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Abstract
Advanced Persistent Threats (APTs) represent a significant challenge in cybersecurity due to their prolonged,
multi-stage nature and the sophistication of their operators. Traditional detection systems typically focus on
identifying malicious activity in binary terms— benign or malicious— without accounting for the progression of
an attack. However, effective response strategies depend on accurate inference of the attack’s current stage, as
countermeasures must be tailored to whether an adversary is in the early reconnaissance phase or actively con-
ducting exploitation or exfiltration. This work addresses the problem of attack stage inference under uncertainty,
with a focus on robustness to out-of-distribution (OOD) inputs. We propose a classification approach based on
Evidential Deep Learning (EDL), which models predictive uncertainty by outputting parameters of a Dirichlet
distribution over possible stages. This allows the system not only to predict the most likely stage of an attack but
also to indicate when it is uncertain or the input lies outside the training distribution. Preliminary experiments
in a simulated environment demonstrate that the proposed model can accurately infer the stage of an attack
with calibrated confidence while effectively detecting OOD inputs, which may indicate changes in the attackers’
tactics. These results support the feasibility of deploying uncertainty-aware models for staged threat detection in
dynamic and adversarial environments.

1. Introduction

The contemporary cyber threat landscape is defined by a rapidly expanding attack surface, the inte-
gration of artificial intelligence into offensive operations, and the increasing frequency of targeted
intrusions. Among these, Advanced Persistent Threats (APTs) pose a significant challenge [1, 2]. APTs
are characterised by their extended duration, careful orchestration, and emphasis on stealth and per-
sistence. They are often executed by highly capable adversaries with the objective of maintaining
long-term access, exfiltrating sensitive data, or positioning themselves for future operations.

A central challenge in responding to such threats is the inference of the attack stage [3]. Unlike
binary classification of traffic as benign or malicious, identifying the phase of an ongoing intrusion is
both more granular and operationally significant. Defensive strategies vary considerably depending on
whether an adversary is conducting reconnaissance, delivering a payload, exploiting a vulnerability, or
already operating within the target environment. Inaccurate stage inference can lead to suboptimal
mitigation: premature intervention may trigger evasion, whereas delayed response increases impact.

The Lockheed-Martin cyber kill chain [4] provides a canonical model of staged attack progression. It
defines phases such as reconnaissance, weaponisation, delivery, exploitation, installation, and command-
and-control. The task of mapping observed system or network activity to these abstract stages is
non-trivial, particularly under operational constraints and adversarial adaptation.

A key complication in this classification task arises from the presence of out-of-distribution (OOD)
inputs [5]. These include previously unseen tactics, novel malware behaviours, or benign anomalies
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that fall outside the support of the training data. Classifiers that lack mechanisms to detect and account
for such inputs are prone to overconfidence and misclassification. This is particularly problematic in
high-stakes contexts like APT response, where incorrect inferences regarding the stage of an attack can
lead to cascading failures in containment and remediation.

Consequently, models deployed for attack stage inference must not only be accurate under familiar
conditions but also uncertainty-aware. That is, they should indicate when a prediction is unreliable or
when an input lies outside the model’s training distribution. Incorporating uncertainty into predictions
allows decision-makers to calibrate trust in model outputs and to defer or adapt responses in the
presence of ambiguity.

This work expands upon [6] and addresses the problem of attack stage inference under uncertainty.
The classifier ingests a feature vectors that combines high-level system-state indicators with auxiliary
labels, formulates stage classification as a probabilistic task over a structured threat progression model
and leverages predictive distributions to quantify confidence. Particular attention is given to handling
OOD inputs through mechanisms that explicitly model epistemic uncertainty, thereby enabling the
system to recognise when the input does not conform to the known stages of adversarial behaviour. To
this end, we employ Evidential Deep Learning (EDL), which allows the model to represent both the
predicted class distribution and the associated uncertainty via a Dirichlet distribution. This approach
facilitates a principled means of detecting anomalous or unfamiliar inputs without requiring an explicit
OOD dataset during training.

Preliminary results obtained from a controlled simulation environment demonstrate the feasibility of
inferring the stage of an attack using this method. The model is able to distinguish between different
phases of the attack lifecycle with calibrated confidence scores and, crucially, maintains robustness
in the presence of OOD inputs. These initial findings suggest that uncertainty-aware classification
using EDL provides a viable foundation for real-world systems that must operate reliably in the face of
evolving and incomplete threat intelligence.

This paper is organized as follows: Section 2 presents the background and related work relevant
to our study, including the framework used, the attack modeling background, reward machines and
evidential deep learning explanation. Section 3 describes the methodology and experimental setup
used in our research, as the simulated environment, data collection and model architecture. Section 4
presents and analyzes the experimental results. Finally, Section 5 concludes the paper and discusses
future research directions.

2. Background

2.1. Microsoft CyberBattleSim

Microsoft CyberBattleSim1 represents a significant advancement in cybersecurity research by providing
a simulated network environment designed for experimentation and training. Built on OpenAI’s
Gymnasium framework, CyberBattleSim abstracts the complexities of real networks by representing
machines as nodes in a graph structure. This abstraction makes the platform accessible for researchers
and developers who do not need a fully implemented network infrastructure to use it. Reinforcement
learning agents act as attackers attempting to compromise the network through various actions. These
include local attacks that can expose passwords and reveal sensitive data like credentials, as well
as remote vulnerabilities that allow direct node compromise. Once a node is compromised, agents
can move laterally using protocols such as SSH or RDP [7]. The platform has proven valuable for
cyber defense exercises and capture-the-flag scenarios, allowing practitioners to explore different types
of exploits on system vulnerabilities. This works particularly well because reinforcement learning
(RL) algorithms excel at cybersecurity tasks due to their exploration capabilities, which help discover
previously unknown attack and defense scenarios [8]. CyberBattleSim’s key advantage lies in its
ability to function as a physics engine for the cyber domain, providing dynamic feedback that static

1https://github.com/microsoft/CyberBattleSim (on 15 Jul 2025).
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datasets cannot offer. This makes it particularly valuable for addressing the critical need for immediate
decision-making in modern cyberattacks and for developing incident response skills [9].

2.2. Attack models

Attack models represent formal abstractions of adversary strategies and behaviors. They capture the
goals an attacker seeks to achieve, the decision points encountered along the way, and the sequence of
tactics and techniques that may be employed. By defining these patterns in a structured form, attack
models enable security teams to anticipate potential threat paths, simulate attack scenarios, and validate
the effectiveness of defensive controls.

The MITRE ATT&CK Flow2 is a structured framework designed to visualise systematically and
model adversary behaviours and attack sequences. It allows security teams to document, analyse, and
communicate the progression of attacks using a flowchart-like representation, connecting individual
tactics, techniques, and procedures (TTPs) from the MITRE ATT&CK knowledge base. By mapping these
sequences, organisations can better understand how an adversary moves through an attack lifecycle,
identify potential defence gaps, and improve detection and response strategies. The framework enhances
situational awareness, enabling more robust security postures and collaborative threat analysis.

2.3. Attack Stage Inference via Reward Machine State Estimation

The problem of attack stage classification can be framed as the task of inferring the abstract progression
of an adversary through a series of behavioural states based on a sequence of observed actions. This
is analogous to identifying the underlying reward machine state of a RL agent operating within an
environment, such as an attacker trying to achieve a specific objective.

A reward machine is a finite-state automaton used to specify structured reward functions for RL
agents [10]. It consists of:

• States: abstract representations capturing the agent’s progression through a task.
• State transition function: rules for moving between states based on logical conditions derived

from observations.
• Labelling function: a mapping from low-level environmental features to symbolic propositions

used in transition conditions.

Reward machines increase the expressiveness of task specifications and improve the interpretability
of agent behaviour. They also facilitate the reuse of learned behaviours across structurally similar
tasks. From a cybersecurity standpoint, this abstraction enables the modelling of attacker behaviour in
terms of symbolic subgoals, akin to stages in the cyber kill chain, while omitting low-level artefacts
such as system logs or process-level telemetry (observations). The labelling function then abstracts
such low-level artefacts into symbolic propositions (labels) which might indicate that a new stage of
the attack has begun, e.g., in the Uber breach, when the attackers compromised the credentials of an
external contractor (abstract label), they were then able to proceed with lateral movements (new stage
of the attack).3

This analogy is particularly effective in honeypot environments. Unlike production systems where
benign activity dominates and malicious activity is sparse, honeypots are designed to attract and isolate
unauthorised interactions. As a result, the sequence of actions observed in a honeypot is typically
devoid of "sane" or legitimate behaviour, consisting instead of purely adversarial traces. This simplifies
the modelling problem by reducing the behavioural variance and ensuring that all recorded activity
is relevant for stage inference. The attacker’s actions can thus be treated as the trace of an RL agent
operating in a known environment, where the reward machine states correspond to phases in the
adversary’s operational logic.
2https://center-for-threat-informed-defense.github.io/attack-flow (on 15 Jul 2025).
3https://center-for-threat-informed-defense.github.io/attack-flow/ui/?src=..%2fcorpus%2fUber%20Breach.afb (on 11 June
2025).
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2.4. Evidential Deep Learning

Inferring the correct reward-machine state from behavioural traces— which includes both observations
and labels— remains subject to ambiguity, particularly in the presence of incomplete or atypical se-
quences. This necessitates the use of classification methods that are not only accurate but also capable
of representing uncertainty. We summarise an approach based on Dirichlet distributions to model
classification uncertainty, following [11]. Rather than relying on softmax outputs as point estimates,
this method predicts parameters of a Dirichlet distribution over class probabilities, allowing uncertainty
to be quantified alongside predictions.

The Dirichlet distribution 𝐷(p|𝛼) over the class probability vector p is defined by parameters
𝛼 = [𝛼1, . . . , 𝛼𝐾 ] and has the form

𝐷(p|𝛼) =
1

𝐵(𝛼)

𝐾∏︁
𝑖=1

𝑝𝛼𝑖−1
𝑖 , (1)

for p in the 𝐾-dimensional simplex 𝒮𝐾 , where 𝐵(𝛼) is the multinomial beta function. The mean and
variance of 𝑝𝑘 are given by

𝑝𝑘 =
𝛼𝑘

𝑆
, 𝑉 𝑎𝑟(𝑝𝑘) =

𝛼𝑘(𝑆 − 𝛼𝑘)

𝑆2(𝑆 + 1)
, (2)

with 𝑆 =
∑︀𝐾

𝑖=1 𝛼𝑖. A uniform Dirichlet distribution, 𝐷(p|1), reflects maximum uncertainty.
In this framework, the Dirichlet parameters are interpreted as pseudocounts: 𝛼𝑘 = 1 + 𝑒𝑘, where

𝑒𝑘 represents class-specific evidence inferred from the input. Thus, 𝑆 −𝐾 denotes the total evidence
beyond the prior. The mean p̂ is used for classification, while entropy of p̂ quantifies uncertainty.

To estimate 𝑒, the method in [11] draws on noise-contrastive estimation and implicit density modelling.
For each class 𝑘, the ratio between the in-class distribution 𝑃𝑘(𝑥) and a shared out-of-distribution
reference 𝑃𝑜𝑢𝑡(𝑥) is used:

𝑃𝑘(𝑥)

𝑃𝑜𝑢𝑡(𝑥)
=

𝑝(𝑦 = 𝑘|𝑥)
𝑝(𝑦 = 𝑜𝑢𝑡|𝑥)

(︂
1− 𝜋𝑘
𝜋𝑘

)︂
, (3)

where 𝜋𝑘 = 𝑝(𝑦 = 𝑘) is assumed uniform across classes.
A neural network 𝑓(𝑥|𝜃) is trained to approximate the log density ratio log(𝑃𝑘(𝑥)/𝑃𝑜𝑢𝑡(𝑥)) for

each class 𝑘 using the binary Bernoulli loss

ℒ1(𝜃) = −
𝐾∑︁
𝑘=1

[︁
E𝑃𝑘(𝑥) log 𝜎(𝑓𝑘(𝑥|𝜃))

+ E𝑃𝑜𝑢𝑡(𝑥) log(1− 𝜎(𝑓𝑘(𝑥|𝜃)))
]︁ (4)

Out-of-distribution samples are generated by perturbing training data via a generative adversarial
network. These samples differ from training data in input space but remain structurally similar in
a learned latent space. After training, 𝑒𝑘 = exp(𝑓𝑘(𝑥|𝜃)) is treated as evidence for class 𝑘, and the
Dirichlet parameters are computed as 𝛼 = 𝑒+ 1.

For OOD inputs or outliers, the network produces near-zero evidence and the resulting Dirichlet
approaches the uniform prior. For typical in-distribution and correctly classified examples, evidence
concentrates on the correct class, such that 𝑒𝑘 > 𝑒𝑗 for all 𝑗 ̸= 𝑘.

The vector 𝛼 defines a Dirichlet distribution 𝐷(𝑝 | 𝛼) over categorical distributions for the classes
of 𝑥. Only one class is correct; if 𝑘 is the true class, then the marginal distribution over 𝑝𝑘 follows a
Beta distribution with parameters ⟨𝛼𝑘,

∑︀
𝑗 ̸=𝑘 𝛼𝑗⟩.

Let 𝑝−𝑘 denote the probabilities for 𝑗 ̸= 𝑘. The conditional distribution over normalised misclas-
sification probabilities is 𝑝′

−𝑘 | 𝑝𝑘 ∼ 𝐷(𝑝′
−𝑘 | 𝛼−𝑘), where 𝑝′

−𝑘 is defined by rescaling 𝑝−𝑘 with
(1− 𝑝𝑘).



To promote uncertainty in misclassifications, a regularisation term is introduced by minimising the
Kullback–Leibler divergence between 𝐷(𝑝−𝑘 | 𝛼−𝑘) and a uniform Dirichlet:

ℒ2(𝜃 | 𝑥) = 𝛽KL [𝐷(𝑝−𝑘 | 𝛼−𝑘) ‖𝐷(𝑝−𝑘 | 1)] , (5)

where 𝛽 controls the strength of the regularisation.
To extract a measure of uncertainty from the Dirichlet distribution in this framework, one may

employ the subjective logic approach based on Dirichlet strength [12]. The total strength of the
Dirichlet distribution is given by 𝑆 =

∑︀𝐾
𝑖=1 𝛼𝑖, representing the sum of pseudocounts. Subjective

logic interprets uncertainty as the inverse of this strength, that is, 𝑢 = 𝐾
𝑆 , where 𝐾 is the number of

classes. This formulation reflects that greater total evidence (i.e., higher 𝑆) implies greater confidence
in the prediction, and conversely, lower evidence yields higher uncertainty. For instance, in the case
of a uniform Dirichlet distribution with 𝛼𝑘 = 1 for all 𝑘, the strength is minimal at 𝑆 = 𝐾 , and the
uncertainty attains its maximum value, 𝑢 = 1. This approach allows uncertainty to be quantified
explicitly without relying directly on entropy, and is particularly useful in applications where one
wishes to separate epistemic uncertainty from aleatoric noise.

3. Methodology

3.1. Switched LAN CTF

We simulated a switched LAN network, where an attacker begins at a designated entry point and must
gain access to a specific target device. The devices are fully interconnected, allowing the attacker to
move freely executing lateral movement between any devices in the network.

To reach the target device, which represents a critical target such as a server or database, the attacker
must obtain an access credential. Both goal and credential nodes are randomly selected at every
simulation run.

The target device is protected by an intrusion prevention system that will detect and block any
attempt to access it without the correct credential, resulting in failure. The attacker must navigate the
network to find a valid credential before trying to access the target device.

The attack is modeled using MITRE ATT&CK Flow, which outlines the sequence of actions the
attacker may take and the stages of the attack, as shown in Figure 1. From this modeling is derived
a reward machine, presented in Figure 2, with two labels: once the credentials are acquired (c), the
attacker needs to find the goal node to exploit (g) to successfully conclude its task.

We selected this switched LAN CTF as experiment environment because it captures essential elements
of real-world attacks (credential theft, lateral movement, target exploitation) while maintaining sufficient
simplicity for a preliminary investigation setting.

3.2. Dataset collection

The experimental dataset was originally introduced in [6] and was created using a simulated environment
based on CyberBattleSim. The experimental input data consists of two main components: agent
observations of the world state and concatenated labelling function results.

The observation space comprises the union of all valid preconditions for every possible vulnerability
present in the network. This state representation focuses on exploitation conditions provided by the
framework rather than simple positional information, resulting in a substantially larger observation
space compared to basic representations. Action data is excluded from the input since each state
transition can only be caused by a single specific action, making the dynamics of state changes contain
the necessary information about actions performed and rendering explicit action inclusion redundant.

The labeling function output is included in the dataset for two primary reasons. First, it provides
additional context to the model, enhancing its understanding of the environment. Second, it enables us
to simulate noise in the labeling function output, which is important for testing the robustness of the
approach under realistic conditions where labeling functions may produce imperfect results.



Action
Network service scanning

Tactic_ID: TA0007
Technique_ID: T1046
Description: Attacker
systematically probes the
wireless mesh network to
identify
connected devices, their
functions, and potential
vulnerabilities.

Action
Credentials from 
Password Stores

Tactic_ID: TA0006
Technique_ID: T1555
Description: Upon finding
the device containing
credentials, attacker extracts
the stored authentication
material.

Action
Use Alternate
Authentication Material

Tactic_ID: TA0008
Technique_ID: T1550
Description: Attacker
leverages the stolen
credentials to authenticate to
the target device.

Figure 1: Description in MITRE ATT&CK Flow of the Switched LAN environment.
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Figure 2: Switched LAN CTF Reward Machine, with two labels: credentials acquired, and goal achieved.

3.3. EDL-based Model Architecture

We implemented a neural network that receives input in the form of fixed-length temporal rolling
windows extracted from sequential datasets. These windows are structured as 2D tensors where one
dimension corresponds to the time sequence length and the other represents the number of features.
This windowing strategy enables the model to identify temporal patterns while simultaneously learning
feature correlations. The selection of window length depends on the temporal characteristics inherent
in the dataset, where extended windows facilitate the capture of long-range dependencies but introduce
additional computational overhead.

The neural network architecture used features a hybrid CNN-MLP design structured in three distinct
processing phases to enable hierarchical feature extraction and classification. The initial phase applies
2D convolutional operations with configurable filter sizes and channel depths to capture spatial patterns
in the input data, followed by max pooling operations that reduce spatial dimensions while preserving
salient features. The intermediate phase performs additional convolutional and pooling operations
with adjustable parameters to further refine feature representations at multiple scales. The final phase
transitions to a fully connected multilayer perceptron consisting of three progressively smaller dense
layers. The architecture incorporates flexible hyperparameters including convolutional kernel sizes,
pooling window dimensions, stride values, and dense layer neuron counts, allowing for adaptive scaling
based on dataset complexity and computational constraints. This hybrid approach leverages the spatial
feature extraction capabilities of convolutional layers combined with the representational power of
dense layers to achieve robust classification performance across diverse input modalities.

The expectations in Eq. 4 are computed by Monte Carlo integration using an equal number of
samples from 𝑃𝑘 and 𝑃𝑜𝑢𝑡. Different from [11]— that relies on a GAN-based approach with a double
discriminator, unsuitable in the present case— we use samples from 𝑃𝑜𝑢𝑡, which are created using a
noise function that stochastically perturbed real input by flipping bits with a specific noise probability
of 0.4. This noise application allowed the model to learn from both unaltered real data and its noisy
counterparts.

We also included two hyperparameters, 𝑤real and 𝑤noisy, with the constraint 𝑤real + 𝑤noisy = 1 to
balance out the two components of the loss function in (4), and we interpreted the 𝛽 hyperparameter of
(5) as an annealing coefficient.

Such hyperparameters were optimised using Optuna [13], targeting minimal uncertainty over clean



Table 1
Performance of baseline classifiers

Model Accuracy F1 Precision Recall

AdaBoostClassifier 0.8191 0.8194 0.8765 0.8191
BaggingClassifier 0.8240 0.8106 0.8650 0.8240
DecisionTreeClassifier 0.8191 0.8059 0.8555 0.8191
GradientBoostingClassifier 0.8264 0.8128 0.8664 0.8264
KNeighborsClassifier 0.7726 0.7685 0.8380 0.7726
LSTM 0.5795 0.4252 0.3358 0.5795
LogisticRegression 0.8240 0.8104 0.8621 0.8240
MLP 0.7946 0.7692 0.8166 0.7946
RandomForestClassifier 0.8093 0.7966 0.8379 0.8093
SVC 0.8264 0.8128 0.8664 0.8264

validation data. The best-performing configuration for the task considered here was: 𝑤real = 0.65 ;
𝑤noisy = 0.35; 𝛽 = 𝑤KL · 𝑤as, where 𝑤KL = 0.3 and 𝑤as = 1/epoch_num if epoch_num < 𝑎𝑠 = 25,
else 1.

4. Experimental Results

4.1. Baseline

The following classifiers are used as baseline models for comparison with our approach, selected to
evaluate their performance both in terms of overall accuracy and their response to noisy instances in
the dataset. In the Table 1 are indicated the overall results. We choose the best one by accuracy to
compare to our model that is Gradient Boosting.

AdaBoost Adaptive boosting algorithm that combines multiple weak learners sequentially. Each
subsequent learner focuses on correcting the errors made by previous learners.

Bagging Bootstrap aggregating method that trains multiple models on different subsets of data.
Reduces variance by averaging predictions from independent base learners.

Decision Tree Interpretable tree-based model that makes predictions using branching rules. Creates
hierarchical decision boundaries based on feature value thresholds.

Gradient Boosting Sequential boosting technique that uses gradient descent optimization. Builds
models iteratively to minimize residual errors from previous iterations.

K Nearest Neighbors Instance-based lazy learning algorithm that stores all training data. Makes
predictions by finding the k most similar instances in feature space.

Logistic Regression Linear classifier that uses sigmoid activation for probability estimation. Applies
linear transformation followed by logistic function for binary classification.

Random Forest Ensemble method combining multiple decision trees with random feature selection.
Reduces overfitting through bootstrap sampling and feature randomization.

SVC Support Vector Classifier that finds optimal decision boundaries using kernel methods. Maximizes
margin between classes while handling non-linear relationships through kernels.

MLP Multi-layer perceptron feedforward neural network with hidden layers. Uses backpropagation to
learn non-linear mappings between input and output.

LSTM Long Short-Term Memory recurrent neural network for sequential data. Handles long-term
dependencies through gating mechanisms and memory cells.



4.2. Uncertainty-Aware Attack Stage Classification

We now present the main experiment, designed to evaluate the model’s capacity to detect attack stages
under conditions of uncertainty. The training phase includes both clean data samples and out-of-
distribution (OOD) examples. The latter are generated by applying 40% bit-level noise to original
instances. We chose 40% bit-level noise because preliminary analysis showed that this level causes
baseline models to achieve classification performance similar to random. This approach is intended to
reflect realistic scenarios in which input data may be incomplete, corrupted, or otherwise unreliable.

During evaluation, the model is tested on noisy data constructed as follows: for a given noise level
𝑋%, each bit in an input instance — comprising both observation and label bits— is independently
flipped with probability 𝑋 . This method ensures that noise is applied uniformly across all components
of the input-output pair. Testing is conducted across three levels of noise: 0%, 20%, and 40%.

In the absence of noise (Figure 3a), the model demonstrates a clear distinction between uncertainty
levels for correct and incorrect predictions. Correct classifications exhibit low uncertainty, while
incorrect ones are associated with higher uncertainty. This separation suggests that uncertainty
estimates can serve as a useful metric for filtering unreliable predictions, thereby improving decision-
making robustness.

As label noise increases (Figure 3b and 3c), the uncertainty associated with correct and incorrect
predictions begins to converge. This convergence reduces the discriminative utility of uncertainty
values. The behaviour is partly attributable to dataset characteristics. In particular, the model assigns
greater importance to the first label bit (feature 𝐿1 in the SHAP feature map; see Figure 4) and lower
importance to the final bit 𝐿2. This prioritisation results from class imbalance among the three possible
RM states (Figure 2). Under noisy conditions, certain bit-flip combinations— such as all-zero labels or
specific corrupted patterns— may still resemble common in-distribution cases. Consequently, the model

Figure 3: Uncertainty distribution as noise on observations and labels varies.



Figure 4: Heatmap of the mean relevance SHAP values for observations (𝑜1, . . . , 𝑜30) and labels (𝑙1 and 𝑙2).
Columns of features with value 0 for every step are omitted.

fails to identify these samples as anomalous, and the associated uncertainty remains low.
The relatively small size of the label vector, in comparison to the observation vector, further biases

the model towards weighting noise in the observations more heavily. This trend is evident in Figure 3g,
3h and 3i, where increasing observation noise leads to a measurable rise in uncertainty. The model
consistently identifies such instances as OOD, which indicates a degree of robustness against corrupted
input features.

As noise levels increase, a general decline in classification accuracy is observed. In high-noise
conditions, model performance falls below the expected random baseline of 1/𝑛class. This result is
attributed to a bias towards the minority class, which is introduced during training on an imbalanced
dataset. Specifically, the model tends to misclassify instances in favour of the class with fewer training
samples (the third RM state in this case). This effect is not present when the dataset is artificially
balanced, although further experimentation was not pursued due to insufficient data volume.

Finally, it is noted that the best-performing baseline model exhibits a more pronounced decline in
accuracy under increasing noise. This behaviour is likely a consequence of greater dependence on label
information, which is more severely degraded by noise when compared to the EDL-based approach.

5. Conclusions

This work has explored the problem of attack stage inference in Advanced Persistent Threat scenarios,
with a focus on incorporating uncertainty awareness through Evidential Deep Learning. By modelling
predictive uncertainty via a Dirichlet distribution, the approach enables principled handling of out-
of-distribution inputs without the need for explicit OOD data during training. Initial experiments in
a simulated environment indicate that the proposed method can provide calibrated predictions and
identify anomalous inputs, supporting more informed and adaptive response strategies.

Future work will involve a more comprehensive statistical evaluation of the proposed framework.
This includes experiments using multiple random seeds to account for variance in model training, and
the assessment of performance across a broader set of scenarios that more closely reflect real-world
heterogeneity in attack behaviours and system environments. Additionally, a detailed analysis of the
applicability and limitations of EDL in the context of operational cyber defence will be conducted, with
emphasis on its integration into existing detection and response workflows. These steps are necessary
to establish the reliability and generalisability of the method in practical deployments.
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