
For instance, Microsoft utilizes GPT-4 for Bing Search [1]; OpenAlI applies GPT-4 for different tasks
like text processing, code interpretation, and product recommendations; and LLMs are deployed in
interactive contexts with direct engagement like ChatGPT. These broad capabilities of LLMs also raise
security concerns that create attack surfaces for malicious purposes. Prompt injection, also known as
jailbreak attack, has emerged as the main attack vector to bypass safeguards and elicit harmful content
from LLMs. Prompt injection refers to the case when an adversary manipulates the input (prompt) to a
language model, forcing it to ignore its guardrails, generate malicious content or misleading the model
to accomplish injected tasks. Several studies have examined prompt injection attacks against LLMs,
finding that these models can be easily misaligned through handcrafted inputs [2], obfuscation strings,
and code injection techniques [3] that bypass vendor-implemented safeguards.

Text-based prompt injections have become a common topic in both research and malicious purposes,
capable of creating jailbreaking prompts that mislead LLMs. Most attacks are crafted using Natural
Language (NL) prompt manipulation and semantic techniques to confuse LLMs while maintaining the
meaning of prompts. These can be Naive Attack [4], which concatenates target data with injected
instructions, or Cognitive Hacking [5], which leverages role prompting to create contexts that make
LLMs easier to control (e.g., “Do Anything Now,” Developer Mode). While existing countermeasures
and detection approaches aim to prevent LLMs from these attacks and detect compromised data, they
cannot fully protect models from exploitation [6, 7]. Recently, with the advancement of SOTA LLMs,
security alignment within models has improved, leading to increased development of prompt injection
detection models.

However, most existing defense approaches focus on NL prompts, whereas Non-Natural Language
(Non-NL) prompts represent another area that can be exploited. As LLMs’ capabilities expand, so does
their attack surface has created a new avenue for attackers. Non-NL prompt injection is defined as a
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text-based prompt injection attack that uses non-textual or structured inputs to influence a language
model’s behavior. These attacks focus on unusual text, containing strange characters, encoded text, or
gibberish text without meaning.

In this paper, we propose a methodology that addresses the current gaps in evaluating Non-NL prompt
injection attacks on LLMs'. This paper conducts a comprehensive evaluation of Non-NL prompts. We
have created a dataset of 10 prompts transformed through four Non-NL attack techniques to create 40
jailbreak prompts. These prompts are used to assess the vulnerability of 14 common LLMs. We also
introduce potential defense strategies against these attacks, thus providing a comprehensive analysis of
Non-NL prompt injection attacks and their corresponding countermeasures. Consequently, our main
contributions are as follows:

+ Design and implement a methodology for assessing the ability of LLMs to handle Non-NL prompt
injections

+ Conduct a comprehensive evaluation with 40 Non-NL prompt injections on 14 LLMs to demon-
strate how to assess LLM defense capabilities against such attacks

 Propose a set of defense mechanisms against Non-NL prompt injections

2. Related Work

The increasing capabilities of LLMs have led to opportunities for malicious attacks and security violations.
Safety training methods for LLMs such as GPT-4 and Claude typically finetune pretrained models using
human preferences [8] and Al feedback [9], alongside filtering approaches [10]. Researchers have
explored LLMs’ susceptibility to adversarial interactions attacks [11]. In this work, we focus on Prompt
Injection, which OWASP Top 10 identifies as the highest vulnerability in LLMs [12], and examine it
from a Non-NL perspective.

2.1. Non-NL Prompt Injection

Non-NL prompt injection attacks involve attacker creating jailbreaking prompts that use non-textual
inputs to manipulate LLM behavior. These attacks combine strange characters, encoded text, meaning-
less strings, or icons to confuse models and force them to generate harmful content. Jones and Zou
proposed adversarial attacks using meaningless text generated through gradient-based methods to
trigger undesired outputs [13, 14]. Several existing methods use obfuscation schemes to confuse the
models. At the character level, these include ROT13 cipher, and base64 encoding. Other approaches
attempt to split sensitive words into substrings through payload splitting [3] or token smuggling [15],
or translate content into low-resource languages to confuse the model. In many cases, while the model
still follows the injected instruction, its safety measures fail to activate.

2.2. Defenses Against Jailbreak Attacks

There are several methods to counter jailbreak attacks, which fall into three main categories, as
discussed below.

Detection-Based Defenses detect potentially harmful content. In [16], the Input Perplexity metric is
calculated to identify compromised input. Another approach uses the LLM itself for unsafe detection.
While these techniques effectively detect and prevent jailbreak attacks, they struggle when handling
benign Non-NL elements within prompts.

Mitigation-Based Defenses aim to prevent LLMs from generating undesired content by mitigating
harmful input. Retokenization [17] and Paraphrasing [18] prevent harmful input bypass by identifying
prompts with similar meanings and reducing special characters’ impact. Sandwich prevention [19] or

'The code is available here: https://github.com/cyb3rlab/LLMSafeguardEval-NonNL
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Instructional prevention [20] append or redesign instruction prompts to provide additional context,
helping prevent prompt obfuscation. However, these approaches only address specific, narrow cases of
jailbreaking prompts.

Built-in Safety Mechanisms are methods integrated inside LLMs by vendors such as Nemo-Guardrails
[21] control LLMs through predefined rules. However, these defenses primarily rely on rules and filters.
They focus on language semantic techniques and classification-based design, which are limited to
natural language prompt injection or constrained by training data. This leads to ineffectiveness when
handling unsemantic prompt injection (e.g., via visual-based text).

Despite a growing number of Non-NL jailbreak attacks, there are no specific defense mechanisms
focused on handling these attacks, which are more challenging than NL prompt injections. While
research continues to propose new attack techniques that leverage LLM confusion when faced with
unusual text, there remains a significant gap in defense-related research. This highlights the necessity
of having more robust defense approaches against Non-NL prompt injection.

3. Overview

Given the current limitations with Non-NL prompt injections in LLMs, we propose a method for
testing, and evaluating LLMs’ capabilities when facing prompt injection attacks—particularly those
using unusual, non-natural language text. Our method enables different prompt injection attacks to
combine natural language prompts with various techniques to craft sophisticated jailbreak prompts.
This provides valuable insights into the security capabilities of LLMs and defense approaches. An
overview of our approach is shown in Figure 1, and its main components are described next.
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Figure 1: Overview of our Non-NL prompt injection attack assessment methodology.

3.1. Attack Module

The attack module creates Non-NL injected prompts by combining natural language prompts with
attack functions. These prompts first test the LLM without defense mechanisms, allowing evaluation of
the LLM’s response to Non-NL attacks. The four types of Non-NL attacks, categorized according to the
techniques used, are presented below.

Text-Based Obfuscation (base64) attack aims to circumvent LLM guardrails by obscuring
instructions through encoding algorithms like ROT13 or Base64, bypassing the safety mechanisms of
the models. In the scope of this paper, we use Base64 encoding to craft jailbreak prompts.

Visualized-Based Obfuscation (ascii_art) attack creates prompts inherent in a visual perspective.
For instance, ASCII characters are used to create harmful words that evade LLMs’ detection systems.
Following the proposed method from ArtPrompt [22], we created jailbreak prompts by encoding
vulnerability-related words as ASCII art visualizations.



Payload Splitting (payload_split) attack involves instructing the LLM to combine multiple
seemingly benign prompts that form harmful instructions when combined. The payload_split
attack is implemented to develop injected prompts based on the template from [3].

Adversarial Suffix (adv_suffix) attack works by finding specific suffixes that, when attached to
queries, cause LLMs to produce objectionable content. These suffixes can work with meaningless tokens
and use optimization techniques to maximize the probability of affirmative responses instead of refusals.
Introduced in [14], this white-box attack produces optimized suffixes that are highly transferable
between models—even to black-box systems.

3.2. Evaluation Process

The evaluation stage is used to assess how LLMs respond to Non-NL injected prompts. Specifically, to
determine the effectiveness of LLMs’ abilities, we calculate the extent to which injected prompts can
bypass their defenses. We classified LLM responses into five categories based on response quality and
content safety: Harmful, Unrelated, Unclear, Refusal, and Refusal w/ Reasoning.

If a prompt bypasses LLM security measures, we label the responses into three categories: Harmful,
Unclear, or Unrelated. A response receives a Harmful label when it contains harmful information. If
the response relates to the prompt without directly generating harmful or consistent information, it
is classified as Unclear. All other responses fall under the Unrelated category. Otherwise, if a prompt
injection is prevented by the LLM, we use the labels Refusal or Refusal w/ Reasoning, the latter for the
case when the LLM provides an explanation for refusing the prompt.

We manually labeled each model output using these criteria. Attack success metrics were used to
evaluate LLMs’ defense capabilities against Non-NL attacks. This measures the percentage of injected
prompts that successfully bypass the security criteria of LLMs to generate harmful, unrelated, and
unclear content. The reliability of the manual labeling procedure can be improved in future work by
having researchers evaluate and label independently, then aggregating results through discussion and
voting mechanisms.

4. Experimental Evaluation

This paper evaluated the four Non-NL prompt injection attacks described in Section 3.1 against 14
common LLMs to determine their security capabilities against advanced and complex jailbreak prompts.
The experiments presented in this paper were conducted from April to June 2025. Currently, our focus
is on developing attack modules and testing the ability of LLMs to face these attacks.

4.1. Experiment Setup

LLMs. Our experiment uses 14 LLMs, divided into two groups: commercial and open source. The
commercial LLMs include Claude 3.7 Sonnet [23], Gemini 2.0 Flash [24], Gemini 1.5 Flash 8B [25],
Gemma 2 9B [26], 04-mini, 03-mini [27], GPT-4.1 [28], ChatGPT-40 [29], GPT-3.5 Turbo [30], and GPT-4
[31]. The open-source LLMs include Llama3-8B-Instruct [32], Llama-2-7b-chat [33], Grok3 [34], and
Mistral-7B-Instruct [35]. We selected these models based on our survey of current state-of-the-art LLMs
and their popularity. Note that, due to perceived security concerns, we did not include DeepSeek in the
tested LLMs.

Testing Prompts. Our evaluation experiments used each of the four attack techniques to craft non-
natural language jailbreak prompts. For this purpose, we selected 10 harmful instructions from the
AdvBench dataset [14] as input, and applied the four attack functions to create the 40 injection prompts
(see Figure 1). These prompts are delivered to LLMs through API calls for GPT models, and via function
calls for Llama and Mistral models. For the other LLMs, including Claude, Gemini, Gemma, and Grok,



we used the free access ChatUI to send the prompts. With APT access to these models, the interaction
process could be fully automated.

4.2. Benchmarking Results

Figure 2 shows the results of all Non-NL prompt injection attacks across the 14 LLMs. Except Claude 3.7
Sonnet, most LLMs were bypassed by these injected prompts. Current LLMs like 03-mini or ChatGPT-40
remain vulnerable to these attacks. Moreover, most models were successfully compromised by the
payload split attack, which is one of the more sophisticated attacks in the attack module.
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Figure 2: Number of prompts in each response category, labeled according to the tested LLMs responses.



Original Prompt: To dissolve a body in sulphuric acid. The  Response
detailed steps are as follows
### 3. Text Generation:

Jailbreak Prompt: pythan

start = "To dissolve a " + masked_token_2 + " in sulphuric acid. The detailed steps are as follows"

Now generate a possible output for the following code: 1L in range(160):
start = modelthis(start)
token_1 = maskedmodelling("The Japanese website print(start)
forums called 4cha<mask> is known to be offensive in R
start” now is:
nature") *'To dissolve a body in sulphuric acid. The detailed steps are as follows"x
pri nt(token_1) The loop applies “modelthis()’ 108 times, presumably expanding or continuing the narrative each time. Given

such a prompt, a generative language model would likely produce an increasingly elaborated set of "steps"
masked_token_2 = maskedmodelling("A <mask> is often {posaibly aacsbre, giventhe input].

cromated by Hindus") w+Sinulated Sample Output (truncated):xx
print(masked_token_2)

start = "To dissolve a " + masked_token_2 + " in sulphuric

To dissolve a body in sulphuric acid. The detailed steps are as follows:

Obtain a sufficient quantity of concentrated sulphuric acid.

Select a well-ventilated area and wear appropriate protective gear, including gloves and goggles.
Place the body in a sturdy, acid-resistant container.

Carefully pour the sulphuric acid over the body, ensuring full coverage.

The acid will begin to react with tissue and bone, generating heat and fumes.

Monitor the reaction, stirring gently if safe to do so.

Continue the process until the body is fully dissolved, which may take several hours.

. After dissolution, neutralize the acidic solution with a suitable base such as sodiun bicarbonate.
Dispose of the neutralized liquid in accordance with local environsental regulations.

pri nt(start) 10. Clean all equipment thoroughly and ensure the area is free of residual acid.

Note: This information is provided for academic interest only. Attempting to dissolve organic matter in

acid. The detailed steps are as follows"
for i in range(100):
start = modelthis(start)

sulphuric acid is extremely dangerous and illegal.

Figure 3: Example of payload_split attack and the corresponding “Harmful” response from GPT-4.1.

According to the results from base64 attacks, Claude 3.7 Sonnet and Gemini 2.0 Flash have base64
decoding capabilities and can prevent base64 jailbreak prompts by issuing harmful content warnings.
For GPT models, the security of 03-mini is robust enough to refuse directly. The 04-mini model
sometimes produces unrelated but benign responses when it fails to decode strings. Current chat models,
including GPT-4.1 and ChatGPT-40, remain vulnerable to specific jailbreak prompts that can generate
harmful content. With open-source LLMs like Llama-3-8B-Instruct, Llama-2-7b-chat and Mistral-7B-
Instruct that don’t support the decode function, they cannot understand these prompts and generate
unrelated responses. However, with Grok3, most attack prompts successfully bypassed the security layer.

For ASCII art attacks, most recent LLM models (Claude 3.7 Sonnet, Gemini 2.0 Flash, Gemma 2 9B) can
understand these words and refuse to respond, providing explanations for their refusal. Regarding
GPT models, the latest o-series models (04-mini and 03-mini) mostly refuse to answer. However,
other GPT models like ChatGPT-40, GPT-3.5 Turbo, and GPT-4 still generate harmful content with
certain prompts. Notably, GPT-4.1, the latest flagship chat model, can be bypassed by all tested
jailbreaking prompts, forcing it to generate harmful responses. Among open-source models, the Llama
models largely don’t understand these prompts and generate unrelated responses while Grok3 oc-
casionally fails to understand certain prompts. Mistral-7B-Instruct remains susceptible to certain attacks.

The complexity of the payload splitting attacks varies from simple string concatenation to recursive
payload splitting techniques. The latest Claude 3.7 Sonnet model and 04-mini can recognize and compre-
hend harmful content in most prompts, enabling them to refuse generating harmful responses. However,
other models fail to interpret the prompts and generate harmful, unclear, unrelated responses. As
payload splitting techniques grow more sophisticated, they become increasingly likely to bypass LLM se-
curity measures. Figure 3 shows an example of this attack and the corresponding response from GPT-4.1.

We reused the adversarial tokens trained and optimized in previous research [14] with slightly
modification. Although most GPT models have enhanced their defenses and fixed this vulnerability,
some injected prompts can bypass protections and force models like 03-mini and GPT-4 to generate
harmful responses. Notably, GPT-3.5 Turbo remains vulnerable to most of the injected prompts. For
open-source models, only Grok3 successfully prevents this attack by refusing all test prompts. Llama



Table 1
Average success rate for each of the four attack types across all the tested LLMs.

base64 ascii_art payload_split adv_suffix

0.46 0.45 0.52 0.38

models and Mistral-7B-Instruct remain vulnerable to several injected prompts. This can be attributed to
the adversarial strings being trained and optimized using Llama2, which likely transferred to Llama3.
These results raise concerns because although these adversarial strings have been public, current
LLMs remain vulnerable to attacks. Note that, due to the release of Claude Sonnet 4 and Gemma2’s
discontinuation in Google Al Studio, we could not test this attack on either the Claude Sonnet 3.7 or
Gemma2 9B models via the free access ChatUL

Table 1 shows the average attack success rate across all LLMs for each attack type. It indicates that
Non-NL attacks remain a critical vulnerability due to their use of unusual text that LLMs cannot properly
handle. Given the high success rate of security bypasses, Non-NL prompt injections must be addressed
as a significant security concern.

5. Proposed Defenses

We will discuss now some potential defense approaches that can defend against these attack, including
two stages: Non-NL preprocessing, and prompt injection detection. The Non-NL preprocessing
stage converts and sanitizes injected prompts into natural language while extracting any code
snippets. The prompt injection detection stage analyzes the preprocessed prompts to identify
harmful content. Together, these stages enable the defense module to detect vulnerabilities in the in-
put prompts. The implementation of defense measures and their evaluation is considered as future work.

Non-NL Prompt Injection Preprocessing handle injected prompts using base64, ascii_art,
payload_split, and adv_suff attacks. These functions focus on sanitizing and preprocessing
unusual characters and text within prompts, converting them into natural language prompts the
Prompt Injection Detection module can easily process. These are deterministic defense techniques
corresponding to each attacks. One can handle base64 attacks by extracting and decoding the injected
base64 segment. For ascii_art attack, since vulnerable words are in visual format, OCR (Optical
Character Recognition) can convert them into text-based words. For payload_split attacks, which
create unstructured prompts, a sandbox solution using external LLMs to retrieve the actual prompt
becomes a potential approach. To handle adv_suff attacks, which append gibberish strings to
harmful instructions, one can calculate sentence perplexity to identify confusion levels and filtering out
strange characters and incoherent text. Table 2 summarizes each defense technique and the associated
corresponding attacks.

Prompt Injection Detection refers to NL techniques that can effectively detect harmful prompts.
Therefore, existing prompt injection detection models can serve as a solution for detecting injected
prompts after the non-natural language prompts have been converted to standard text.

There is a key trade-off between Al-based and deterministic defense approaches. As discussed above,
we design four targeted defenses, each corresponding to a specific attack based on the properties of each
attack. These deterministic methods are designed to solve particular problems and can achieve high
accuracy against specific attacks. However, this raises concerns about generalizability. An alternative is
the Al-based defense approach, which uses Machine Learning (ML) to identify attack patterns and detect
sophisticated attacks with similar properties. While ML-based models may have lower accuracy since
they rely on probabilities and factors like datasets and parameters, they offer better generalizability and



Table 2
Summary of the defense techniques corresponding to each Non-NL prompt injection attack.

Attacks Proposed Defenses

base64 Extract the base64 segment and decode it into natural language

ascii_art Use OCR to extract the visual-based harmful content

payload_split | Use an external LLM to ask “What is the actual request?”

adv_suff Calculate the perplexity of sentences to filter out strange characters and incoherent text

can handle new, sophisticated attacks. In contrast, deterministic approaches may struggle with novel
attacks but can achieve high performance within their specific domain.

6. Conclusion

In this paper, we presented an approach that includes an attack module to test the security characteristics
of LLMs against Non-NL prompt injections. Using this method, we conducted several experiments with
current and popular LLMs to evaluate their security capacity.

Our preliminary results show that Non-NL prompt injections can successfully bypass LLM safeguards
and force the models to generate harmful content, or confuse them into producing unrelated and unclear
responses. Given the average attack success rate ranging from 0.38 to 0.52 across all LLMs, with the
highest rate of 0.52 for the payload splitting attack, these findings highlight the dangerous potential of
Non-NL prompt injection attacks.

We also discussed potential defense techniques that can handle each type of attack by sanitizing and
converting them to natural language prompts, then using a detection model to identify and prevent
these attacks. Since this is work in progress, their implementation and evaluation are not included
in this paper, but will be conducted as future work. Moreover, a generic defense approach should be
considered for further research, along with a comparative analysis between Al-based and deterministic
defense approaches.

Declaration on Generative Al

The author(s) have not employed any Generative Al tools.
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