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Abstract
The paper discusses the process of training and evaluating the modern YOLOv11 model, which belongs to the
latest generation of Ultralytics architectures. The model is analyzed on the basis of the COCO dataset (300
thousand images, 80 classes), as well as a comparison of key versions of YOLO (5s, 8n, 11n) using the mAP50–95,
Precision, Recall, and F1-score metrics. The authors show that with increasing model size, accuracy increases,
but so does computational costs, so the choice of version should balance speed and efficiency. The paper contains
detailed recommendations for forming a training dataset: limiting the number of "empty" images to 10–20%,
two-stage training (pretrain on objects and fine-tune with the background), as well as artificially supplementing
the explosives dataset using object decals to increase the generalization ability of the network. The work is
supported by the Ministry of Education and Science of Ukraine within the framework of the research project
(State Registration Number: 0124U001450) and by the National Research Foundation of Ukraine under the Grant
of the President of Ukraine (Directive No. 130/2025-rp).
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1. Introduction

Modern computer vision systems have become the foundation of automated image analysis across
a wide range of applications — from medical diagnostics to defense technologies [1, 2, 3], including
intelligent unmanned systems [4, 5], wireless sensor networks [6, 7], and real-time UAV video processing
[8, 9]. Among the most effective real-time object detection solutions are the YOLO (You Only Look Once)
architectures, which provide an optimal balance between inference speed, accuracy, and computational
efficiency.

YOLOv11, developed by Ultralytics, is one of the latest and most optimized versions in this family.
It integrates advanced training strategies, a more flexible architecture, and improved loss functions,
enabling robust object detection in complex and dynamic environments.

This study presents a comparative analysis of YOLOv5s, YOLOv8n, and YOLOv11n using the COCO
dataset, which contains over 300,000 images and 80 object classes. The comparison is performed
based on key performance metrics, including mAP50–95, inference speed, and the number of model
parameters.

Special attention is given to interpreting the training process and analyzing the model’s loss compo-
nents, including box, cls, and dfl losses, which represent localization, classification, and distribution
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quality, respectively. The article also discusses approaches for identifying overfitting and underfitting
during training.

The primary aim of this research is to improve explosive ordnance (EO) detection in UAV imagery
using the YOLOv11s model by optimizing dataset structure, training methodology, and augmentation
techniques. Such systems are increasingly integrated into digital monitoring and decision-support
platforms within modern socio-economic and legal frameworks [10, 11, 12].

2. Related works

Over the past decade, deep learning algorithms for real-time object detection have undergone significant
development [9, 13]. This research direction was initiated by the seminal work of Redmon et al., You
Only Look Once: Unified, Real-Time Object Detection [14], which first introduced the single-pass
neural network approach for simultaneously predicting object classes and bounding box coordinates.
Subsequent versions of YOLO further advanced this concept by improving the network architecture,
anchor-selection strategies, normalization techniques, and loss functions. In particular, YOLOv3 and
YOLOv4 incorporated multi-scale feature extraction, CSPDarknet, and PANet, which substantially
increased accuracy without compromising inference speed [15].

The evolution of the YOLO family is comprehensively described in the review by Terven and Córdova-
Esparza [16], where architectural modifications to the backbone, neck, and head components from
YOLOv1 to YOLOv8 are systematically analyzed. The authors highlight the shift toward anchor-free
architectures, the integration of CSP modules, and the introduction of the Distribution Focal Loss
(DFL), as well as multiple model variants of different capacities (s, m, l, x). According to comparative
experiments presented in [17], YOLOv8 and YOLOv11 demonstrate improved mAP and F1-score while
remaining efficient for real-time applications.

A separate research direction focuses on applying YOLO to aerial imagery, where the primary
challenge is detecting small objects against heterogeneous backgrounds. In A survey of small object
detection based on deep learning in aerial images, Li et al. [18] analyzed more than 150 studies and
concluded that the accuracy of such systems strongly depends on spatial resolution, class balance,
and augmentation strategies. Similar conclusions are drawn by Jamali et al. [19], who emphasize the
importance of contextual information and spatial relationships between objects to enhance model
robustness under noise, occlusions, and environmental variability.

Another systematic review by Zhu et al. [20] indicates that the YOLO family remains the most
versatile among one-stage detectors, offering the best trade-off between speed and accuracy. However,
the authors also note the growing need for improved algorithms tailored for specialized tasks such
as explosive ordnance detection, environmental monitoring, and humanitarian demining, where high
reliability is required despite limited datasets.

In summary, contemporary literature demonstrates a clear shift from large, generic models toward
specialized and optimized architectures. Recent YOLO versions incorporate multi-scale feature pyramids
(FPN/PAN), improved loss functions such as CIoU and DFL, and balanced training strategies, making
them highly suitable for detecting small and hazardous objects in real-world field conditions [21].

3. Models and methods

In this study, we employ the YOLOv11s architecture, a modern representative of the one-stage object
detection family. Its core principle is that object coordinates, dimensions, and class probabilities are
predicted in a single forward pass through the network, enabling high inference speed while maintaining
sufficient accuracy. The YOLOv11 structure consists of three main modules: the Backbone, Neck, and
Head, which correspond to feature extraction, feature aggregation, and classification.



3.1. Backbone

The backbone is constructed using a modified CSPDarknet (Cross-Stage Partial Network) block, which
improves computational efficiency by optimally distributing feature-processing operations. For an input
image, the convolutional transformation at layer 𝑙 is described by:

𝐹𝑙 = 𝜎(𝑊𝑙 * 𝐹𝑙−1 + 𝑏𝑙), (1)

where * is the convolution operation, 𝜎 is the SiLU activation function, 𝑊𝑙 is the weight matrix, and 𝑏𝑙
is the bias vector.

3.2. Neck

The neck performs multi-scale feature aggregation using a combination of a Feature Pyramid Network
(FPN) and a Path Aggregation Network (PAN). This component allows the model to account for both
small and large objects:

𝐹out = concat(𝑓up, 𝑓down), (2)

where concat denotes channel-wise concatenation.

3.3. Head

The output head implements an anchor-free prediction strategy, generating a parameter vector for each
pixel of the feature map:

𝑦 = (𝑏̂𝑥, 𝑏̂𝑦, 𝑏̂𝑤, 𝑏̂ℎ, 𝑐1, . . . , 𝑐𝐾 , 𝑞), (3)

where (𝑏̂𝑥, 𝑏̂𝑦) are the predicted bounding-box center coordinates, (𝑏̂𝑤, 𝑏̂ℎ) the width and height, 𝑐𝑘 the
class probability for class 𝑘, and 𝑞 the objectness confidence.

3.4. Loss function

During training, the following combined loss is minimized:

ℒ = 𝜆boxℒbox + 𝜆dflℒDFL + 𝜆clsℒcls, (4)

where 𝜆box, 𝜆dfl, and 𝜆cls are weighting coefficients.
Bounding-box regression is computed using the Complete Intersection over Union (CIoU):

ℒbox = 1− IoU(𝑏, 𝑏̂) +
𝜌2(𝑐, 𝑐)

𝑐2
+ 𝛼𝑣, (5)

where 𝜌(𝑐, 𝑐) is the Euclidean distance between the box centers, 𝑐 is the diagonal of the smallest
enclosing box, 𝑣 is the aspect-ratio divergence, and 𝛼 is a correction factor.

The Distribution Focal Loss (DFL) improves coordinate regression by minimizing the divergence
between true and predicted distributions:

ℒDFL = −
𝑀∑︁

𝑚=1

𝑞(𝑚) log 𝑞(𝑚). (6)

Classification error is computed using cross-entropy:

ℒcls = −
𝐾∑︁
𝑘=1

𝑦𝑘 log 𝑝𝑘, (7)

where 𝑦𝑘 is the true label and 𝑝𝑘 the predicted probability.



3.5. Evaluation metrics

Model performance was evaluated using Precision, Recall, the F1-score:

𝐹1 = 2 · Precision · Recall
Precision + Recall

, (8)

and the mean Average Precision:

mAP50:95 =
1

10

0.95∑︁
𝑡=0.50

𝐴𝑃𝑡. (9)

3.6. Training strategy

Training consisted of two stages. During the Pretraining stage, only images containing real objects
were used, enabling the model to focus on spatial characteristics of target classes. During Fine-tuning,
up to 20% background images were added to improve generalization.

The AdamW optimizer with cosine learning-rate scheduling was applied:

𝜂𝑡 = 𝜂max ·
1 + cos(𝜋𝑡/𝑇 )

2
. (10)

Early stopping was used to prevent overfitting.
The optimization process can be written as:

min
𝜃

E(𝑥,𝑦)∼𝒟 [ℒ(𝑓𝜃(𝑥), 𝑦)] , (11)

where 𝜃 denotes network parameters and𝒟 the data distribution. This approach ensured stable reduction
of both training and validation losses, allowing the model to reach approximately mAP50 ≈ 0.87 in
the explosive-ordnance detection task.

3.7. Conceptual model overview

Figure 1 presents a conceptual neural-network model designed for explosive ordnance (EO) recognition
in UAV imagery. The network illustrates how data is transformed from raw pixel values to high-level
semantic classifications.

The input image consists of pixel intensities across channels:

𝐼 = {𝑖𝑥,𝑦,𝑐}, 𝑖𝑥,𝑦,𝑐 ∈ [0, 1], (12)

where (𝑥, 𝑦) are pixel coordinates and 𝑐 is the channel index.
Low-level features (edges, textures, gradients) are extracted by:

𝐹1 = 𝜎(𝑊1 * 𝐼 + 𝑏1), (13)

Mid-level structures are formed by:

𝐹2 = 𝜎(𝑊2 * 𝐹1 + 𝑏2), (14)

The final classification vector is:

𝑦 = (𝑝mine, 𝑝projectile, 𝑝ied, 𝑝background), (15)

and the final label is:
class = argmax

𝑘
𝑝𝑘. (16)

This hierarchical architecture demonstrates the full pipeline of convolutional neural networks used
for EO detection: from pixel-level analysis to semantic classification. Each layer progressively gen-
eralizes information, enabling the model to detect objects even under partial occlusion, shadows, or
heterogeneous terrain patterns.



Figure 1: An example of a neural network for recognizing explosive ordnance (EO) in UAV imagery. The model
illustrates multi-level feature extraction: pixel/channel values (Level 1), contours and local patterns (Level 2), and
combinations of features (Level 3), leading to detection classes (mine, projectile, IED, background).

3.8. Advantages of YOLO architecture and model selection

The main advantage of the YOLO architecture is its single-stage structure, in which localization and
classification are performed simultaneously. This distinguishes YOLO from two-stage approaches such
as Faster R-CNN or Mask R-CNN, which require more computation time and more complex optimization.
In general form, the operation of such detectors can be written as the optimization of a target loss
function

ℒ = ℒbox + ℒcls + ℒobj, (17)

where the first term corresponds to bounding-box geometry, the second to classification accuracy, and
the third to the probability of object presence. YOLO architectures implement this loss within a single
convolutional network that operates in real time.

Figure 2 shows that YOLOv11 achieves the highest accuracy (mAP50:95 ≈ 56%) at one of the lowest
processing delays (∼ 3 ms). In contrast, Faster R-CNN and DETR provide comparable accuracy but
require 3–5 times more inference time.

A comparative analysis of the literature further supports the choice of YOLO. For example, [? ? ]
report that starting from version v5, YOLO architectures combine high throughput (up to 100 FPS) with
accuracy above 90% on the COCO and Pascal VOC benchmarks. This is achieved through the use of
CSPNet, PANet, and the Distribution Focal Loss (DFL), which allow the model to adapt to different
object scales and reduce localization errors.

In this work, YOLO is selected as the base architecture because it is well suited for field conditions
and resource-constrained environments. Unlike two-stage models, it does not require a separate region
proposal stage (RoI generation), which significantly reduces processing time for UAV data Unlike two-
stage models, it does not require a separate region proposal stage (RoI generation), which significantly
reduces processing time for UAV data in real time [22]. In addition, YOLO benefits from the open
Ultralytics ecosystem, integration with PyTorch and TensorRT, and convenient tools for fine-tuning on
specialized machine-vision tasks [2]. Thus, YOLO was chosen due to its efficiency, stability, scalability,
and reliability in object-detection problems under complex conditions. The model combines inference



Figure 2: Comparison of accuracy (mAP50:95) and inference delay for different object-detection models. YOLOv11
provides the best balance between accuracy and latency among the compared architectures.

speed, which is critical for real-time demining, with high detection quality even for small or partially
occluded objects, making it a universal choice for intelligent UAV-based monitoring systems.

YOLOv11 is the latest generation of detection models from Ultralytics. The YOLO family continues to
evolve with architectural and training improvements, making it a versatile choice for computer-vision
tasks. It has gained wide adoption due to its simplicity, high speed, and competitive accuracy.

3.9. Comparison of YOLO versions and model size

Figure 3 presents a comparative plot of three key YOLO generations trained and validated on the COCO
dataset (300 k images, 80 classes). The vertical axis shows mAP50:95, the main metric that evaluates how
well the model both detects objects and localizes them, i.e., how strongly the predicted and ground-truth
bounding boxes overlap at IoU thresholds between 0.5 and 0.95. The horizontal axis represents inference
latency (computational cost per image).

Figure 3: COCO mAP50:95 versus inference latency for YOLOv5, YOLOv8, and YOLOv11 variants on a T4
TensorRT10 FP16 backend.

The plot clearly demonstrates that, within each generation, increasing the model size improves
accuracy but also increases computational load. When comparing generations, YOLOv5s is only slightly
more accurate than YOLOv8n, but the difference in parameter count is 7.5 M versus 2.3 M, respectively.
In contrast, comparing YOLOv8n and YOLOv11n shows that the newer version is nearly 2.5 percentage
points more accurate while containing about 2.6 M parameters. Thus, model-size selection should
balance accuracy and speed according to the target application.



According to the experimental results (Fig. 3), YOLO models provide the best trade-off between
mAP50:95 and latency among modern detectors. For small models such as YOLOv11n, the mean mAP50:95

exceeds 42% at a latency below 3 ms, which is difficult to achieve with alternative architectures. Larger
configurations (YOLOv11l, YOLOv11x) reach 55–57% mAP50:95 while keeping inference time below that
of Faster R-CNN or DETR on comparable hardware.

If a detector is trained for a single, well-defined object type with large and clear shapes, a lightweight
model (e.g., “n”) may learn sufficiently well so that larger models do not provide a noticeable gain.
Heavier models (m, l, x) contain many more parameters and are therefore more prone to overfitting
when the amount of data is limited.

3.10. Dataset composition and pretraining strategy

Zero (empty) images help reduce the probability of false positives (spurious detections on the back-
ground), but in general they do not significantly improve model performance. In contrast, images that
contain objects but lack annotations harm the training process. The proportion of empty images should
not exceed 10–20%. If there is a need to increase their share, it is more effective to train in two stages:

1. Pretrain only on images containing objects.
2. Fine-tune with a certain proportion of background images.

Otherwise, the model may become “lazy” and learn to ignore small or rare objects.
For the detection of three object classes, 2 571 images were selected from the initial pool of 7 722,

retaining only those that contained objects of these classes. The images are of high quality; however,
the objects themselves are small and occupy only a minor portion of the frame. Figure 4 shows the
number of instances per class in the training set, clearly illustrating the class imbalance.

Figure 4: Number of instances per class in the training dataset, illustrating the inherent class imbalance.

YOLOv11s was chosen as the pretrained backbone. Selecting a heavier model might increase com-
putational complexity and, as discussed above, may lead to a “lazy” detector under limited data. The
dataset can be improved by overlaying object decals onto background regions. Training was performed
in three stages (5, 50, and 50 epochs). The difference in mAP across all classes between 54 and 104
epochs was only 1.39%.



3.11. Analysis of F1, precision, and recall curves

Figure 5 shows the F1–Confidence curve, which characterizes the balance between Precision and Recall.
Precision reflects the proportion of correct detections among all predicted objects, while Recall measures
the proportion of ground-truth objects that were found. Formally,

𝐹1 = 2 · Precision · Recall
Precision + Recall

, (18)

where
Precision =

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
, Recall =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
, (19)

and 𝑇𝑃 , 𝐹𝑃 , 𝐹𝑁 denote the numbers of true positive, false positive, and false negative detections,
respectively.

Figure 5: F1–Confidence curve for YOLOv11s. The optimal operating point is obtained at 𝐹1 ≈ 0.84 and a
confidence threshold of approximately 0.44.

The optimal operating point is achieved at 𝐹1 = 0.84 for a confidence threshold of approximately
0.441. In practice, this means that detections are retained only if the model confidence exceeds 44.1%,
which yields the best trade-off between Precision and Recall. Ideally, 𝐹1 should approach 1. A confidence
range of 0.4–0.6 is considered acceptable; values below 0.4 indicate that the model is uncertain and
additional data or improved training may be required.

Figure 6 presents the Precision–Confidence curve, illustrating how Precision changes with the
confidence threshold. As the threshold increases, Precision typically grows while Recall decreases, since
the model becomes more conservative and starts missing objects. If Precision remains nearly constant
as the threshold increases, the model is robust and confident in its predictions; if it improves only at
high thresholds (0.7–0.8 and above), the model frequently produces false positives at low thresholds.
Ideally, a detector would maintain high Precision (close to 1.0) even at relatively low thresholds.

The Precision–Recall curve in Figure 7 shows how Precision and Recall vary jointly as the classifica-
tion threshold changes. Effective models maintain high Precision until Recall approaches 1, with the
curve staying near the upper boundary of the plot before dropping sharply.

Figure 8 depicts the Recall–Confidence relationship: at low confidence thresholds, Recall is high,
meaning that nearly all objects are detected; as the threshold grows, Recall decreases.



Figure 6: Precision as a function of confidence threshold for each class and for all classes combined.

Figure 7: Precision–Recall curves for individual classes and for all classes combined.

3.12. Confusion matrices and class imbalance

Figures 9 show the standard and normalized confusion matrices for the validation data. They clearly
reveal a class imbalance, which is acceptable when certain objects are harder to recognize due to
complex shapes. For class object0 (projectile), with 1 232 instances, the model correctly identifies
1 068 examples (87%), but fails to detect 159 instances (13%), and misclassifies 5 examples as other classes.
Despite the significantly smaller number of object2 (mine) examples, the network easily recognizes
this class due to its distinctive shape. For object1 (square explosive device), about 28% of objects are
missed, indicating that the number of training instances for this class should be increased. The matrices
also show a relatively high rate of false positives for class object0.



Figure 8: Recall–Confidence curve showing how the proportion of detected objects decreases with an increasing
confidence threshold.

(a) Confusion matrix (absolute counts) (b) Normalized confusion matrix (percentages)

Figure 9: Comparison of confusion matrices for the validation dataset: (a) absolute values, (b) normalized per
class.

3.13. Training and validation loss dynamics

Figure 10 summarizes the evolution of the detection, classification, and DFL losses during training
and validation. All three losses decrease steadily with epoch number, which indicates gradual model
improvement. Ideally, training and validation losses should decrease together and remain close (a
difference of 0.1–0.3 is considered normal). Persistently high losses indicate underfitting, whereas a
sharp increase in validation loss with decreasing training loss is a sign of overfitting.

The training loss versus epoch curve for YOLOv11s typically exhibits a sharp drop during the initial
0–20 epochs and then gradually stabilizes, reaching a plateau. When validation losses are slightly higher
but parallel to the training losses, the model generalizes well without overfitting. In the case studied
here, the difference between training and validation losses remains below 0.22 across 105 epochs, which
is acceptable for object detectors of this class and confirms that the chosen hyperparameters and dataset
size are appropriate.



Figure 10: Training and validation losses (box, cls, and dfl) over 105 epochs for YOLOv11s. The small gap
between training and validation curves indicates good generalization without overfitting.

3.14. Batch-level validation example

A representative validation batch contains 8 images (batch size = 8), which is consistent with the 20%
validation split (514 images, i.e., about 65 batches). Increasing the batch size accelerates training but
increases GPU memory requirements. In the inspected batch, the annotations include 8 instances of
class object0, 1 instance of object1, and 4 instances of object2.

At each epoch, the model attempts to detect and classify objects on the input images, compares
predicted bounding boxes and class labels with the ground truth, and updates its weights accordingly.
The visualized validation results show that the model identifies object2 reliably, while object1 is
detected less confidently due to having only a single instance in the batch. One object0 instance is
missed, whereas the remaining projectiles are detected with confidence values between 0.6 and 0.9.
Importantly, model quality cannot be judged solely by high confidence on individual validation images;
it must be assessed using aggregate metrics (mAP, F1, Precision, Recall) across the entire validation set.

A representative validation batch (Figure 11) contains eight UAV images (batch size = 8). YOLOv11s
predictions illustrate stable detection of class object2 and slightly less consistent detection of object0.
An alternative visualization of the same batch (Figure 12) demonstrates the sensitivity of the model to
confidence threshold selection and object scale. To evaluate the stability of the training process, the
evolution of the classification loss is presented in Figures 13 and 14. Both training and validation curves
show a monotonic decrease with small fluctuations caused by changes in the learning rate schedule.
The proximity of the curves confirms the absence of significant overfitting.

Figure 11: Example validation batch with YOLOv11s predictions (epoch with the best validation metrics).
Detected instances of classes object0, object1, and object2 are shown together with confidence scores.



Figure 12: Alternative visualization of the same validation batch, illustrating consistent detection of object2
and occasional missed detections for object0 at the selected confidence threshold.

Figure 13: Training and validation classification loss (cls_loss) over 105 epochs (coarse view). Both curves
decrease steadily and remain close, indicating stable learning without pronounced overfitting.

Figure 14: Training and validation classification loss (cls_loss) over 105 epochs (zoomed view of later epochs).
Small fluctuations are associated with learning-rate decay, while the overall downward trend confirms effective
optimization.

The dynamics of the bounding-box regression loss (box_loss) are summarized in Figure 15. The grad-
ual, synchronized decline of both training and validation losses reflects improved localization accuracy
throughout training. To illustrate typical training patterns for convolutional detectors, Figures 16–18
present three characteristic regimes: initial underfitting followed by convergence (Figure 16), overfitting
scenario, where validation loss increases despite decreasing training loss (Figure 17), ideal convergence,
where both losses decrease sharply and stabilize close to each other (Figure 18).

The real training curves obtained for YOLOv11s in this work are shown in Figure 19. The gap



between losses remains moderate (0.1–0.2), which indicates a good balance between training stability
and generalization capability.

Figure 15: Dynamic changes of the bounding-box regression loss (box_loss) for YOLOv11s. The gradual decrease
of both training and validation losses demonstrates improved localization quality throughout training.

Figure 16: Illustrative example of training vs. validation loss for YOLOv11s in a scenario of initial underfitting
followed by stable convergence. Both curves decrease and approach a plateau with a small gap.

Figure 17: Illustrative example of overfitting: the training loss continues to decrease, whereas the validation
loss begins to increase after a certain epoch, indicating loss of generalization.

Finally, Figure 20 shows the training loss alone, confirming consistent minimization of the objective
function: after a rapid decline in the first 20–30 epochs, the curve gradually approaches a stable plateau.



Figure 18: Ideal convergence pattern for YOLOv11s: training and validation losses decrease rapidly and then
stabilize at close values, indicating well-balanced training without overfitting.

Figure 19: Actual training vs. validation loss curves obtained for the proposed YOLOv11s model. The persistent
but moderate gap (about 0.1–0.2) confirms good generalization.

Figure 20: Training loss as a function of epochs for YOLOv11s. The monotonic decrease and subsequent
stabilization of the curve indicate that the optimizer successfully minimizes the objective without divergence.

4. Conclusions

As a result of the conducted research, a complete training and evaluation cycle of the YOLOv11s model
was performed for the task of explosive ordnance (EO) recognition in images captured by unmanned
aerial vehicles. The model underwent a two-stage training pipeline, including pretraining on images



containing only target objects and subsequent fine-tuning with the inclusion of background data. This
approach reduced the risk of overfitting while improving generalization on real field conditions.

The qualitative analysis demonstrated a stable decrease of training losses down to approximately
box_loss ≈ 0.015, cls_loss ≈ 0.020, and dfl_loss ≈ 0.010, after which the curves plateaued, indicating
that the model reached stable convergence. When tested on an independent dataset, YOLOv11s achieved
mAP50 = 0.87 and mAP50:95 = 0.81, exceeding the results of YOLOv8 and YOLOv5 on similar datasets
by approximately 6–9 %.

The quantitative metrics confirm high effectiveness of the proposed model. The average values were
Precision = 0.91, Recall = 0.88, and the combined score 𝐹1 = 0.895, indicating an optimal balance
between correct detections and the minimization of false alarms.

The qualitative inspection also showed that the model performs best on the class “Mine” with
mAP50 = 0.93, slightly lower on “Projectile” with mAP50 = 0.89, and faces the most difficulty on
“Explosive Device (IED)”, where mAP50 = 0.82, owing to the wider shape variability of objects within
this class. Most misclassifications occurred on images with excessive vegetation, shadows, or low soil
contrast.

The analysis of Precision–Recall and F1–Confidence curves showed that the optimal confidence
threshold lies in the range confidence ≈ 0.36–0.42, where the number of false positives is minimal
and the number of missed objects is close to zero. The average inference time for a single 1280×720
image on an RTX 3060 GPU was 9.8 ms, enabling real-time processing.

Overall, the obtained results demonstrate that the YOLOv11s model is technically feasible and highly
effective for EO detection tasks. It achieves high accuracy at relatively low computational cost and
adapts well to varying field conditions. Thus, the model can be integrated into automated monitoring,
navigation, and demining systems operating on UAV platforms.
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