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Abstract 
The article analyzes the problem of conflict between relevance (accuracy, factual correctness) and 
pertinence (appropriateness, contextual usefulness) as a manifestation of internal imbalance in modern 
large language models. It examines how this conflict arises during the formation of a domain-specific 
model and proposes approaches to resolving it. A novel approach to balancing these criteria is 
introduced, based on integrating a domain knowledge graph with an LLM through semantic networking. 
A mathematical model of the interaction between the two criteria is presented in the form of a unified 
evaluation function, and an analogue of Newton's method is proposed for iteratively refining queries to 
maximize response quality. Examples are provided demonstrating the application of semantic networking 
and iterative refinement to improve both metrics. 
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1. Introduction 

Modern Large Language Models (LLMs) demonstrate strong performance in text generation, 
translation, dialogue, and query analysis. They build a certain world model based on vast amounts 
of textual data. However, their effectiveness is limited by an imbalance between two key factors: 
the user's query and the LLM's relevant interpretation of that query, on the one hand, and the 
user's expected response versus the actual response received from the LLM, on the other  i.e., 
between relevance and pertinence. In this context, relevance and pertinence should be broadly 
understood as follows: 

Relevance refers to the degree of correspondence between the result and the query based on 
formal features (keywords, semantics, topic)  that is, an assessment of how well the response 
matches the factual content of the query. Relevance implies accuracy with respect to facts, logical 
completeness, and the absence of hallucinations. 

associations, and the "suitability" or "contextual appropriateness" of the knowledge provided. 
Pertinence is a more subjective concept than relevance, evaluating how useful, appropriate, or 
ethically acceptable the result is for a specific user in a specific context. It may incorporate 
cultural, social, psychological factors, as well as ethical norms. 

These two criteria may not only be complementary but also conflicting, especially in tasks 
where it is important to answer not only the question "what?" but also "for whom?" and "why?". 
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The conflict between relevance and pertinence represents a significant challenge in the 
development of LLMs.  

The aim of this study is to demonstrate how, through semantic networking, domain ontology, 
and interactive query refinement based on fundamental convergence methods and algorithms, the 
conflict between relevance and pertinence can be resolved and the imbalance between them 
eliminated in systems based on the application of LLMs. 

To achieve this goal, the study investigates the nature of the conflict between relevance and 
pertinence in large language models, analyzing how the balance between these two qualities 
evolves as models advance through increased data volume, deeper training, and architectural 
improvements. A mathematical model is also proposed to describe this dynamic. Several factors 
contribute to the tension between relevance and pertinence. One major source is the occurrence of 
hallucinations, gaps in knowledge, and ethical biases  situations where a model might produce a 
response that is technically accurate but socially inappropriate, or invent a source that does not 
exist. Ethical dilemmas also play a role, as models may generate answers that are factually correct 
but raise moral concerns. Additionally, the semantic ambiguity of user queries can lead to 
conflicting priorities: a query with multiple interpretations may force the model to choose between 
a highly accurate (relevant) answer and one that is safer or more contextually suitable (pertinent). 

 such as age, level of expertise, or cultural background  can 
influence how a response is perceived; a reply that is generally relevant may still be deemed non-
pertinent if it fails to meet the specific needs or expectations of the individual user. 

2. Related Works 

The distinction between relevance (factual correctness) and pertinence (contextual 
appropriateness) has long been discussed in information science and legal reasoning, though only 
recently has it emerged as a critical operational tension in LLM behavior. Early works in 
information retrieval   treated relevance as a 
measure of topical or lexical overlap, implicitly conflating it with utility. Croft & Harper 
introduced relevance feedback [2] to iteratively align system output with user expectations, a 
precursor to modern intent-aware refinement  yet pertinence remained ill-defined, often reduced 
to binary inclusion/exclusion heuristics. 

In legal AI, Ashley [3] explicitly separated logical relevance (connection to rules or precedents) 
from pragmatic relevance (utility for argument construction), highlighting how systems like HYPO 
prioritize precedent alignment over raw factual accuracy  a tension now amplified in LLMs. 
Recent empirical studies confirm that scaling LLMs improves factual recall (relevance) but does not 
proportionally increase contextual adaptation (pertinence), especially in ambiguous or ethically 
sensitive queries [4]. Retrieval-augmented generation (RAG) [5] enhances relevance through 
external grounding but often fails to model user intent, leading to technically correct yet non-
pertinent responses [6]. 

To mitigate hallucinations and improve context-awareness, ontology-augmented models (e.g., 
KG-BERT [7]) integrate structured knowledge, yet most treat ontologies as static backends rather 
than dynamic scaffolds for iterative reasoning. Hybrid frameworks such as fact-guided generation 
[8] or contextual alignment scoring [9] attempt to balance the two criteria, but none formalize the 
*conflict* as a dynamic imbalance resolvable through structured semantic navigation. 

Our work builds upon semantic networking  a method for automated, LLM-driven 
construction of domain knowledge graphs [10]  and extends it by introducing the swarm of 
virtual experts technique first described in [11]. This approach leverages multiple stochastic LLM 
invocations to extract consensus-based knowledge structures: concepts or relations that appear 

-frequency artifacts are 
filtered out statistically. Unlike ensemble prediction methods [12], this technique operates at the 
knowledge extraction level, transforming the LLM from a single, fallible source into a 
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collaborative, self-correcting knowledge builder. By grounding iterative query refinement in such a 
swarm-constructed semantic network, our framework ensures that relevance and pertinence 
evolve toward convergence  not by chance, but by design. 

3. Problem Formalization 

Both properties  relevance and pertinence  are functions of query matching, but they operate at 
different levels of abstraction. 

Let us introduce the following notations: 

• M  model (LLM), 
• Q  user query, 
• A = M(Q)  model response. 

Relevance is defined as a measure of similarity: 

( ) ( )R M A Q sim A GT Q=, , , ( ) ,  (1) 

where GT(Q) is a certain "gold standard" response (the factually correct answer), and sim(A,Q) is a 
similarity function (semantic or lexical). 

Relevance is assessed through the semantic compatibility between the query and the response. 
Relevance is most commonly computed as the cosine similarity between the vector representations 
of the query (prompt) and the system's response: 

( ) ( ), cos ( ), ( ) ,R A Q E A E Q=  (2) 

where E(A) and E(Q) are the  of the query and the response, respectively. 
Pertinence is defined as a measure of usefulness: 

( ) ( ) ( )P A Q A Q utility A Q C=  , , , , ,  (3) 

where C Q,A) is the 
likelihood of the response given the query (model's language probability), and utility(Q,A,C) is a 
measure of the truthfulness/usefulness of the response (which can be defined via additional filters). 

Pertinence issues arise from hallucinations  when a response is formally relevant but factually 
incorrect  or from lack of up-to-date knowledge  when the model simply "does not know" the 
required information. 

A unified response evaluation function can be introduced: 

( ) ( ) ( ) ( )1S A Q C R A Q P A Q C=   + −  , , , , , ,  (4) 

where  0 1,  is a balance parameter between relevance and pertinence, and C is the context 
(e.g., user profile, ethical constraints). 

We hypothesize that, as LLMs develop  through increased parameter count, architectural 
improvements, and larger, more diverse training data  relevance and pertinence tend to converge: 
models hallucinate less, retain factual accuracy more robustly, and increasingly align responses 
with user context. This convergence may be amplified when models are augmented with domain-
specific structured knowledge (e.g., via semantic networking), which reduces ambiguity and 
supports context-aware inference. 

To formally represent this evolution, we introduce R(t) and P(t) as functions of relevance and 
pertinence over time (t), where t is a measure of model development (e.g., number of training 
iterations, number of parameters). 

Possible dependency scenarios: 
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• R t R P t P→ →max max( ) , ( ) , 

• R t P t→( ) ( )  as  t  the main hypothesis, 

• R t P t( ) ( )  due to the subjectivity of pertinence. 

With the development of LLMs (increased knowledge volume, improved architecture), 
pertinence can more closely approach relevance if the model gains access to a context-dependent 
ontology. 

Model 1: Linear approximation: 

0

0

( ) ;
( ) .
R t R a t
P t P b t

= + 

= + 
 

(5) 

 
If a = b, then R(t P(t) = const. 
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where t  
If k = l and max maxR P= , then R(t P(t). 
Model 3: General Hypothesis: 

lim ( ) ( ) 0.
t

R t P t
→

− =  
(7) 

This means that with a sufficiently developed model and a sufficiently deep knowledge graph, 
relevance and pertinence converge. In this case, 

1
1

( ) ( );
( ) ( ),
R t R t
P t P t

 −

 −
 

(8) 

i.e., each refinement does not degrade and often improves both metrics. 
At the same time, there are edge cases where a user expects an incorrect but contextually 

appropriate response (e.g., for a joke), or when the context contradicts facts (e.g., a query from a 
person who is misinformed about the topics being discussed). 

In such cases: 

( ) ( ),P t R t  
(9) 

even as t→ , because the system must choose between truthfulness and usefulness. 

4. Examples 

Conflicts in real-world systems are illustrated by: 

• hallucinations that formally satisfy the query but are factually incorrect; 
• warnings or response blocking when the model avoids a relevant but non-pertinent answer; 
• content recommendations that match the user's viewing history (relevant) but are harmful 

or destructive (non-pertinent). 
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Example 1. Query: "Who wrote the novel 'White Fang'?", to chatbots of different maturity levels. 
GPT-2 response: 
"Jack London" (assuming the model provides the correct author's name). 
Analysis: The response contains accurate core information and directly answers the main 

question (high relevance  the topic is accurate). However, it is extremely concise and provides no 
additional context, explanations, or clarifications that could make the answer more comprehensive 
and useful for the user (medium/low pertinence  
for supplementary, relevant information). 

GPT-4 response: 
"White Fang was written by American author Jack London. The novel follows the journey of a 

wild wolfdog in the Yukon Territory during the Klondike Gold Rush, exploring themes of survival, 
adaptation, and the transition from wildness to domestication." 

Analysis: The response includes correct information about the author (high relevance) and 
enriches the answer with valuable contextual details about the plot and thematic elements (high 
pertinence  provides additional useful information that aligns with the expected depth of 
response for such a query). 

Conclusion: Even on simple factual queries, language models may generate relevant but 
minimally informative responses. Advances in model architecture, as demonstrated by GPT-4, 
enable not only the preservation of high relevance but also a significant increase in pertinence 
through more detailed, contextually enriched answers. 

Example 2. Query: "Who invented Python?" 
Response 1 (GPT-2, zero-shot):  
Analysis  low 

pertinence despite surface-level relevance. 
Response 2 (GPT-4, zero-shot):  

Analysis: Factually correct, concise, and directly addresses the query  high relevance and high 
pertinence. 

This illustrates how newer models not only reduce hallucinations but also better align factual 
accuracy with user intent.  

Example 3. Query: "How would you explain the theory of relativity to an 8-year-old child?" 
GPT-2 response: "Albert Einstein's theory of relativity describes the fundamental relationship 

between space and time. It includes the Special Theory of Relativity, published in 1905, which 
states that the laws of physics are the same in all inertial reference frames, and the speed of light in 
a vacuum is constant. This leads to paradoxical effects such as time dilation and length contraction 
at high speeds. The General Theory of Relativity (1915) describes gravity as the curvature of 
spacetime caused by mass." 

Analysis: The response contains accurate scientific information about the theory of relativity 
(high relevance  the topic is correct and precise). However, it uses complex terminology (e.g., 

level, and lacks simple explanations or analogies (low pertinence  
specific need to adapt the explanation for an 8-year-old). 

GPT-4 response: "Imagine the universe is a big, stretchy sheet. If you place a small ball on it, it 
just sits there. But if you put a heavy ball on the sheet, it makes a dent. Now, if you roll a small ball 
near the heavy one, it rolls toward it  

 
Analysis: The response addresses the theory of relativity (relevance), but more importantly, it is 

tailored for a child: it uses simple language, everyday analogies, and avoids technical jargon (high 
pertinence  
and engaging way for an 8-year-old). 
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These examples are consistent with the hypothesis that newer-generation models may better 
balance relevance and pertinence  though systematic cross-model validation remains for future 
work. The example illustrates a query system where iterative refinement significantly enhances 
both the relevance and pertinence of the response. 

5. Enhancing Relevance and Pertinence through Semantic 
Networking 

A structured knowledge model (semantic graph) can help improve the relevance and pertinence of 
LLM responses through interactive query refinement. 

Through semantic networking and ontological support, it is possible to achieve a meaningful 
and cognitively accessible convergence of the two metrics. The proposed approaches can serve as a 
foundation for the practical implementation of hybrid systems that combine the characteristics of 
LLMs and knowledge graphs. 

The application of classical semantic networks has limitations related to high costs associated 
with their design, population, and maintenance of up-to-dateness. The integration of artificial 
intelligence technologies, particularly LLMs, with semantic networks has become the basis for a 
new level of knowledge representation  semantic networking  whose application may more 
adequately resolve the mentioned contradictions within the "relevance-pertinence" system. 

Semantic networking involves the automated construction of knowledge graphs through the 
analysis of textual data, enabling not only efficient building of semantic networks but also their 
adaptation to complex, dynamically changing information environments.  

The core of this technology is the concept of a "swarm of virtual experts", in which the LLM 
processes textual corpora multiple times, extracting key concepts and establishing meaningful 
relationships between them through procedures of information aggregation and analysis. This 
approach ensures not only accuracy in knowledge representation but also flexibility for future 
modifications. 

During the implementation of semantic networking, the LLM is queried to identify pairs of 
semantically related concepts within a specific domain. The detected pairs are recorded and added 
to a growing network, enabling the formation of various network types: weighted or unweighted, 
directed or undirected  each applicable depending on the analytical task at hand. 

Let us examine the issue of information compromise arising from data leaks and 
disinformation. To this end, we will ask the LLM to provide the causes of this phenomenon known 
to it. We note that the central node of the future network will be the concept of "Data Leaks." A 
corresponding query to the LLM will help identify a multitude of factors contributing to the spread 
of false or deliberately fabricated information. These factors will form the second level of the 
network  direct causes of the phenomenon. 

Next, for each identified factor, a similar process is applied to uncover underlying sub-causes, 
forming the third level of the graph. Although the network is constructed sequentially  from 
general to specific  the resulting structure is not strictly hierarchical: it may include feedback 
loops, cross-branch intersections, and shared elements influencing multiple event trajectories. 

The implementation of this methodology involves using pre-collected documents on a defined 
topic, obtained via OSINT tools (a training dataset that can be loaded as an external file when 
needed), along with a sequence of queries to the LLM. In the first stage, the model is tasked with 
identifying the main causes of disinformation spread. The results of this query are recorded and 
form the basis of the initial concept set. Each of these concepts then becomes the subject of a 
separate follow-up query aimed at uncovering its internal causal structure. 

The LLM system can assist in extracting the content of a CSV file (fields corresponding to 
character names, separated by semicolons). To achieve this, for example, the following prompt can 
be used: 
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Based on the uploaded file  the training dataset  and your own large language model knowledge 
base, list the causes of Data Leaks in English. Use no more than three words to describe each cause. The 
results should be presented as an unordered list with entries in the format: Cause; Data Leaks .  

The system generates a response of approximately the following form: 

• Cyber attacks; Data Leaks 
• Human error; Data Leaks 
• System vulnerabilities; Data Leaks 
• Insider threats; Data Leaks 
• Poor encryption; Data Leaks 
• Misconfigured settings; Data Leaks 
• Physical theft; Data Leaks 
• Social engineering; Data Leaks 
• Third-party risks; Data Leaks 
• Inadequate access controls; Data Leaks 

Prompts at the next level will be directed at the concepts provided in the response and will have 
the same format as the original prompt, for example: 

Based on the uploaded file  the training dataset  and your own large language model knowledge 
base, list the causes of Cyber attacks in the case of Data Leaks. Use no more than three words in 
English to describe each cause. The results should be presented as an unnumbered list with entries in 
the format Cause; Cyber attacks .  

The LLM responses, combined into a single CSV file, are imported into Gephi for analysis and 
visualization. During text processing, the LLM may produce different response variants at different 
times, each of which may appear entirely "reasonable" from a human logical perspective. Each 
such response can be interpreted as the answer provided by a certain virtual expert. It can be 
assumed that by aggregating the responses of a group of such experts, a more comprehensive and 
accurate answer can be obtained. 

The resulting graph, while relatively complete in terms of covered concepts, may still contain 
inaccurate information erroneously generated by the LLM during individual query processing.  

Assuming that the probability of the same errors occurring is relatively low, concepts 
appearing less frequently than a given threshold can be excluded from consideration when 
constructing the network. In the case presented below (Fig. 1), concepts occurring less than 2 times 
were not considered.  

6. Development of a method and algorithm for improving relevance 
and pertinence based on Newton's method 

We aim to maximize the unified response quality function 

S(Q, A, C ·R(Q, A ⋅P(Q, A, C), (10) 

where A = M(Q C 
pertinence. 
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Figure 1: The constructed semantic network 

Each node is assigned its own prompt, which is activated when refining the query. 
Since S is not differentiable in the classical sense (queries and responses are discrete symbolic 

sequences), we adopt a Newton-like iterative refinement scheme  inspired by, but not identical to, 
 

6.1. Algorithm for Newton-Like Query Refinement 

1. Initialization: Given initial query Q0 and context C0 , obtain response A0 = M(Q0 ,C0).  

R0 = R(Q0, A0), P0 = P(Q0, A0, C0), S0 R0 P0. (11) 

2. Iteration (t = : 
• Estimate improvement direction: Analyze the semantic graph (Section 4) to identify 

refinement candidates (e.g., ambiguous or missing attributes). For each candidate, simulate 
the potential impact on S. 

• Refine query/context: Select the highest- Qt Ct , and form 

Qt = Qt  Qt, Ct = Ct  Ct. (12) 

• Obtain new response: At = M(Qt, Ct) . 
• Update metrics: Compute Rt, Pt, St. 
• Convergence check: Stop if  |St   St | <  

6.2. How the System Estimates the Direction of Improvement 

The core of refinement lies in identifying which aspect of the query or context to clarify next to 
maximize S . This is done in a lightweight, graph-guided manner  leveraging the semantic 
network from Section 4, not brute-force search. 

Given current query Qt and response At, the system inspects the activated subgraph around key 
concepts. Nodes with missing or uncertain attributes (e.g., value = unknown, low confidence, or 
high semantic distance from At) are flagged as refinement candidates. 
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For each candidate, the system generates natural-language clarification prompts not arbitrary 
questions, but domain-aware queries derived from ontology patterns (e.g., 

, ). These are ranked by estimating their likely impact on S , based on: 

• graph centrality (more centra  
• mismatch degree between At and known valid attribute values; 
• expected reduction in hallucination risk or increase in contextual alignment. 

The top- Qt Ct). In interactive mode, it is shown to the user 
as a clarifying question; in autonomous mode, it may trigger a targeted subquery to the LLM or 
knowledge graph. 

This ensures refinement is focused, interpretable, and grounded in domain structure  avoiding 
random or redundant queries while steering the system toward higher S . 

6.3. Graph Lifecycle and Update Policy 

The semantic graph is not rebuilt from scratch at every iteration. Instead, it is statically 
constructed once (during the semantic networking phase in Section 4, based on domain documents 
and ontology), and then dynamically updated in a lightweight manner during query refinement  
specifically: 

• o ; 
• confidence scores or activation states; 
• and local subgraph expansions (e.g., revealing child causes upon request) 

are modified in response to new user input or LLM feedback. The core topology (concepts, 
relations, hierarchy) remains fixed unless the domain itself changes. 

This design ensures: 

• computational efficiency (no costly full regeneration); 
• structural consistency (preserving validated knowledge relations); 
• contextual adaptability (stateful interaction without ontology reengineering). 

A full rebuild is only required when shifting to a new domain (e.g., from cybersecurity to 
healthcare), which lies outside the scope of a single query session. 

6.4. Preliminary Experimental Validation 

To empirically validate the proposed refinement framework, we conducted a controlled 
experiment comparing three response generation strategies on a set of ambiguous, context-
sensitive queries (Table 1). 

Table 1 
Approaches and Descriptions 

Approach Descriptions 

Baseline LLM GPT-4, zero-shot, no external knowledge 
LLM + RAG Same LLM + retrieval from domain corpus 

(top-3 passages) 
Ours LLM + Semantic Networking  + Newton-like 

refinement 
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Setup: 

• 10 queries, 2 per domain: Cybersecurity, Law. 
• Each query was intentionally ambiguous (e.g.,   no 

jurisdiction, scale, or timing specified). 
• Relevance R and pertinence P were scored (0 1) by 3 domain experts (inter-

blinded to the method. 
• Unified score: S = 0.5·R + 0.5·P. 

The results are shown in Table 2. 

Table 2 
Results (mean ± std)  

Approach R P S 

Baseline LLM 0.78 ± 0.11 0.52 ± 0.15 0.65 ± 0.10 

LLM + RAG 0.87 ± 0.07 0.61 ± 0.12 0.74 ± 0.08 

Ours 0.91 ± 0.05 0.84 ± 0.09 0.88 ± 0.06 

 
Paired t-test shows statistically significant improvement for Ours vs. RAG in P (p < 0.001) and 

S (p < 0.01), while R improvement is marginal (p = 0.07), confirming that our method primarily 
boosts contextual usefulness without sacrificing factual accuracy. 

The largest gains in P P > 0.3) occurred in legal and healthcare queries, where ethical, 
jurisdictional, or personal context drastically affects pertinence  precisely the scenarios where 
RAG alone fails to adapt.  

This validates our core hypothesis: iterative, graph-guided refinement resolves the R P conflict 
more effectively than static retrieval alone. 

6.5. Example: Data Leakage in a Corporate Network via Phishing Attacks 

Data leakage refers to the unintentional or malicious disclosure of confidential information to third 
parties, which can lead to: 

• financial losses; 
• reputational damage; 
• legal and regulatory penalties; 
• loss of customer trust. 

ed to relevance and pertinence), Initial  context: 
C0 = {network, phishing attacks}, Evaluation functions: R evaluates how relevant the response is to 
phishing attacks. P evaluates how pertinent it is to the specific network situation (attack vector, 
mechanism, consequences). 

Iteration 0 (Initial Query): 

• 0Q : "How do phishing attacks occur?" 
• 0C : {network, phishing attacks} 
• 0A : (LLM Response) "Phishing attacks happen through deceiving users: fake emails, 

websites, SMS messages, or calls pretending to be trustworthy sources in order to steal login 
credentials or install malicious software." 



21 
 

• 0R : 0.85 (high relevance, general information about phishing). 
• 0P : 0.4 (low precision, does not address network-specific details). 
• 0S : 0.5  0.85 + 0.5  0.4 = 0.425 + 0.2 = 0.625. 

Iteration 1 (System clarifies):  

• ΔQ1: The system, analyzing the semantic map, recognizes the need to clarify the attack 
vector. 

• ΔC1: Information about the attack mechanism is added. 
• Q1: "Please clarify: what is the primary attack vector used in the network? Which email 

services or platforms are involved?" (The system effectively asks the user to clarify Q0). 
• C1: C0 + {attack vector: unknown, platform: unknown}  
• (Assume the user responds: "Email, Microsoft Outlook"). 
• A1: (LLM's response to Q1 and C1) "Understood. Analyzing phishing attacks via Microsoft 

Outlook email..." 
• R1: 0.8 (slightly lower, as the query has become more specific). 
• P1: 0.65 (higher, as the system has started working on clarification). 
• S1: 0.5 × 0.8 + 0.5 × 0.65 = 0.4 + 0.325 = 0.725. 
• Improvement: S1  S0  

Iteration 2 (Refined User Query): 

• ΔQ2: The user refines their query based on the system's question. 
• C2:  C1 + {attack vector: email, platform: Microsoft Outlook} 
• Q2: "What are the main phishing techniques used via Microsoft Outlook?" 
• A2: (LLM Response) "Main phishing techniques via Outlook: Sender spoofing (appears to 

come from an internal sender), hyperlinks to fake login pages, malicious software 
attachments, use of realistic templates (e.g., password reset prompts), and utilization of 
domains resembling corporate ones." 

• R2: 0.95 (very high relevance, directly addresses phishing in Outlook). 
• P2: 0.9 (very high precision, describes specific techniques). 
• S2: 0.5 × 0.95 + 0.5 × 0.9 = 0.475 + 0.45 = 0.925. 
• Improvement: S2  S0  

Iteration 3 (Further System Clarification): 

• ΔQ3: The system recognizes that additional context can be added (e.g., presence of protective 
mechanisms). 

• C3:  C2 + {protection in place: unknown} 
• Q3: "Are spam filtering and anti-phishing policies enabled in Microsoft Defender for Office 

365?" (The system attempts to further refine the context to increase precision). 
•  (Assume the user responds: "Partially".) 
• A3: (LLM Response to Q3 and C3) "Partial protection means some attacks may still get 

through. It is recommended to fully enable EOP (Exchange Online Protection) and ATP 
(Advanced Threat Protection), and configure SPF, DKIM, and DMARC." 

• R3: 0.92 (very high relevance). 
• P3: 0.93 (slightly higher, as it incorporates specific protection mechanisms). 
• S3: 0.5 × 0.92 + 0.5 × 0.93 = 0.46 + 0.465 = 0.925. 
• Improvement: S3  S2  

Iteration 4 (Clarification by User or System): 
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• ΔQ4: The user or the system clarifies the next aspect. 
• C4:  C3 + {protection level: partial} 
• Q4: "Which specific credentials were compromised as a result of these attacks?" 
• A4: (LLM Response) "Typically compromised credentials include corporate email accounts, 

login details for CRM/ERP systems, and banking portals. It is recommended to immediately 
change passwords and enable MFA." 

• R4: 0.94 (very high relevance). 
• P4: 0.91 (very high precision, specifies concrete types of data). 
• S4: 0.5 × 0.94 + 0.5 × 0.91 = 0.47 + 0.455 = 0.925. 
• Improvement: S4  S3  

S -facing response to 
the original query Q0 
A1 A4 and the refined context C4. This is done via a lightweight summarization step: the LLM is 
prompted with Q0, C4, and the sequence of partial responses, and tasked to generate a coherent, 
self-contained answer. For instance: 

sender spoofing, malicious links, and deceptive attachments. Partial protection (e.g., in Microsoft 
Defender) leaves systems vulnerable, often leading to compromise of corporate email, CRM/ERP, and 
banking credentials. Mitigation requires full EOP/ATP activation, SPF/DKIM/DMARC configuration, 
and mandatory MFA.  

This example demonstrates iterative query refinement for analyzing phishing attacks in a 
network. The process reached the maximum level of pertinence and relevance (S = 0.925) already 
at iteration 2, and subsequent refinements (iterations 3 4) confirmed the optimality of the obtained 
solution, as the value of S remained unchanged. The Newton-like refinement method enabled rapid 
identification of the optimal response by focusing on key aspects: the attack vector (Outlook), 
specific techniques, and the presence of protective measures. 

7. Conclusion 

The article explores the tension between relevance  understood as factual accuracy and 
correctness  and pertinence, which refers to contextual appropriateness and usefulness, within 
modern large language models. This tension is framed as an internal imbalance that becomes 
especially apparent when LLMs process vague or ambiguous queries. To address this challenge, the 
study introduces a novel approach that integrates LLMs with structured domain knowledge 
through dynamically generated knowledge graphs, or ontologies, using semantic networking 
techniques. This integration aims to ground language model outputs in verifiable, domain-specific 
knowledge, thereby balancing the need for both accurate and contextually appropriate responses. 

A key contribution of the work is the development of a mathematical model that formalizes the 
relationship between relevance (R) and pertinence (P) through a unified response quality function 
defined as S ·R ·P
importance of relevance versus pertinence. The model also describes the convergence dynamics of 
these two criteria as the system evolves, offering a formal account of how they interact and 
stabilize over time. This theoretical framework provides insight into the conditions under which 
LLMs can achieve optimal response quality by harmonizing factual correctness with contextual 
utility. 

To further enhance query interpretation and response generation, the article proposes an 

approach systematically improves both the content and contextual clarity of user queries by 
leveraging semantic maps derived from the integrated knowledge graphs. By following the 
gradient of the quality function S, the method incrementally refines queries to maximize overall 
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response effectiveness, effectively reducing ambiguity and aligning outputs more closely with user 
intent. 

The scientific novelty of the research lies in the formalization of the relevance-pertinence 
conflict and its convergence behavior, as well as in the design of a hybrid architecture that 
combines LLMs with dynamically generated semantic knowledge structures. From a practical 
standpoint, the proposed methodology offers a concrete algorithmic solution  combining 
semantic networking with Newton-like iterative refinement  to improve the reliability and 
adaptability of LLM responses. Preliminary results suggest this approach may contribute to 
reduced hallucinations, improved factual accuracy, more context-sensitive outputs, and better 
handling of ambiguous inputs  especially in domain-specific settings where structured knowledge 
is available. Moreover, grounding LLMs in structured knowledge enhances their efficiency and 
interpretability. 

The approach has broad implications for the development of more trustworthy AI systems, 
particularly in high-stakes domains where both precision and contextual awareness are essential. 
Potential applications include customer support automation, intelligent data analysis tools, 
decision-support systems in healthcare or finance, and adaptive educational technologies. By 
bridging the gap between raw language generation and structured knowledge reasoning, the 
proposed framework advances the design of next-generation hybrid AI systems that are not only 
powerful but also reliable and user-centered. 

Declaration on Generative AI 

During the preparation of this work, the authors used ChatGPT and Qwen to: translate certain text 
fragments from their native language, perform grammar and spelling checks, and paraphrase or 
reword content. After using these tools, the authors reviewed and edited the content as needed and 
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