CEUR-WS.org/Vol-4157/paper6.pdf

CEUR
E Workshop
Proceedings

published 2026-02-05

Towards Trustworthy Al Results using Evidence Structures:
From Certificates to Argumentation Frameworks

Shawn Bowers?!, Bertram Ludischer®*

"Department of Computer Science, Gonzaga University, WA, USA
?School of Information Sciences, University of Illinois, Urbana-Champaign, IL, USA

Abstract

High-stakes domains such as law, medicine, and scientific inference require Al systems to deliver results that are
not merely explained, but are independently verifiable. We propose TAIR (Trustworthy AI Results), a framework
that treats Al systems as evidence-carrying answer generators: Given a user query ), the system produces
answers A together with evidence structures E. An evidence structure is a domain-appropriate artifact used
to verify that A is valid, or at least rationally defensible, via domain expertise and/or external tools. Which
evidence is appropriate depends not only on the domain, but also on the user’s role and evidential needs (e.g.,
lay user, domain expert, or auditor). By focusing on evidence rather than model internals, TAIR synthesizes
ideas from certifying algorithms, proof-carrying code, provenance systems, and computational argumentation
into a unified evidence-first architecture. The framework provides a three-phase iterative workflow pattern
(generation, verification, gap detection) that externalizes trust to independent checks and uses feedback to
iteratively strengthen (@, A, F) triples. Evidence structures can range from algorithmic witnesses and proof
certificates to argumentation frameworks and warrant chains. TAIR treats evidential standards as domain-
dependent: Mathematical domains require formal proofs or proof certificates, computational problems use
algorithmic certificates, and legal/scientific domains employ structured argumentation. We illustrate TAIR
with case studies spanning formal proof artifacts and defeasible legal argumentation, and outline a multi-agent
meta-workflow for generating, verifying, and refining evidence-carrying Al results.

1. Introduction

Current approaches to model interpretability and explainable AI (XAI) focus on understanding and
explaining model internals (attention weights, feature importance, decision paths), often through natural
language narratives generated by large language models [1], in an effort to justify or rationalize system
behavior [2]. We propose a complementary and orthogonal approach that addresses a different notion of
trust: Al systems should produce explicit evidence structures whose validity can be independently verified
without the need to trust the underlying model. Rather than explaining how the AI “thinks”, we shift
focus to verifying what it claims. Recent work has demonstrated fundamental limitations of explanation-
based approaches: sophisticated large “reasoning models” produce chain-of-thought explanations that
are often unfaithful to their actual reasoning processes [3, 4, 5], generate unreliable self-explanations of
their decision boundaries [6], and may even explicitly deny reliance on information they demonstrably
use [7]. This aligns with Rudin’s critique that post-hoc explanations of opaque models are inadequate
and potentially harmful in high-stakes domains [8]. While Rudin advocates replacing black-box models
with inherently interpretable ones wherever possible, TAIR addresses a complementary design question:
how to support trustworthy use of Al-generated results when black-box or foundation models are
already deployed and cannot be easily replaced. Rather than explaining black boxes, TAIR requires Al
systems to produce independently verifiable evidence structures whose validity does not depend on
the model’s internal reasoning or explanatory narratives. Instead of trusting that Al systems do not
hallucinate [9] or exhibit weaknesses due to their “jagged frontier/intelligence” [10, 11], or assuming that
model-generated explanations faithfully reflect underlying decision processes, we explicitly decouple
the context of discovery (generation by Al) from the context of justification (independent verification of
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evidence) [12]. While this distinction has long been debated in philosophy of science [13], we adopt
it here as a pragmatic engineering principle for designing trustworthy Al workflows. TAIR’s central
design choice reflects this principle: trust should not be grounded in explanations about how a model
reasons, but in independently verifiable evidence of what it claims. By requiring explicit evidence
structures aligned with certifiable machine learning principles [14] (e.g., algorithmic witnesses, proof
certificates, or argumentation frameworks), we enable users and external verifiers to audit results
independently. Trust derives not from the model’s properties or reputation, but from the verifiability
and validity of the evidence it produces.

In many domains, establishing the veracity of a claimed result is easier than producing it in the first
place. This computational asymmetry underpins much of theoretical computer science: NP-complete
problems, e.g., admit solutions whose correctness is verifiable in polynomial time, yet no polynomial-
time algorithms for finding such solutions are known. A similar pattern holds in many other domains:
verifying a witness, certificate, or argument structure is often much cheaper than discovering it.

In this vision paper, we introduce TAIR (Trustworthy AI Results), a framework and meta-workflow
that requires Al systems to output not only answers A but also evidence structures E associated with
each user query Q).

TAIR Principles. Our approach is built on four architectural principles:

1. Independent verifiability: the status of A must be assessable by external tools or domain experts
without trusting the generating model;

2. Computational asymmetry: checking E should be substantially easier than producing it, mirroring
the witness-proof relationship in complexity theory;

3. Iterative refinement: (Q, A, E) triples can be revised and strengthened through a dialectical
process of generation, verification, and gap detection; and

4. Domain-dependent and user-dependent evidence standards: the form and strength of £ should
match the relevant standards (e.g., a formal proof in mathematics; or structured, defeasible
arguments in law or science), and satisfy the evidential needs of the user and use case.

Together, these principles shift the burden of trust from opaque model internals to the transparency
and validity of the evidence the system produces. We demonstrate that TAIR is applicable across a
spectrum of domains and evidence structures, from formal certificates amenable to mechanical proof
checking (e.g., via Rocq' or Lean?) to abstract argumentation frameworks for legal reasoning and
scientific discourse.

Section 2 illustrates the formal end of this spectrum. Starting from a simple Boolean query (“Is 131
prime?”), we iterate with an Al through increasingly explicit evidence structures, culminating in a
machine-checkable formal proof that 474,397,531 is prime using a Pratt certificate [15]. The proof is
verified by the Lean theorem prover [16], demonstrating that contemporary large language models
(LLMs) can generate not only the certificate itself but also the execution environments that install proof
assistants and, when requested, formally verify the underlying number-theoretic theorems (Fermat’s
Little Theorem and primitive roots) on which Pratt certificates depend.

Section 3 examines the contrasting defeasible end through legal reasoning with argumentation
frameworks [17, 18] as evidence structures. By iterating the TAIR workflow with an LLM, we build
argumentation graphs comprising arguments (claims with supporting premises) connected by attack and
support relations. We then verify the logical defensibility of these structures by computing argumentation
semantics using external tools [19, 20], or through LLM-generated verification code.

Section 4 presents our unified TAIR meta-workflow that accommodates these diverse verification
regimes within a single conceptual architecture, showing how a common three-phase pattern (genera-
tion, verification, and gap detection) applies across both formal and defeasible reasoning domains. We
conclude with a discussion and future directions in Section 5.

"https://rocq-prover.org/
*https://lean-lang.org/
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User: Is 131 prime?

Al Thought Process: The user is asking if 131 is prime. This is a straightforward mathematical
question that I can answer directly without needing any tools. To determine if 131 is prime, I
need to check if it has any divisors other than 1 and itself. Let me check divisibility by small
primes:

« 2: 131 is odd, so not divisible by 2

« 3: Sum of digits is 1+3+1 = 5, which is not divisible by 3
+ 5:Doesn’t end in 0 or 5, so not divisible by 5

o 7:131+7=18.71..., not divisible

e 11:131 =11 = 11.909.. ., not divisible

I only need to check up to /131 ~ 11.45, so I've checked enough. 131 is indeed prime.
Al answer: Yes

User: Is 474397531 prime?

Al Thought Process: Let me check if 474397531 is prime. This is a large number, so I'll need
to think about this carefully. First, let me check some basic divisibility rules:

« Itendsin 1, so it’s odd (not divisible by 2)

o Sumofdigits: 4+T7+4+3+9+T7+5+ 3+ 1 =43, which is not divisible by 3, so
the number isn’t divisible by 3

« It doesn’t end in 0 or 5, so not divisible by 5

For a number this large (474,397,531), I would need to check divisibility by all primes up to
V474397531 ~ 21, 781. That’s too many to check manually. Let me write a simple program
to test this. I'll use Python to check if this number is prime. Let me check that for you by testing
if 474397531 is prime.

Al Code Generation:

n = 474397531
print(all(n % i != 0 for i in range(2, int(n**0.5) + 1)))

Al answer: Yes

User: ... continues

3]

Figure 1: Initial fragment of the User-Al dialogue: To check whether 131 is prime, the Al “thinking trace’
indicates that the LLM can answer the question without invoking an external tool. For larger numbers, the Al
generates and executes a small Python program. The user then continues (e.g., asking for formal verification).

2. Formal Verification: From Algorithms to Proof Certificates

To illustrate TAIR’s iterative refinement principle, we present a dialogue between a user and an Al
system® exploring the primality of integers. Figure 1 shows the beginning of the dialogue, while Figure 2
shows a screenshot from near the end. The interaction acts as a kind of traversal of a verification
hierarchy, progressing through four distinct stages. Each stage addresses a higher standard of skepticism,
demonstrating how epistemic, and specifically evidential, certainty can be systematically increased by
shifting reliance from the AI’s generative process to independent, external verification structures.

Stage 1: Bare Assertion and Algorithmic Verification. The dialogue begins with a low-stakes query:
“Is 131 prime?” The Al acts as an oracle, responding affirmatively with basic divisibility checks. When
the user introduces a large candidate (N = 474,397,531) and a skeptical stance, the Al transitions
to algorithmic verification. It generates executable Python code to test primality via trial division,
verifying that no divisors exist up to v/N ~ 21,781. While computationally correct, this stage provides
no independently verifiable evidence; the skeptic remains forced to trust either the AI’s hidden reasoning
or the correctness of the Al-generated code.

*Claude (Sonnet 4.5)



Stage 2: The Pratt Certificate. To resolve the trust deficit without demanding blind faith, the AI shifts
to producing mathematical artifacts. It generates a Pratt certificate [15] for N, i.e.,

1. the prime factorizationof N —1 =2 x 3 x 5 X 2513,
2. a witness (e.g., a = 46,305,020), and
3. verification that ¢V~ = 1 (mod N) while N =1/ £ 1 (mod N).*

This stage perfectly instantiates the TAIR principle of asymmetry: while finding the factorization is
computationally intensive, verifying the certificate requires only elementary modular arithmetic in
O(log? N) time. The skeptic can now validate the result using a simple pocket calculator, decoupling
the truth of the claim from the Al system.

Stage 3: Questioning Mathematical Foundations. The user accepts the arithmetic but now chal-
lenges the theoretical bridge: why does a validated certificate imply primality? Here, the Al moves
from calculation to explanation. It elucidates the underlying number-theoretic foundations, specifically
Lagrange’s theorem and the properties of the multiplicative group Z};. The Al traces the logical chain:
if the witness a has multiplicative order exactly N — 1, then the size of the group ¢ (V) must be at
least N — 1, which implies primality. This stage represents a “Proof by Explanation”, bridging the
gap between calculation and concept, though it remains susceptible to natural language ambiguity or
hallucination.

Stage 4: Formal Machine-Checked Proof. The final stage demands the highest epistemic standard:
formal verification in a proof assistant. The Al identifies existing formalizations and synthesizes a
self-contained Lean 4 project. The deliverable includes:

1. Certificate. lean: Defines the Pratt structure and correctness theorems.
2. Proof474397531. lean: Establishes the main result using the specific witness.
3. Theory. lean: Formalizes dependencies (Fermat’s Little Theorem, Lagrange’s Theorem).

By producing a project buildable via 1ake build, the Al effectively exports the “truth” of the argument
from its latent space into a trusted kernel (of the theorem prover).

Evidence Progression and TAIR Principles. This case study demonstrates the TAIR framework
in action. The AI effectively navigates the trade-off between convenience and rigor: it offers simple
answers for simple questions but possesses the capability to escalate to formal reasoning when challenged.
Crucially, the final verification step relies not on the Al but on a heavily audited proof checker, achieving
the ultimate goal of independent auditability and verification.

3. Legal Reasoning with Argumentation Frameworks

Where Section 2 demonstrated TAIR in the realm of formal mathematical certainty, we now turn to its
application in defeasible reasoning, and specifically, legal argumentation. Here, evidence structures do
not prove absolute truth but instead establish the rational defensibility of claims through structured
dialectical analysis. We present a case study using Acheson Hotels, LLC v. Laufer (Supreme Court
No. 22-429), demonstrating how bipolar argumentation frameworks (BAFs) serve as verifiable evidence
structures for legal questions.

3.1. Case Background: Article Il Standing Under the ADA

Acheson Hotels v. Laufer addresses a question of constitutional standing: Does Deborah Laufer have
Article III standing to sue hotels for Americans with Disabilities Act (ADA) website accessibility
violations when she never intended to stay at the hotel? Laufer, a “disability rights tester”, filed suit
against Acheson Hotels after encountering an online reservation system at their Coast Village Inn that
was not ADA compliant. The question reached the Supreme Court with the following briefing timeline:®

*Step 3 is performed for each prime divisor p of N — 1.
>For the purposes of this paper, we have only included an illustrative subset of all briefings.



Excellent! I've created a complete, self-contained Lean 4 project with all the underlying
theory for proving 474397531 is prime. Here's what you have:

W Complete Package Created

Main Deliverable: Lean 4 Project
Directory: primality 474397531 lean

A production-ready formal verification project with:

a Certificate.lean - Pratt certificate structure & correctness theorem
a Compute.lean Computational verification helpers
a Proof474397531.lean Main theorem proving 474397531 is prime

a Theory.lean - Complete theory documentation
a README .md - Project overview & quick start
a BUILD.md Detailed build instructions

a THEORY .md Mathematical theory explained (12K!)
a MANIFEST .md - Complete project index

a lakefile.lean
a lean-toolchain

2 rain.lean

Build system configured
Version pinned (4.14.0)

Executable entry point

Supporting Materials:
. prime 474397531.v - Complete Coq proof
. verify_pratt_certificate.py - Python verification (tested!)

. 8 documentation files with theory, guides, and examples

Figure 2: Late-stage dialogue fragment after the Al has created a complete executable package, proving that
474,397,531 is prime. The package includes the Pratt primality certificate (including witnesses) in Lean syntax, the
underlying theory in Lean that makes these certificates work, and installation files for independent verification.
Earlier artifacts are also included, e.g., a Python script to validate Pratt certificates directly.

1. Brief for Petitioner (Acheson Hotels, June 5, 2023), which argues Laufer lacks standing.

2. Brief for Respondent (Laufer, August 2, 2023), which argues she has standing.

3. Brief for Amici Curiae (18 disability rights organizations, August 9, 2023), supporting Laufer.
4. Reply Brief for Petitioner (September 1, 2023), which is the final response of the petitioner.

The case presents competing interpretations of key precedents (Havens Realty, TransUnion, Allen
v. Wright) and raises fundamental questions about informational injury, tester standing, and the nature
of discrimination under Title IIT of the ADA.

3.2. Iterative Dialogue: From Opinion to Formal Argumentation

Following the pattern established in Section 2, we present a user-Al dialogue that progressively refines
evidence structures through skeptical questioning. The dialogue proceeds through distinct stages, each
demanding stronger verification guarantees.

Stage 1: Bare Legal Opinion. The interaction begins with a direct question:

User: Does Deborah Laufer have Article III standing to sue for ADA website violations when she never
intended to stay at the hotel?

Al Based on the Fourth Circuit’s analysis and Havens Realty Corp. v. Coleman (1982), Laufer likely has standing.
The Court in Havens Realty held that testers who experience discriminatory denial of information have Article IIT
standing even when voluntarily exposing themselves to discrimination for testing purposes. The ADA’s Reservation
Rule creates an informational right similar to the Fair Housing Act provision at issue in Havens Realty. However,
Petitioner argues this is distinguishable because...



While informative, this response provides no independently verifiable structure. The user cannot audit
the AT’s reasoning or check whether all relevant arguments have been considered.

Stage 2: Requesting Structured Context. The user escalates the demand for verifiable evidence:

User: First, tell me when the briefs were filed. I want to understand the temporal structure of the arguments.

AI: The provided briefs were filed in temporal sequence:

Brief for Petitioner (June 5, 2023)

Brief for Respondent (August 2, 2023)

Brief for Amici Curiae DREDF et al. (August 9, 2023)
Reply Brief for Petitioner (September 1, 2023)

= 8PP

This temporal ordering is significant: the Reply brief filed last means Petitioner had the final word on all disputes,
with no opportunity for Respondent to counter-respond.

This response provides checkable metadata but still lacks argument-level details.

Stage 3: Extracting Argument Structure. The user now asks for explicit argument extraction:

User: Extract the main arguments from each brief and show me how they relate to each other. For instance,
does the Respondent’s argument about discrimination being a concrete injury attack the Petitioner’s claim
about informational injury?

ALl Yes, there’s a direct dialectical opposition. Let me extract the key arguments:

Petitioner Argument P-II.1: “Informational injury is not concrete under TransUnion LLC v. Ramirez (2021) because
it lacks downstream consequences.”

Respondent Argument R-II.A: “Discrimination itself constitutes concrete injury independent of downstream
consequences. TransUnion affirms that discrimination is cognizable injury even without further harm”

These arguments directly rebut each other—they offer competing interpretations of the same precedent. I can create
a complete argumentation graph showing all such attack and support relations across the four briefs.

User: Before you create the full graph, show me evidence that this attack relation actually exists. Quote
from the briefs.

AI: From the Petitioner’s brief: “TransUnion makes clear that informational injuries require downstream consequences
to be concrete... The Court rejected standing for plaintiffs who suffered no harm beyond receiving misleading
information.”

From the Respondent’s brief: “TransUnion affirms that discrimination is itself a concrete injury. The Fourth Circuit
correctly recognized that being subjected to discrimination is an injury independent of any downstream effects...
This Court has consistently held that discrimination inflicts dignitary harm regardless of tangible consequences.”

These passages directly contradict each other on what TransUnion requires, constituting a classic dialectical attack.

The result of this stage provides textual evidence for specific arguments and attack relationships, allowing
the user to verify claims against the source documents.

Stage 4: Formal Argumentation Framework. The user now requests a complete, machine-readable
evidence structure:

User: Create a complete Bipolar Argumentation Framework capturing all arguments and their attack/support
relations. I want to be able to verify the structure independently and compute argumentation semantics.



AI T'll extract arguments from all four briefs and formalize them as a BAF. The framework will include:

« Argument nodes: Each identified argument with unique ID, position, and source location
« Attack edges: Dialectical opposition between arguments (e.g., rebuttal, distinction)
« Support edges: Coalitional reinforcement (e.g., precedent, premise-supply)
Generating complete BAF... [processes 164 pages of briefs]
Extraction complete:
+ 40 arguments (11 Petitioner, 10 Respondent, 11 Amici, 8 Reply)
+ 52 attack relations
« 40 support relations
+ 13 precedents catalogued with competing interpretations

Evidence structure saved to acheson_v_laufer_global_baf. json. You can verify this structure using PyArg or
AF-XRAY, or I can generate verification code.

The user can now inspect the provided evidence structure (in this case, given as a JSON file), verify that
all edges resolve to existing nodes, check temporal consistency, and validate citations.

Stage 5: Independent Verification. The user’s skepticism persists and so demands proof of logical
coherence:

User: How can I verify this BAF is logically coherent? Generate verification code that I can run independently.

AI: T'll create a Python script that verifies structural integrity:

import json
import networkx as nx

# Load BAF
with open('acheson_v_laufer_global baf.json') as f:
baf = json.load(f)

# Extract argument IDs
arg_ids = {arg['id'] for arg in baf['arguments']}

# Verify all attack edges resolve
for attack in baf['attacks']:
assert attack['source'] in arg_ids
assert attack['target'] in arg_ids
print(f"v/ All {len(baf['attacks'])} attacks resolve")

# Verify all support edges resolve
for support in baf['supports']:
assert support['source'] in arg_ids
assert support['target'] in arg_ids
print(f"v All {len(baf['supports'])} supports resolve")

# Check temporal consistency (no anachronisms)
temporal_order = {'P': 1, 'A': 2, 'R': 3, 'Reply': 4}
for attack in baf['attacks']:

# Extract brief prefixes

src_brief = attack['source'].split('_')[0]

tgt_brief = attack['target'].split('_')[0]

# Attacks can go backward (later attacking earlier)

# but should not violate filing order

print(f"v Temporal consistency verified")

Running this code confirms:

« Reference integrity: All 92 edges resolve to existing arguments
+ No orphan nodes: Every referenced argument exists
« Temporal consistency: No impossible argument orderings

Al The structure is logically coherent, though legal accuracy requires expert validation.

The program can then be analyzed and executed by the user to confirm the reported basic structural
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Figure 3: Core Argumentation Structure of Acheson v. Laufer. Visualization showing key arguments across
the four briefs (red=Petitioner, blue=Respondent, green=Amici, yellow=Reply). Red solid edges represent attacks
(dialectical opposition), black dashed edges represent support. The graph reveals several “battlegrounds”: (1)
TransUnion interpretation (P-11.1 <» R-II.A), (2) Havens Realty scope (P-11.3 <+ R-1.1), (3) personal discrimination
(P-111.1 <> R-1.B), and (4) self-inflicted injury (P-111.2 <> A-I1.2). Argument R-1.B (“Laufer personally experienced
discrimination”) is most heavily attacked but also well-supported.

integrity of the argumentation framework. We invite the curious reader to review the AI’s explanation,
the comments in the Python code, and the actual code to see whether or not the “structural integrity
check” can be trusted.

Stage 6: Semantic Analysis. The user then explores argumentation-theoretic properties:

User: Which arguments survive all attacks? Which are most heavily contested?

AI: Computing argumentation semantics reveals:

Most Attacked Argument: R-1B (“Laufer personally experienced discrimination”) receives 5 attacks from P-III.1
(not personally discriminated per Allen v. Wright), P-I1.1 (undermines concreteness), P-I1.2 (not particularized), P-II.2
(self-inflicted injury), and Reply-B.1 (no stigmatic injury). However, R-1.B has strong support from R-I.A (doctrinal
basis), A-1.4 (dignitary harm theory), and A-IL.2 (Cruz allows self-inflicted injury).

Key Battlegrounds: Four main dialectical conflicts emerge:

TransUnion interpretation: P-IL.1 vs. R-ILA (complete interpretive deadlock)
Havens Realty scope: P-IL.3 vs. R-1.1 (statutory structure dispute)

Personal discrimination: P-IIL.1 vs. R-LB (abstract vs. concrete harm)
Self-inflicted injury: P-II.2 vs. A-IL.2 (Clapper vs. Cruz)

N

Position Balance: Nearly evenly split—19 arguments support “lacks standing” vs. 21 support “has standing” This
suggests a genuinely close case.

Finally, Figure 3 shows a visualization of the core argumentation structure produced by the LLM,
highlighting these key argumentation “battlegrounds”, with citations, that can be verified by the user.



Table 1

Evidence progression across formal and defeasible reasoning domains. Each step strengthens evidential support
(from Al-generated assertions to verifiable evidence structures). While the specific evidence and verification
approaches differ, each follows a common progression from unverified opinion to externally audited artifacts.

Primality: Is 74,397,531 prime? Legal: Does Laufer have standing?
Step  Evidence Type Verifiability Evidence Type Verifiability
1 Bare assertion None (trust in Al) Bare legal opinion None (trust in Al)
2 Algorithmic (Python)  Execute code Timeline metadata Check against docket
3 Pratt certificate Arithmetic verification Extracted arguments  Check source briefs
4 Lean project Machine-checked Formal BAF Machine-checked
5 Proof checking Deterministic accept/reject ~ Semantic analysis Coherence, defense

3.3. Progression of Evidence Across Formal and Defeasible Domains

Table 1 summarizes the evidence progression of the primality testing and legal reasoning examples,
highlighting that they both share a similar pattern despite differences in domain, evidential standards,
and verification approaches. In each example, the interaction begins with a bare assertion produced by
the Al system that, while potentially informative, offers no independently verifiable support. Subsequent
steps progressively produce explicit artifacts that can be inspected, checked, or analyzed without trusting
the AT’s internal reasoning. In the primality case, this progression moves from executable but uncertified
code, to a mathematical witness in the form of a Pratt certificate, and ultimately to a fully formal proof
artifact verified by the trusted Lean proof kernel. The progression in the legal case follows an analogous
trajectory: from checkable metadata, to explicitly extracted arguments grounded in source texts, and
finally to a fully externalized BAF accompanied by verification code that enables mechanical checks of
structural integrity. The final step in each domain applies an appropriate verification procedure to the
formalized artifact: proof checking for primality checking, argumentation-theoretic semantic analysis
for the legal case.

This comparison illustrates the core properties of the TAIR framework. First, in both domains,
trust is shifted from the Al system to independently verifiable evidence structures, operationalizing
the principle of independent verifiability without requiring access to model internals. Second, both
examples exhibit a clear computational asymmetry: generating witnesses, proofs, or argumentation
frameworks is usually substantially more demanding than checking their validity or coherence using
external tools. Third, the staged progression reflects TAIR’s iterative refinement principle, in which
skepticism motivates increasingly explicit and auditable forms of evidence. Finally, the table makes
explicit TAIR’s commitment to domain-dependent evidential standards. Formal mathematical reasoning
admits a definitive verification endpoint, whereas legal reasoning culminates in structured assessments
of coherence and contestability rather than a proof. The next section describes how the TAIR framework
accommodates these differences using an evidence-first workflow that supports both formal and
defeasible reasoning while preserving the appropriate evidence guarantees of each domain.

4. The TAIR Framework

This section provides an overview of the TAIR meta-workflow, which abstracts the common patterns
observed in the examples of Sections 2 and 3 by introducing a set of interacting LLM-based agents for
identifying and analyzing relevant evidence structures. We first describe the components and control
flow of the meta-workflow, and then show how this architecture can be instantiated to support the
example formal and defeasible reasoning domains described above.

4.1. Overview of the TAIR Meta-Workflow

Figure 4 provides an overview of the proposed TAIR framework shown as a (meta) workflow. The
framework consists of various interacting LLM agents, which are inspired in part by recent approaches
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Figure 4: TAIR Question-Answering Meta-Workflow. This multi-agent system involves LLM-as-Planner,
Decider, Scholar, Judge, and Analyst roles to generate, evaluate, and refine answers and supporting evidence.
The process is iterated until a sufficient score is reached and a user accepts the evidence, with provisions for
external verification and gap analysis. Internal steps are recorded and made available for further user analysis.

using LLMs for self-verification [21], peer review [22], reranking [23], and evaluating previous LLM
outputs [24, 25]. TAIR also consists of a provenance recorder (and corresponding database) for logging
workflow runs and storing the artifacts generated by the workflow. TAIR provenance information can
be accessed by internal TAIR components as well as users interested in viewing the steps involved in
generating a result and viewing the relevant TAIR artifacts. As shown in Figure 4, the workflow begins
with a user question () that is initially processed by the planner agent:

LLM-as-Planner: The planner agent takes the initial user question () and generates one or more
relevant forms of evidence. Each form of evidence ideally includes a basic sketch of the evidence
structure for use by downstream agents to further consider and elaborate. Multiple planners (e.g.,
different instruct models, different continuations, etc.) can also be employed to generate a larger number
of alternative, and potentially more diverse, forms of evidence (shown as a double box in Figure 4).
Each potential form of evidence is then passed to the decider (i.e., ranker) agent.

LLM-as-Decider: The decider agent ranks each output from the planner phase and selects the most
promising candidate. The selected form of evidence is then sent to the scholar agent. We note that
similar to the reranking approach in [23], the decider agent could also be extended to use prior decisions
and results to improve (and further customize) its rankings.

LLM-as-Scholar: The scholar agent takes the result of the decider agent and generates one or more
answers A and evidence structures F to the user question @), forming triples (Q, A, E). As part of
its work, the scholar may choose to employ external verification tools (e.g., by writing and executing
Python or Lean code). Similar to the planner agent, multiple LLMs may be employed to generate a
diverse set of (@, A, E) triples. The triples generated by the scholar agent are sent to the judge agent.

LLM-as-Judge: The judge agent evaluates and scores each (Q, A, E) triple it receives from the scholar
agent. As part of this process, the judge agent may request a small change from the scholar agent for
a given evidence structure, e.g., if it is clear that the answer and/or evidence structure is incomplete.
Scores are normalized and compared to a TAIR threshold parameter. The triple with the highest score at
or above the threshold value is output to the user for further analysis, pausing the workflow. If no triple
produced by the scholar agent meets the threshold value, the judge rejects the results and requests



alternative evidence from the analyst agent. This overall process (from planner to judge) may repeat
for a certain maximum number of rounds as defined by TAIR configuration settings. The process may
also be halted if scores do not advance towards the threshold value. Similar to the scholar agent, the
judge agent may use external verification tools for evaluating and scoring results.

LLM-as-Analyst: The analyst agent functions as a domain-adaptive refinement engine. In formal
domains (as in Section 2), it performs error analysis: if the judge (e.g., a Lean compiler or Python
interpreter) reports a failure, the analyst interprets the specific error message (e.g., “tactic failed” or
“variable undefined”) to guide the planner in repairing the proof script or witness code. In defeasible
domains (as in Section 3), it functions as a dialectical opponent using, e.g., Walton’s argumentation
schemes [26]. When the judge rejects an evidence structure, the analyst identifies the specific reasoning
pattern used (e.g., argument from precedent) and retrieves the standard critical questions (CQs) associated
with that scheme. A “gap” in this case is defined as a critical question that the current evidence fails to
address (e.g., “Is the new case relevantly similar to the cited precedent?”). The analyst then formulates a
new prompt targeting these unanswered CQs, effectively attempting to undercut or rebut the potential
defeaters detected in the previous iteration.

User-as-Skeptic: The (positive) output of the judge agent is provided to the user (playing the role of a
skeptic), who can then critically examine the provided answer and evidence structure, i.e., the output
(Q, A, E) triple. If the user accepts the given evidence, then the process completes. Alternatively, if the
user rejects the evidence, they can request either alternative or further evidence for their question via
the analyst agent (which then restarts the workflow as described above). Before accepting or rejecting
evidence, the user may also decide to further check the result using external verification tools (e.g.,
by running Python or Lean over the code in the evidence structure). The user may then accept the
evidence or reject it and restart the workflow by asking the analyst for alternative or further evidence.

4.2. TAIR Meta-Workflow Instantiation Across Domains

Table 2 summarizes how the TAIR meta-workflow can be instantiated to support the two examples
presented earlier, despite their differences in domain and evidential standards. As shown in Table 2, the
planner agent first identifies candidate forms of evidence appropriate to the query, e.g., trial division
or Pratt certificates in the primality case or as a precendent analysis or BAF in the legal case. The
result of the decider agent is then supplied to the scholar agent, which constructs concrete evidence
artifacts, e.g., producing either formal proof objects or structured argumentation frameworks. These
artifacts are evaluated by the judge agent using domain-appropriate verification procedures, such as
proof checking in a theorem prover or structural and semantic analysis of an argumentation framework.
When verification fails or gaps are identified, the analyst agent drives refinement, either by repairing
formal proofs or by identifying missing or contested arguments. Across both domains, the workflow
produces explicit (@, A, E) triples in which answers are paired with inspectable evidence structures
rather than informal explanations.

Table 2
Instantiation of the TAIR meta-workflow across formal and defeasible reasoning domains, where TAIR compo-
nents are mapped to their roles in the primality-testing and legal-reasoning case studies.

TAIR Component Primality: Is 474,397,531 prime? Legal: Does Laufer have standing?
Planner Pratt certificate (vs factors, Miller-Rabin)  BAF (vs precedent analysis, warrants)
Scholar Generate witness + Lean proof Extract arguments, supports, and attacks
Judge Lean compiler (formal verification) Structural and semantic checks

Analyst Repair proof errors Critical questions (Walton schemes [26])
Evidence (F) Pratt certificate and verified Lean proof BAF with source citations

Verification Formal proof checking Extension analysis, expert evaluation

This instantiation demonstrates how the meta-workflow operationalizes TAIRs core principles. Inde-
pendent verifiability is achieved by ensuring that final judgments are rendered by external tools or expert



evaluation rather than by the Al model itself. Computational asymmetry is preserved in both domains:
constructing proofs or argumentation frameworks (from complex legal cases and corresponding docu-
ments) can be substantially more difficult than checking their coherence or validity. Iterative refinement
is realized through explicit feedback loops in which failed verification or unresolved challenges are
further investigated through gap analysis (ideally leading to improved evidence structures). Finally, the
workflow enforces domain-dependent evidential standards by allowing different verification approaches,
ranging from formal proof checking to defeasible semantic analysis. By treating evidence structures
as first-class artifacts throughout the workflow, TAIR provides a unified, evidence-first approach for
enabling user trust by supporting independent verification of Al results.

4.3. TAIR and Agentic Workflows

Recent agentic Al systems for programming and problem solving have independently adopted iterative
generate-test-repair loops that align closely with TAIR’s architectural principles. Systems such as Claude
Code, OpenAl Codex, and Gemini CLI achieve reliability not through faithful introspective explanations
of model reasoning, but by externalizing trust to independent verification mechanisms. These systems
propose solutions that are validated by external tools such as compilers, test suites, and linters, creating
feedback loops that enable iterative refinement. This emerging practice in agentic coding systems both
validates TAIR’s design principles and illustrates opportunities for extending these reliability patterns
beyond programming domains.

Table 3

Mapping TAIR components to agentic coding system roles.
TAIR Component Agentic Coding Systems Key Mechanism
Planner Task decomposition, strategy selection LLM proposes approach
Decider Implicit heuristic pruning Often weak or absent
Scholar Code generation, test synthesis LLM as conjecture engine
Judge Compiler, test runner, type checker External hard oracle
Analyst Error interpretation, constraint-guided repair  Diagnostic feedback loop
Evidence (E) Code + passing tests Trust anchor
User-as-Skeptic Developer approval Final acceptance authority

Table 3 shows a possible mapping between TAIR’s conceptual components and their counterparts in
agentic coding systems. In both architectures, neural components generate candidate solutions while
symbolic components enforce acceptance criteria. The planner role manifests in task decomposition
and solution strategy selection, though often implicitly. The scholar role corresponds directly to code
synthesis and test generation. Most critically, the judge role is realized through external verification tools
(compilers, type checkers, and test runners) that provide deterministic accept/reject signals independent
of the model. The analyst role interprets failure signals (compiler errors, failed tests) to guide constraint-
driven refinement, while the (skeptical) user retains ultimate authority over whether to accept the
proposed solutions.

This architectural convergence reveals that agentic coding systems work well when they possess
strong verification oracles. Reliability emerges because errors are made observable, acceptance conditions
are externalized, and iteration is gated by hard constraints (rather than model confidence). These systems
may also obey the principle of computational asymmetry, i.e., checking whether code compiles and
passes tests is often easier than generating correct implementations.

Current agentic coding systems are domain-specific and engineering-driven, lacking explicit the-
oretical grounding. TAIR extends this emerging pattern: First, it abstracts the common architectural
principles (generation, verification, gap detection) into a domain-agnostic framework applicable be-
yond programming. Second, it generalizes the notion of verification oracles from compilers and test
suites to more diverse evidence structures: proof assistants for mathematical reasoning, argumentation
semantics for legal analysis, and warrant chains for scientific discourse. This generalization addresses



a fundamental limitation of agentic coding workflows: these achieve reliability primarily in domains
where strong mechanical verifiers exist (code, formal mathematics), but struggle in domains where
verification requires human expertise or defeasible reasoning. TAIR provides a framework for extending
agentic reliability patterns into such domains by making evidence structures and verification roles
explicit across both formal and defeasible reasoning settings.

TAIR and Neurosymbolic AI Approaches. TAIR and its agentic variations can be viewed as a
specialized class of neurosymbolic Al [27] that operationalizes the integration of “System 1” generative
intuition with “System 2” analytical reasoning. In this architecture, the LLM functions as a high-capacity
heuristic engine (System 1), rapidly proposing candidate solutions, while the external evidence verifier
enforces strict logical or structural constraints (System 2). This synergy shows, e.g., in neurosymbolic
theorem proving, where the combination of LLMs for proof synthesis and interactive theorem provers
for verification has become a standard paradigm. Systems like AlphaProof [28], which achieved silver
and gold medal performance at the International Mathematical Olympiad, exemplify this approach.
The rapid proliferation of Lean 4-focused benchmarks (including MiniF2F [29], ProofNet [30], and
PutnamBench) and toolchains validates this architecture. These systems accept the LLM’s “jagged
frontier” [10] of unreliable generation because they rely entirely on the trusted kernel of the proof
assistant for validity. Beyond formal mathematics, frameworks like LLM-ASPIC+ [27] demonstrate
analogous patterns in defeasible reasoning, combining neural triggering with symbolic argumentation
semantics. TAIR generalizes this neurosymbolic pattern, proposing that the reliability achieved in
formal mathematics via proof assistants can be replicated in other high-stakes domains by identifying
analogous evidence structures and verification kernels.

5. Discussion and Future Directions

Proof-carrying code and certifying algorithms. TAIR’s certificate paradigm builds on two parallel
traditions that formalize the principle of separating untrusted generation from trusted verification, i.e.,
proof-carrying code (PCC) [31] and certifying algorithms [32]. Though the underlying practices have
been known for a long time®, these frameworks were the first to articulate verification as an explicit
design principle for trustworthy computation. PCC addresses code safety by bundling executables with
machine-checkable safety proofs. Rather than trusting code producers, PCC relies on a small trusted
proof checker to verify certificates independently, enabling safe execution of code from arbitrary sources.
Certifying algorithms address computational correctness by producing not just solutions but witnesses
enabling efficient verification. This approach is well-known, e.g., in SAT/SMT solving [33], where
modern solvers emit proof traces or UNSAT certificates, and in interactive theorem proving [16, 34],
where formal proofs serve as certificates of mathematical truth.

Certifiable machine learning. TAIR generalizes the above ideas to epistemic trust for Al systems:
LLMs are treated as untrusted generators that must produce verifiable evidence with their answers.
Where PCC produces program-certificate pairs (P, C') verified by proof checkers, TAIR produces triples
(Q, A, E) verified by domain-appropriate tools (e.g., proof assistants, argumentation analyzers, or expert
assessment). Both paradigms exploit computational asymmetry: verification should be substantially
cheaper than generation. Barrett et al. [14], based on similar ideas in program synthesis, define the
principle of certifiable machine learning (CML) for improving the quality of Al-generated artifacts.
Instead of asking an Al to learn or generate the desired artifact, CML asks for an answer that contains
both the desired result and evidence that the result meets the intended specification (expected properties).
They propose a simple learner-verifier loop: the learner generates an artifact and a certificate (evidence
that can be evaluated by a third party) that the verifier (e.g., a proof system) then checks. If the verifier
finds the certificate does not satisfy the desired properties, it attempts to find a counterexample, which
is returned to the learner. Unlike in modern program synthesis techniques, CML advocates for the

Se.g, witness-based primality testing [15] and the extended (i.e., certifying) Euclidean algorithm already used this principle



learner to perform the majority of certificate generation, reducing the work of the verifier. TAIR is both
a generalization and an elaboration of the CML learner-verifier feedback architecture.

Warrant chains. While this paper has focused on formal verification (e.g., Pratt certificates and
Lean proofs) and structured defeasible reasoning (e.g., bipolar argumentation frameworks), TAIR also
accommodates warrant chains as informal evidence structures. The concept originates with Toulmin [35],
whose argumentation model distinguished data (facts), claims (conclusions), and warrants (inference
licenses connecting data to claims). Warrant chains are informal reasoning bridges validated by human
experts, connecting evidence to conclusions through explicit inference steps. Examples include source
citations with explicit reasoning (“according to S, X holds because Y”), analogical reasoning chains,
and expert testimony synthesis. Prakken [36] formalized these concepts, showing how warrants can
be made explicit in structured argumentation. Warrant chains appear naturally throughout academic
discourse: systematic reviews synthesize studies into meta-analytic conclusions, each earlier study
serving as a warrant; theoretical developments build chains where seminal results become warrants for
subsequent work; and legal precedents form warrant chains through stare decisis’. Recent work has
begun automating warrant chain verification: Wu et al. [37] developed techniques for checking whether
cited medical sources actually support attributed claims, essentially verifying warrant adequacy in
LLM-generated medical reasoning. This represents a first step toward systematic validation of warrant
chains in domains where formal verification is unavailable but structured justification remains essential.

Argumentation frameworks as explanations. Argumentation frameworks have also been used to
structure and evaluate LLM-generated natural language arguments elicited through prompting, which
are post-processed to derive probabilistic BAFs for further analysis (e.g., [38]). This line of work is
complementary to TAIR but operates at a different level of abstraction: rather than deriving BAFs from
an LLM’s textual output, TAIR uses LLMs to produce explicit evidence structures (including BAFs) for
external verification and iterative refinement.

Future work. We plan to implement and evaluate the TAIR framework within the context of legal
reasoning, focusing on similar examples as in Section 3. We envision TAIR as a major component within
the broader XAI-CA (eXplainable-Al via Computational Argumentation) project [39], which aims to
leverage neurosymbolic approaches (i.e., combining LLMs and formal argumentation, e.g., in law [40])
and explainability methods to support analysis and decision making within case law for the broader
legal community.
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