CEUR-WS.org/Vol-4154/paper7.pdf

CEUR
E Workshop
Proceedings

published 2026-01-28

TAIBOM: Bringing Trustworthiness to Al-Enabled Systems

Vadim Safronov’*, Anthony McCaigue?, Nicholas Allott? and Andrew Martin’

"University of Oxford, UK
?NquiringMinds, UK

Abstract

The growing integration of open-source software and Al-driven technologies has introduced new layers of
complexity into the software supply chain, challenging existing methods for dependency management and
system assurance. While Software Bills of Materials (SBOMs) have become critical for enhancing transparency
and traceability, current frameworks fall short in capturing the unique characteristics of Al systems — namely,
their dynamic, data-driven nature and the loosely coupled dependencies across datasets, models, and software
components. These challenges are compounded by fragmented governance structures and the lack of robust tools
for ensuring integrity, trust, and compliance in Al-enabled environments.

In this paper, we introduce Trusted Al Bill of Materials (TAIBOM) — a novel framework extending SBOM
principles to the Al domain. TAIBOM provides (i) a structured dependency model tailored for Al components, (ii)
mechanisms for propagating integrity statements across heterogeneous Al pipelines, and (iii) a trust attestation
process for verifying component provenance. We demonstrate how TAIBOM supports assurance, security,
and compliance across Al workflows, highlighting its advantages over existing standards such as SPDX and
CycloneDX. This work lays the foundation for trustworthy and verifiable Al systems through structured software
transparency.

1. Introduction

The rapid expansion of open-source software and Al-driven technologies has introduced unprecedented
complexity into the software supply chain. Managing dependencies is already a challenging task, but
the integration of Al with digital infrastructures further amplifies the difficulty [1, 2]. In response,
Software Bills of Materials (SBOMs) have emerged as a mechanism for improving accountability and
traceability across software ecosystems [3, 4].

While various organisations, researchers, and developers acknowledge the growing importance and
usefulness of SBOMs, the absence of mature tools for their generation and application in assurance,
security, and compliance remains a significant gap [1, 5, 6]. This challenge is particularly significant
in Al-enabled systems, where traditional SBOM frameworks struggle to accommodate Al-specific
complexities. Al models are inherently dynamic and data-driven, continuously evolving through
updates and retraining. Ensuring stability and version control is a persistent challenge. Furthermore,
Al systems comprise multiple interdependent components — training datasets, training software,
refinement datasets, trained weights, inference software — that are often loosely coupled, making
dependency tracking and provenance verification difficult. The governance of Al systems is also
complicated by their distributed nature, where data ownership, model training, and system deployment
often reside with different entities, making the enforcement of security, privacy, and safety standards
particularly challenging.

Although there is much interest in Trust in Al [7, 8, 9], much of the discussion is predicated on the
accurate identification of (and so tamer-proofing of) all these diverse aforementioned elements, which
in turn raises several challenging questions. Can the integrity of model producers be verified? Can
datasets — often assembled from multiple sources — be trusted? Can transparency and accountability
be ensured throughout the AI development pipeline?

SPAIML’25: International Workshop on Security and Privacy-Preserving AIML, October 26, 2025, Bologna, Italy
*Corresponding author.

& vadim.safronov@cs.ox.ac.uk (V. Safronov)

@ 0009-0005-6431-0125 (V. Safronov); 0009-0008-8679-6578 (A. McCaigue); 0000-0001-7473-0565 (N. Allott);
0000-0002-8236-980X (A. Martin)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
5

mailto:vadim.safronov@cs.ox.ac.uk
https://orcid.org/0009-0005-6431-0125
https://orcid.org/0009-0008-8679-6578
https://orcid.org/0000-0001-7473-0565
https://orcid.org/0000-0002-8236-980X
https://creativecommons.org/licenses/by/4.0/deed.en

To address these challenges, we introduce the Trusted Al Bill of Materials (TAIBOM) — an evolution
of SBOM frameworks extended to Al-enabled software systems. TAIBOM is accompanied by an
implementation toolkit !, designed to support its principles. The key contributions of TAIBOM are:

« A structured dependency model that conceptualises Al software components and their interrela-
tionships.

+ A framework for propagating integrity statements across disconnected Al environments (e.g.,
dataset, training, and inference), ensuring a continuous chain of trust.

« A trust attestation mechanism to verify the provenance and trustworthiness of Al components.

This paper is organised as follows. Section 2 overviews SBOMs and motivates the need for AIBOMs.
Section 3 reviews related work, identifies limitations in existing AIBOM standards regarding trust
guarantees, and outlines how TAIBOM addresses them. Section 4 presents the TAIBOM dependency
model and its component relationships. Section 5 demonstrates TAIBOM’s integration into Al workflows
across assurance, security, compliance, and risk management use cases, and compares its functionality
to state-of-the-art AIBOM approaches. Section 6 discusses current limitations and future directions.
Section 7 concludes the paper.

2. Background

To introduce the need for trust in Al-enabled systems, this background section reviews the concept
of Software Bills of Materials (SBOMs), their role in traditional software supply chains, and how they
inform the emerging notion of Al-specific Bills of Materials (AIBOMs).

2.1. Software Bill of Materials

The Software Bill of Materials (SBOM), inspired by manufacturing industry practices, was formalised
in 2018 by the US National Telecommunications and Information Administration (NTIA) to enhance
software security practices and has since evolved [10]. An SBOM provides a detailed inventory of
software components, specifying their origins, dependencies, and references to known or potential
vulnerabilities. Key elements in the SBOM ecosystem include the Common Platform Enumeration (CPE,
a standardised naming scheme for software components [11]), Common Vulnerabilities and Exposures
(CVE, a repository of publicly disclosed cybersecurity vulnerabilities [12]), and Common Weakness
Enumeration (CWE, a classification system for software weaknesses [13]).

SBOMs ensure that all software components are identified and traceable. However, concerns remain
about their granularity. Various SBOM generation approaches have emerged. Binary-focused tools [14,
15, 16] analyse compiled binaries using embedded metadata, string literals, and language-specific
features to identify dependencies. Metadata-based tools [17, 18, 19] extract dependency information
from package metadata, build files, and container images. Source code analysis tools [20, 21, 22] inspect
repositories to uncover dependencies, including hidden ones associated with known CVEs.

2.2. Al Bill of Materials

While existing SBOM approaches are suitable for traditional software, they fall short in addressing
vulnerabilities specific to Al-enabled systems. Some argue that Al is merely another category of software
and can be managed under current SBOM regulations. However, recent research suggests otherwise,
highlighting a growing demand for an Al Bill of Materials (AIBOM) capable of describing and tracing
Al-specific dependencies [5, 23].

Al software comprises traditional software components alongside Al-specific artifacts such as training
data, model configurations, and inference pipelines. Unlike conventional software, Al systems evolve
continuously (e.g. in response to data drift and concept drift) necessitating dynamic co-versioning

'https://github.com/nqminds/Trusted-AI-BOM/

Data

name o Inh \\l Weights
‘ Compose
Al

label
location.type

DataPack Creates Config ‘

location.path . 5
rainingData)

hashLocation Inherits -Aggregation—< name ——Compose name

lastAccessed . Compose.

datasets aiSystem
data

_——Creates: — -

~—— TrainingCode TrainedSystem
——Compose—#
Licence / /
Code Inherits. AlSystem Inherits;

e name
label

Compose
location.type

CVE . | SBOM
Compose# location.path code

o—Aggregation

hash data =S : InferenceSystem

hashLocation | Yo
e Inherits __——
InferencingCode /
- _ p

——Creates: =

Figure 1: TAIBOM Data Model.

registries to ensure transparency and accountability. Unlike static SBOM inventories, Al Bills of
Materials (AIBOMs) must support traceable, evolving records without requiring frequent regeneration.

3. Related Work

This section reviews existing AIBOM proposals and discusses how the proposed TAIBOM approach
addresses their limitations in establishing verifiable trust within Al software supply chains.

3.1. Existing AIBOM Proposals

Several AIBOM solutions have been proposed. Model cards, such as those by Hugging Face [24] and
Google [25], provide metadata on datasets and models but lack comprehensive provenance tracking
(e.g., training data lineage or tampering history). SBOM extensions, including CycloneDX [26] and
SPDX [27], adapt existing SBOM formats for Al yet their trust guarantees remain limited and often
unverifiable. ML-specific tools such as DVC [28] and MLflow [29] support lineage tracking for Al
models but do not enforce verifiable trust mechanisms across the full Al development pipeline.

A more detailed comparative evaluation of these approaches, including their support for provenance,
tamper detection, and dependency analysis, is presented in Section 5.

3.2. TAIBOM: A Trustable AIBOM Solution

Existing AIBOM solutions lack trust guarantees — there are no established techniques to verify dataset
provenance or ensure model integrity throughout the Al workflow. TAIBOM addresses this gap by
introducing a trust-enabled AIBOM data model that represents key Al artifacts (including Data, Code,
and Al System objects) along with their interconnections and trust relationships. As detailed in Section 4,
TAIBOM integrates cryptographic attestations, integrity verification, and dataset provenance tracking
to establish verifiable trust across Al-enabled software supply chains. By design, TAIBOM adopts
a general and extensible structure to accommodate a wide range of Al-enabled software systems —
including those incorporating frontier Al such as Large Language Models (LLMs) and other forms of
generative Al

4. TAIBOM Architecture

The main purpose of TAIBOM is to provide a structured and verifiable framework for managing trust
in Al software components, ensuring their provenance, integrity and traceability across the entire Al
software lifecycle.

Training Process

Testing/QA/

Validation

ML Code base

UoISIBA

Trained Al
System

Deployable Al
System

Aouspuadaq

Tested Al System

Aouspuadaq
Aouspuadeq

UoISIOA
uoIsIan

Aouspuadeq

uoisien

Figure 2: TAIBOM Operation Workflow.

4.1. TAIBOM Data Model

The TAIBOM data model consists of multiple interconnected class objects depicted at Figure 1.

Data is a parent class for all datasets encompassing metadata such as name, label, location, crypto-
graphic hashes, and last access time. TrainingData extends Data, specifically capturing Al training
datasets, while DataPack aggregates multiple TrainingData instances, representing a structured
collection of datasets used in Al model training.

Code is a parent class for all code-related objects which encapsulates all software artifacts, tracking
their location, cryptographic integrity, and SBOM references. TrainingCode and InferencingCode
extends the parent Code component and are used to identify and describe training and inference
software along with their SBOMs. SBOM structure further integrates with CVE identifiers, ensuring that
known vulnerabilities are explicitly linked to the Al system’s components. Additionally, License
metadata is incorporated to track software licensing requirements.

Al System is a parent class that encompasses labels, code references, and training datasets. The
TrainedSystem and InferenceSystem inherits from AISystem, serving as the components re-
sponsible for executing model training and inference respectively. The TrainedSystem component
integrates DataPack and TrainingCode, and producing Weights, which represent the learned model
parameters. Weights inherit from Data and are linked to Config, which encapsulates key Al system
parameters, including associated training data and system metadata. The InferenceSystem is the
object of the resulting Al system, composed on Config and InferencingCode, used for designated
inference tasks in the actual deployment.

4.2. TAIBOM Framework

A fundamental aspect of the described TAIBOM Data Model is ensuring that all critical components,
including training datasets, training code packages, and SBOM descriptors, are cryptographically signed
and versioned. The linkage between SBOM descriptors and corresponding training code establishes a
chain of trust. Once the system undergoes training with a predefined configuration, trained weights,
inference code, and the SBOM descriptor for the SBOM code itself are also signed. As all components
contain signed hashes and traceback from resulting object to the source object, the architecture provides
integrity, traceability, and accountability, mitigating risks associated with unauthorised modification of
data, model weights, code or Al system configurations.

The TAIBOM operational workflow, illustrated in Figure 2, follows the conventional structure of

machine learning system development and deployment. It is organised into several key phases, with
TAIBOM augmenting each step through additional data collection, attestation, and integrity mechanisms.
The training phase involves the instantiation of a trained Al system that is explicitly tied to versioned
and attested training data and machine learning code, enabling full traceability of all artefacts involved.
The testing, QA, and validation phase assesses the robustness of the trained system, ensuring compliance
with predefined performance and security requirements. Once validated, the deployable Al system
is assembled using tested and attested components to ensure stability and reproducibility. The final
phase involves the deployed trained Al system, which performs real-world inferences while preserving
integrity guarantees and provenance tracking as defined by the TAIBOM attestation and versioning
data model.

5. TAIBOM Use Cases

This section evaluates the TAIBOM framework against most widespread Al documentation and software
composition tools — SPDX [27], CycloneDX [26] and model cards (Google [25], HuggingFace [24]) — by
examining four critical use cases that represent operational challenge in Al lifecycle assurance, security,
and traceability. The analysis contrasts the technical capabilities and design limitations of existing tools
with TAIBOM’s architecture and operational semantics.

Model cards provide standardised documentation for AI models, including training configurations,
intended use cases, and known limitations. However, they are self-reported and do not enforce integrity
or provenance checks on datasets, training code, or derived models. CycloneDX and SPDX Al extensions
offer structured software composition formats, enabling dependency visibility and limited vulnerability
referencing. However, these frameworks do not establish cryptographic links between Al components
(e.g., training datasets, trained weights) and their associated metadata, and thus cannot verify whether
components have remained unchanged or trustworthy throughout the development lifecycle.

In contrast, TAIBOM enforces signed attestations and cryptographic integrity checks across Al
artifacts, including datasets, training code, configuration files, and model weights. This ensures that all
artifacts can be independently validated and traced to their origin, providing a trust dimension that is
currently absent other approaches.

Below, we detail four representative use cases (UCs) in which TAIBOM’s trust mechanisms offer
substantial value. Table 1 provides a comparison of TAIBOM, Model Cards, and SPDX/CycloneDX Al
extensions across some of the most common use cases in the Al model lifecycle.

Table 1
Comparison of TAIBOM, Model Cards, and SPDX/CycloneDX for Al assurance use cases.

Use Case

TAIBOM

Model Cards

SPDX/CycloneDX

UC1: Declaring
Training Data

Signed, versioned,
hash-verified datasets with
licence and timestamp
metadata.

Descriptive only; lacks
signing, versioning, or
integrity verification.

Can reference datasets, but
lacks formal signing or
provenance tracking.

UC2: Data Verifies integrity through No support for integrity No dataset-level validation
Poisoning hash-based attestation; checks or poisoning or tamper detection.
Detection detects tampering. detection.

UC3: System Runtime attestation and No post-training Captures static
Tampering verification of code, model verification or attestation. dependencies only; lacks
Detection weights, and config. runtime validation.

UC4: CVE Tracks CVEs across training No CVE linkage or CVE mapping limited to

Impact Tracing

data, code, and models with
lifecycle propagation.

dependency tracking.

package-level; lacks Al
pipeline context.

UC 1: Declaring Training Data for Transparency

Al model training frequently involves datasets compiled from disparate or opaque sources. Without
structured, verifiable records of data composition, organisations face difficulties validating dataset
provenance, understanding licensing implications, or reproducing experimental outcomes.

Existing Approaches

SPDX. The SPDX standard, originally designed for traditional software, has been extended via SPDX
Al to include certain Al artifacts. Datasets may be represented as generic File or Package elements
using fields such as name, fileName, licenseConcluded, or checksums. However, SPDX Al treats
data as static external files and lacks a domain-specific schema for dataset structure, role (e.g., training
vs. test sets), or provenance tracking.

CycloneDX. CycloneDX Al allows datasets to be represented as components with type: data,
supporting metadata like externalReferences and hashes. However, the format is flat and does
not support relationships between datasets (e.g., folds or partitions), nor does it express their functional
roles in training workflows.

Model Cards. Model cards may include narrative descriptions of datasets, their origin, and limitations,
but offer no structured or verifiable representation of dataset usage.

TAIBOM Approach

TAIBOM defines Data and TrainingData objects, each containing cryptographic hashes, source
URIs, access times, and licensing metadata. Composite datasets are grouped using the DataPack
structure. These objects are cryptographically signed and versioned, and explicitly linked to the training
configuration (Config) and TrainedSystem components, ensuring verifiable dataset usage.

Brief Evaluation Summary

TAIBOM enables formal, cryptographically verifiable declarations of training datasets, while existing
tools treat datasets as informal metadata or lack semantics for Al-specific data structuring.

UC 2: Assessing Training Data for Poisoning

Data poisoning introduces malicious or manipulated samples into training datasets, often without
detection. Detecting poisoning requires dataset versioning, reproducibility, and traceability of data
inputs to model outputs.

Existing Approaches

SPDX. While SPDX allows for checksums on files, these are static and not integrated with Al work-
flows. There is no structured support for dataset versioning or lineage tracking.

CycloneDX. CycloneDX supports hash-based integrity checks and can represent dataset revisions as
separate components. However, there is no systematic way to express temporal lineage or bind datasets
to specific models.

Model Cards. Model cards lack dataset version tracking or programmatic validation, and are unsuit-
able for forensic analysis.

TAIBOM Approach

Each TrainingData object includes versioning metadata and a signed cryptographic hash. TAIBOM
records lineage via associations between DataPack, TrainedSystem, and Weights. Reused datasets
can be detected via hash comparisons, and deviations trigger verification failures. This supports
trace-based identification of potential poisoning across training runs.

Brief Evaluation Summary
TAIBOM supports integrity verification and historical comparison of training datasets — capabilities
absent from SPDX AI, CycloneDX, and model card approaches.

UC 3: Detecting Training and Inference System Tampering

Post-training tampering of Al components, such as code, configurations, or model weights, can result
in erroneous or malicious behaviour. Mitigation requires strong binding between training inputs and
deployed inference artifacts.

Existing Approaches
SPDX. SPDX AI documents software dependencies and licenses, but does not model training or

inference workflows. There is no construct to relate code to resulting models or configurations.

CycloneDX. CycloneDX Al introduces Al-specific components but lacks explicit workflow modeling.
Dependencies may be represented via a graph, but without semantic links between artifacts (e.g.,
weights generated from training code).

Model Cards. Model cards describe configurations and limitations, but are static and decoupled from
runtime code and outputs.

TAIBOM Approach

TAIBOM introduces structured workflow representations via TrainedSystemand InferenceSystem
classes. Each references TrainingCode, InferencingCode, Weights, and Config, all of which are
independently signed and versioned. These links enable reproducible revalidation of deployed systems
and detection of unauthorized changes to any component.

Brief Evaluation Summary

TAIBOM supports system-level tamper detection via cryptographic linkage and provenance tracking,
whereas other tools lack workflow semantics or enforcement mechanisms.

UC 4: Evaluating CVE Impact on Training and Inference Systems

New CVEs may affect software libraries used in Al training or inference. Identifying affected models
requires understanding which code components were used and how they relate to model artifacts.
Existing Approaches

SPDX. SPDX Al allows linking to CVEs via external references, but does not relate these to model

outputs or training processes. Vulnerabilities are scoped to individual files or packages only.

CycloneDX. CycloneDX includes a detailed vulnerability schema, enabling component-level CVE
annotations. However, these annotations are not connected to Al lifecycle stages or model dependencies,
limiting impact analysis.

Model Cards. Model cards do not include CVE information or component-level vulnerability refer-
ences.

TAIBOM Approach

TAIBOM binds each TrainingCode and InferencingCode object to a software descriptor con-
taining CVE and CWE references. These components are directly linked to TrainedSystem and
InferenceSystem objects, allowing automated identification of affected models and inference sys-
tems.

Brief Evaluation Summary

TAIBOM enables propagation of vulnerability information across Al workflows, supporting targeted
risk assessment. Other tools remain limited to surface-level vulnerability declarations without workflow
integration.

6. Discussion and Limitations

While TAIBOM offers a structured and verifiable framework for introducing trust into Al-enabled
systems, several open challenges remain for further research.

Granularity of Component Descriptions. As with traditional SBOMs, the level of granularity in
TAIBOM can be further refined. Determining the appropriate level of detail for representing Al-specific
artifacts, such as training subsets, model checkpoints, or dynamic configurations, remains an ongoing
area of improvement.

“Trusted” does not necessarily mean “secure”. It is important to clarify that “trusted” in the
context of TAIBOM does not imply complete or absolute security. Rather, it reflects adherence to a
defined trust model that includes cryptographic attestations and provenance guarantees under certain
assumptions — such as the trustworthiness of dataset providers, signing authorities, and the integrity
of the signing infrastructure.

Trust Chain Recall and Recovery. TAIBOM assumes that components in the supply chain are
verifiable. However, if a component is later found to be compromised (e.g. a poisoned dataset or a
tampered training script), procedures must be in place to recall or revoke the corresponding trust
attestations. Future work will explore mechanisms for restructuring or rebuilding the trust chain in
such scenarios, similar to revocation in certificate-based systems.

Scalability in Signing Large-Scale Data. Cryptographic signing of large-scale datasets, potentially
petabytes in size, presents practical challenges. To address this, probabilistic or representative sampling
methods (e.g., signing hashed subsets of data blocks) can be employed, enabling efficient integrity
verification without the need to sign entire datasets. However, the use of stronger trust anchors
remains an open consideration, particularly for deployments requiring higher assurance. Balancing the
integration of such mechanisms with performance, scalability, and operational constraints is essential
for practical adoption, especially in power-constrained environments.

7. Conclusions

This paper introduced TAIBOM, a trust-enabled Al Bill of Materials framework that extends conventional
SBOM principles with Al-specific constructs. TAIBOM offers a structured data model, cryptographic

attestation mechanisms, and a provenance-aware architecture to support trust, transparency, and
integrity across the Al pipeline — from training data and model weights to deployed inference systems.

Through detailed use cases and a comparative evaluation against existing solutions such as Model
Cards, SPDX Al and CycloneDX Al, we demonstrated TAIBOM’s capacity to address emerging chal-
lenges in Al assurance, security, and compliance. By supporting both technical verification and au-
ditability, TAIBOM enables principled trust-building in the next generation of Al-enabled software
systems. In addition to Al-specific provenance and integrity guarantees, TAIBOM’s design can also
help detect and mitigate broader system-level issues, such as data corruption during transmission or
storage, and reduce the impact of human errors in artifact handling.

Future work will focus on advancing the scalability of attestation mechanisms, refining trust recovery
strategies, and integrating TAIBOM with industry-standard development pipelines to support broader
adoption.

Acknowledgements

TAIBOM is supported by InnovateUK under grant 10092977: TAIBOM - Trusted Al Bill of Materials.

Declaration on Generative Al

Generative Al (ChatGPT, OpenAl) was used primarily for sentence polishing and grammar check in
selected parts of the manuscript to improve fluency. Following the use of this tool, the content was
further reviewed and edited as appropriate.

References

[1] T. Stalnaker, N. Wintersgill, O. Chaparro, M. Di Penta, D. M. German, D. Poshyvanyk, Boms away!
inside the minds of stakeholders: A comprehensive study of bills of materials for software systems,
in: Proceedings of the IEEE/ACM 46th International Conference on Software Engineering, ICSE
’24, Association for Computing Machinery, New York, NY, USA, 2024. URL: https://doi.org/10.
1145/3597503.3623347. doi:10.1145/3597503.3623347.

[2] W.Jiang, N. Synovic, R. Sethi, A. Indarapu, M. Hyatt, T. R. Schorlemmer, G. K. Thiruvathukal, J. C.
Davis, An empirical study of artifacts and security risks in the pre-trained model supply chain,
in: Proceedings of the 2022 ACM Workshop on Software Supply Chain Offensive Research and
Ecosystem Defenses, SCORED’22, Association for Computing Machinery, New York, NY, USA, 2022,
p. 105-114. URL: https://doi.org/10.1145/3560835.3564547. doi:10.1145/3560835.3564547.

(3] J. Biden, Executive order on improving the nation’s cybersecurity,
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/
executive-order-on-improving-the-nations-cybersecurity/, 2021. Accessed: 2024-06-20.

[4] D. C. European Commission, Cyber resilience act, 2023. URL: https://www.cisa.gov/sites/default/
files/2023-09/EU%20Commission%20SBOM%20Work_508c.pdf, accessed: 2024-08-27.

[5] B.Xia, T. Bi, Z. Xing, Q. Lu, L. Zhu, An empirical study on software bill of materials: Where we
stand and the road ahead, 2023. URL: https://arxiv.org/abs/2301.05362. arXiv:2301.05362.

[6] N.Zahan, E. Lin, M. Tamanna, W. Enck, L. Williams, Software bills of materials are required. are
we there yet?, IEEE Security & Privacy 21 (2023) 82-88. d0i:10.1109/MSEC.2023.3237100.

[7] H. Choung, P. David, A. R. and, Trust in ai and its role in the acceptance of ai tech-
nologies, International Journal of Human-Computer Interaction 39 (2023) 1727-1739.
URL: https://doi.org/10.1080/10447318.2022.2050543. d0i:10.1080/10447318.2022.2050543.
arXiv:https://doi.org/10.1080/10447318.2022.2050543.

[8] N. Omrani, G. Rivieccio, U. Fiore, F. Schiavone, S. G. Agreda, To trust or not to trust? an
assessment of trust in ai-based systems: Concerns, ethics and contexts, Technological Forecasting

https://doi.org/10.1145/3597503.3623347
https://doi.org/10.1145/3597503.3623347
http://dx.doi.org/10.1145/3597503.3623347
https://doi.org/10.1145/3560835.3564547
http://dx.doi.org/10.1145/3560835.3564547
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/
https://www.cisa.gov/sites/default/files/2023-09/EU%20Commission%20SBOM%20Work_508c.pdf
https://www.cisa.gov/sites/default/files/2023-09/EU%20Commission%20SBOM%20Work_508c.pdf
https://arxiv.org/abs/2301.05362
http://arxiv.org/abs/2301.05362
http://dx.doi.org/10.1109/MSEC.2023.3237100
https://doi.org/10.1080/10447318.2022.2050543
http://dx.doi.org/10.1080/10447318.2022.2050543
http://arxiv.org/abs/https://doi.org/10.1080/10447318.2022.2050543

[10]

[11]

[12]

[15]

[22]

[23]

and Social Change 181 (2022) 121763. URL: https://www.sciencedirect.com/science/article/pii/
S50040162522002888. doi:https://doi.org/10.1016/j.techfore.2022.121763.

F. Gille, A. Jobin, M. Ienca, What we talk about when we talk about trust: Theory of trust for
ai in healthcare, Intelligence-Based Medicine 1-2 (2020) 100001. URL: https://www.sciencedirect.
com/science/article/pii/S2666521220300016. doi:https://doi.org/10.1016/j.ibmed.2020.
100001.

N. Telecommunications, I. Administration, Software bill of materials (sbom), 2021. URL: https:
//www.ntia.gov/page/software-bill-materials, accessed: 2024-08-27.

NIST, Common Platform Enumeration (CPE), 2024. URL: https://nvd.nist.gov/products/cpe, [Ac-
cessed: Jun. 19, 2024].

NIST, Nist’s cve process, 2024. URL: https://nvd.nist.gov/general/cve-process, [Accessed: Jun. 19,
2024].

M. Corporation, About common weakness enumeration, 2024. URL: https://cwe.mitre.org/about/
index.html, [Accessed: Jun. 19, 2024].

M. Feng, Z. Yuan, F. Li, G. Ban, Y. Xiao, S. Wang, Q. Tang, H. Su, C. Yu,]J. Xu, A. Piao, J. Xue,
W. Huo, B2sfinder: detecting open-source software reuse in cots software, in: Proceedings of the
34th IEEE/ACM International Conference on Automated Software Engineering, ASE 19, IEEE
Press, 2020, p. 1038-1049. URL: https://doi.org/10.1109/ASE.2019.00100. doi:10.1109/ASE. 2019.
00100.

R. Duan, A. Bijlani, M. Xu, T. Kim, W. Lee, Identifying open-source license violation and 1-day
security risk at large scale, in: Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security, CCS 17, Association for Computing Machinery, New York, NY,
USA, 2017, p. 2169-2185. URL: https://doi.org/10.1145/3133956.3134048. doi:10.1145/3133956.
3134048.

A. Hemel, K. T. Kalleberg, R. Vermaas, E. Dolstra, Finding software license violations through
binary code clone detection, in: Proceedings of the 8th Working Conference on Mining Software
Repositories, MSR 11, Association for Computing Machinery, New York, NY, USA, 2011, p. 63-72.
URL: https://doi.org/10.1145/1985441.1985453. doi:10.1145/1985441.1985453.

Trivy: Open source vulnerability scanner, 2024. URL: https://trivy.dev/v0.33/, accessed: 2024-11-28.
Microsoft, Sbom tool: Generate software bill of materials (sboms), n.d. URL: https://github.com/
microsoft/sbom-tool, accessed: 2024-11-28.

Anchore, Syft: A cli tool and library for generating sboms from container images and filesystems,
n.d. URL: https://github.com/anchore/syft, accessed: 2024-11-28.

W. Tang, Z. Xu, C. Liu, J. Wu, S. Yang, Y. Li, P. Luo, Y. Liu, Towards understanding third-party
library dependency in c¢/c++ ecosystem (2022). URL: https://doi.org/10.1145/3551349.3560432.

T. Hu, Z. Xu, Y. Fang, Y. Wu, B. Yuan, D. Zou, H. Jin, Fine-grained code clone detection with block-
based splitting of abstract syntax tree, in: Proceedings of the 32nd ACM SIGSOFT International
Symposium on Software Testing and Analysis, ISSTA 2023, Association for Computing Machinery,
New York, NY, USA, 2023, p. 89-100. URL: https://doi.org/10.1145/3597926.3598040. doi:10. 1145/
3597926.3598040.

S. Woo, S. Park, S. Kim, H. Lee, H. Oh, Centris: A precise and scalable approach for identifying
modified open-source software reuse, in: Proceedings of the 43rd International Conference
on Software Engineering, ICSE "21, IEEE Press, 2021, p. 860—-872. URL: https://doi.org/10.1109/
ICSE43902.2021.00083. doi:10.1109/ICSE43902.2021.00083.

Q.Lu, L. Zhu, X. Xu, J. Whittle, Z. Xing, Towards a roadmap on software engineering for responsible
ai, in: Proceedings of the 1st International Conference on Al Engineering: Software Engineering
for Al, CAIN 22, Association for Computing Machinery, New York, NY, USA, 2022, p. 101-112.
URL: https://doi.org/10.1145/3522664.3528607. doi:10.1145/3522664 .3528607.

H. Face, Model cards, https://huggingface.co/docs/hub/model-cards, 2020. Accessed: 2025-03-31.
M. Mitchell, S. Wu, A. Zaldivar, P. Barnes, L. Vasserman, B. Hutchinson, E. Spitzer, I. D. Raji,
T. Gebru, Model cards for model reporting, in: Proceedings of the Conference on Fairness,
Accountability, and Transparency (FAT* 2019), ACM, 2019, pp. 220-229. doi:10.1145/3287560.

https://www.sciencedirect.com/science/article/pii/S0040162522002888
https://www.sciencedirect.com/science/article/pii/S0040162522002888
http://dx.doi.org/https://doi.org/10.1016/j.techfore.2022.121763
https://www.sciencedirect.com/science/article/pii/S2666521220300016
https://www.sciencedirect.com/science/article/pii/S2666521220300016
http://dx.doi.org/https://doi.org/10.1016/j.ibmed.2020.100001
http://dx.doi.org/https://doi.org/10.1016/j.ibmed.2020.100001
https://www.ntia.gov/page/software-bill-materials
https://www.ntia.gov/page/software-bill-materials
https://nvd.nist.gov/products/cpe
https://nvd.nist.gov/general/cve-process
https://cwe.mitre.org/about/index.html
https://cwe.mitre.org/about/index.html
https://doi.org/10.1109/ASE.2019.00100
http://dx.doi.org/10.1109/ASE.2019.00100
http://dx.doi.org/10.1109/ASE.2019.00100
https://doi.org/10.1145/3133956.3134048
http://dx.doi.org/10.1145/3133956.3134048
http://dx.doi.org/10.1145/3133956.3134048
https://doi.org/10.1145/1985441.1985453
http://dx.doi.org/10.1145/1985441.1985453
https://trivy.dev/v0.33/
https://github.com/microsoft/sbom-tool
https://github.com/microsoft/sbom-tool
https://github.com/anchore/syft
https://doi.org/10.1145/3551349.3560432
https://doi.org/10.1145/3597926.3598040
http://dx.doi.org/10.1145/3597926.3598040
http://dx.doi.org/10.1145/3597926.3598040
https://doi.org/10.1109/ICSE43902.2021.00083
https://doi.org/10.1109/ICSE43902.2021.00083
http://dx.doi.org/10.1109/ICSE43902.2021.00083
https://doi.org/10.1145/3522664.3528607
http://dx.doi.org/10.1145/3522664.3528607
https://huggingface.co/docs/hub/model-cards
http://dx.doi.org/10.1145/3287560.3287596
http://dx.doi.org/10.1145/3287560.3287596

3287596.

[26] CycloneDX, Cyclonedx sbom standard, https://cyclonedx.org, 2024. Accessed: 2025-03-31.

[27] S. Project, Spdx ai: Extending the software package data exchange for ai systems, https://spdx.
dev/specifications/ai/, 2023. Accessed: 2025-03-31.

[28] DVC, Data version control, https://dvc.org, 2020. Accessed: 2025-03-31.

[29] Accelerating the machine learning lifecycle with MLflow, USENIX Association, Santa Clara, CA,
2019.

http://dx.doi.org/10.1145/3287560.3287596
http://dx.doi.org/10.1145/3287560.3287596
https://cyclonedx.org
https://spdx.dev/specifications/ai/
https://spdx.dev/specifications/ai/
https://dvc.org

	1 Introduction
	2 Background
	2.1 Software Bill of Materials
	2.2 AI Bill of Materials

	3 Related Work
	3.1 Existing AIBOM Proposals
	3.2 TAIBOM: A Trustable AIBOM Solution

	4 TAIBOM Architecture
	4.1 TAIBOM Data Model
	4.2 TAIBOM Framework

	5 TAIBOM Use Cases
	6 Discussion and Limitations
	7 Conclusions

