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Abstract

The article proposes a formalized model and methods for the automated design of complex multicomponent
systems (CMS) using an integrated approach that combines architectural modeling, prompt engineering,
and large language models (LLM). The developed model describes the state of the process as a typed tuple
that includes a knowledge base, an architectural graph, a mapping of components to specifications, a set of
artifacts, and validation reports. Methods for managing the generative orchestrator are proposed, which
ensure the achievement of target states with minimal risk for given non-functional requirement budgets
and correctness invariants. To increase reliability, mechanisms for reproducibility and artifact auditing are
provided. The risk-oriented iterative improvement strategy combines mathematical optimization with
adaptive queries to LLM, which allows achieving a balance between the quality of decisions and
computational costs. The effectiveness of the approach is demonstrated by the example of a multi-level
FMCG supply chain using Monte Carlo simulations, which showed improvements in OTIF performance, a
reduction in unfulfilled commitments, and optimization of delivery costs. The results confirm the potential
of the developed model for practical application in the engineering of complex systems in dynamic
environments.
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1. Introduction

Modern complex multi-component systems, such as supply chains, cyber-physical systems, and
intelligent information infrastructures, are characterized by a high degree of structural and
functional interdependence of components, as well as dynamic changes in the operating
environment. The growth in data volumes, the expansion of the range of non-functional
requirements (e.g., performance, reliability, security), and the need for rapid adaptation to market
changes pose new challenges for the methods of designing and managing such systems. In this
context, approaches that combine formal rigor, process automation, and the ability to adaptively
optimize under uncertainty are of key importance [1].

One of the most promising areas of development is the integration of architectural modeling
methods with the capabilities of large language models (LLMs) and intelligent orchestrators capable
of performing complex sequences of operations. The use of LLM for automated knowledge
processing and project decision generation opens up new opportunities in the synthesis and
optimization of architectures, especially when there are extensive knowledge bases containing
structured and semi-structured information. Combining such tools with formalized risk assessment
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methods, non-functional requirements budgeting, and simulation approaches allows the creation of
systems that not only meet current constraints but are also capable of iterative self-improvement [2].

At the same time, there are a number of scientific and practical problems related to ensuring the
reproducibility of results, integrating heterogeneous components and data sources, and verifying the
correctness of decisions made in a dynamic environment. Traditional design methods often prove to
be insufficiently flexible or excessive in terms of resources for solving real-time problems, especially
in conditions of multi-level optimization and high variability of scenarios.

The goal of this study is to develop a formal model for automated system design that integrates
an architecture-oriented approach, risk-oriented management, budgeting of non-functional
requirements, and the use of LLM as an intelligent orchestrator. The proposed model is focused on
iterative improvement of the system architecture, taking into account changes in the environment
and target performance indicators, ensuring a balance between functional and non-functional
requirements.

To validate the approach, a multi-level FMCG Supply Chain case was used, which allows assessing
the effectiveness of the model under conditions of stochastic demand fluctuations, variability of
delivery times, and resource constraints. Simulation experiments using Monte Carlo methods
demonstrated that the proposed methodology can improve service levels, reduce unmet demand, and
lower logistics costs compared to baseline and rule-based approaches. In contrast to previous studies
that addressed separate aspects of formal modelling or generative design, this work unifies
architectural modelling, risk-oriented optimisation, and LLM-based orchestration within a single
reproducible framework. Thus, the study contributes to the development of tools for creating
reproducible, adaptive, and effective solutions in the field of automated design of complex systems.

2. Theoretical foundations of complex systems design

The design of complex multi-component systems (CMS) is one of the key tasks of modern
engineering and applied computer science. Such systems are distinguished by their multi-level
structure, heterogeneity of components, high degree of interdependence, and significant influence
of external factors, including stochastic ones. Classic approaches to their development are based on
methods of system analysis, architectural modeling, and requirements engineering, which ensure the
formalization of functional and non-functional characteristics. However, in dynamic environments
where system parameters and objectives change during operation, there is a need for adaptive,
iteratively controlled design methods. Analogous adaptative mechanisms have been used in models
of attitude formation [3].

One of the modern directions in the development of such methods is the integration of formal
architectural models with generative intelligent systems, in particular Large Language Models (LLM).
LLMs are capable of working with unstructured and semi-structured knowledge, identifying hidden
dependencies, synthesizing design alternatives, and forming recommendations based on the history
of previous decisions. This creates the conditions for automating a significant part of the design
process, including requirements analysis, architectural solution generation, and correctness
invariant verification [4].

The key mechanism for engineers to interact with LLM in design tasks is prompt engineering (the
development of structured input queries that form a clear context for obtaining relevant and
reproducible results). Within the scope of CMS design, prompts may include a description of the
target state, constraints (e.g., budget for non-functional requirements), architectural precedents, and
risk assessment metrics. This allows LLM to act as a generative orchestrator that aligns multistep
changes to the system architecture with specified optimization criteria.

Prompt engineering, combined with formal architectural models, enables a closed iterative design
cycle: determining the current state of the system — generating solution options — evaluating
quantitative metrics — adaptive optimization [5]. This approach combines the rigor of a
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mathematical model with the flexibility of generative tools, which increases the efficiency and speed
of adaptation of complex systems to environmental changes.

Thus, the modern paradigm of CMS design involves the integration of two complementary
components: formal methods that ensure the verification and reproducibility of solutions, and
prompt engineering as a means of controlled application of the generative capabilities of LLM [6-8].
This creates the foundation for building adaptive and scalable engineering processes capable of
ensuring an optimal balance between development speed, solution quality, and risk level.

3. Mathematical model and methodology for automated design of
complex systems

3.1.  Formal problem statement of automated CMS design

Imagine a set of stakeholders who submit an initial request for the design of complex systems pg
with functional and non-functional requirements, environmental constraints, and business
objectives. By “complex multicomponent system” (CMS), we mean an oriented multigraph with
annotated vertices-components and edges-flows, in which vertices correspond to functional services
and edges correspond to interaction contracts.

Let us assume that all stakeholder requirements can be represented as a finite set of typed
messages, semantically consistent with a predefined domain vocabulary (ontology). Also, calls to the
generative model LLMy are deterministic for fixed parameters 8 = (seed, T, system_ctx), where
seed is a number that sets the initial state of the random value generator so that each call to the model
produces the same results; T'is a parameter that determines how “diverse” the model's responses will
be (the smaller the value, the less diverse); system_ctx is a text instruction or setting that provides a
single “system” context for all queries to the model. This ensures the reproducibility of all subsequent
artifacts. The Tools toolset (synthesis of diagrams, OpenAPI/Proto contracts, Docker/Kubernetes
configurations, security and scalability analysis, etc.) can be called as a deterministic function over
its inputs [9-11].

S, = (K,M,A,®,R,V), (1)

where K = {(k;, y;)}%, is a knowledge base consisting of m YAML documents; each of the key
k; = (path;, ver;) consists of a hierarchical path in the document tree (path;) and a semantic
version ver; € N3; each y; satisfies the schema Sch(k;) and fixes the ontological core of the subject
area; M € X* is a master prompt (the minimum sufficient compression of K and previous decisions
for the LLMg call context); A = (V4, E, ay " @) is an annotated graph model with sets of components
V4 and flows E; ay ,, @ are mappings that store roles, protocols, service-level agreements, and other
non-functional attributes; ®:V, — Spec assigns each vertex component one of the specifications
Spec = {API, Logic, Data, Deps, Stack}, where API formalizes the request-response process,
Logic describes business rules and algorithmic transformations, Data defines data structures and
their validation schemes, Deps lists external dependencies with versions, and Stack characterizes
the technology stack and execution environment; R = (cfg, scaff,apis) are machine-readable
artifacts: cfg are configuration files (YAML/JSON), scaff are project frameworks and code
templates, apis are formal API specifications (OpenAPI/Swagger); V = (Problems, Tracking) is a
validation report, where Problems denotes the set of detected problems with importance function
sev, and Tracking denotes the process of tracking tested scenarios.

The main objective is to find (K, M(n), A(n), ®(n), R(n),V(n))N_, (a sequence of N iterations)
that minimizes the aggregated risk:

RiSk(A' q)) = ,BsecRiSksec + .BscalRiSkscal + .BperRiSkper + .BopsRiSkopsv (2)
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where Bsec, Bscats Bpers, Bops > 0 are weighting coefficients, and each of terms Riskgec, Riskgcar
Riskperr, Riskyys specifies a penalty for failure to meet the relevant KPIs and NFRs (security,
scalability, performance, operational).

The optimization problem can be formulated as a search for such A and ® that minimize the risk
under the conditions of invariant fulfillment and reachability from the initial state. Formally:

I,Iqliq? Risk(A, @), (3)

under the condition:
LA, Q) ANL(A ®) ANI(A D) AL(A D), 4)
(A, @) € Reach(p,), (5)

where I; is an invariant that guarantees the semantic integrity of component specifications; I, is
an invariant that ensures that the architecture meets functional requirements; /5 is an invariant that
tracks compliance with non-functional constraints through the budget Byrr (7); 14 is an invariant
that defines the termination and reproducibility conditions of the iterative process associated with
the stationarity metric A(n) (8)-(9); po is the initial state; Reach(py) is the set of reachable
configurations defined by the closure over LLM operations and tools:

Reach(py) = {pilp; = 0y © ... 05 © 01(py), 0; € {LLMg, Tools},i = 1,11 > 1}, (6)
where O; is a valid operation, and the composition of operators specifies the sequence of
transformations from p; to p;.

If at least one invariant I; (i = 1,4) is violated, the system is considered incorrect and needs to be
corrected before continuing with the design.

As part of the iterative improvement of the system, a set of non-functional requirements is
introduced as a set of indices of those metrics that are within acceptable limits. Let for each
j =1, ...,] there be a mapping fj: (4, ) — R, that evaluates the j-th non-functional characteristic
(delay, throughput, resource consumption, etc.) and a scalar threshold b; > 0. Then the set of non-
functional requirements is denoted as:

Bypr = {ﬂfj(A D) < bj}' @)
The state (4, @) is considered acceptable if all J metrics satisfy the requirements, i.e., |Byrg| = J.
To control the convergence of iterations, a stationarity metric is introduced:

A(m) = max{ds(A(n), A(n — 1)), de(P(n), ®(n — 1)),dy (M), M(n — 1))}, )
A(n) < Estops 9)
where dy4, de, dy are the corresponding distance metrics on the spaces of architectures A4,
mappings @, and master prompts M; &g, is the stop threshold, which is a priori selected depending
on the desired accuracy and sensitivity of the system (in practice, it is determined based on the
analysis of the stability of the model outputs or expert requirements for minimum changes between
iterations).

Conditions (7) and (9) can be represented as a process that ends when the changes between
iterations become insignificant and all non-functional constraints are met. This approach prevents
excessive calculations and stabilizes the project at an acceptable level of quality.

The task of automated design of complex multidimensional systems boils down to finding such
an architecture and corresponding mapping of specifications that minimize the risk function while
preserving four invariants and ensuring reachability from the initial state through a sequence of calls
to the generative model and auxiliary tools (2)-(9). At the same time, non-functional constraints are
introduced in the form of a budget of Bypr metrics, which must remain within acceptable thresholds
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bj, and the convergence criterion of iterations is determined by the stationarity value A(n), which
tracks changes in architecture, specifications, and master prompts between adjacent iterations. This
formalization provides a single, consistent model of the system state and mechanisms for its gradual
improvement.

3.2. Typed knowledge base and correctness invariants

As defined in subsection 3.1, the knowledge base K is defined as an ordered set of pairs {(k;, y;)}1~;.
Let T be a finite algebra of domain types consistent with the ontology of the subject area, and let the
typing operator t:path — T assign a static domain type to each document, while the mapping
Sch: T - YAML Schema associates the type with a verification schema. The tuple (k;, y;) is valid
if:

y; E Sch(z(pathy)). (10)
At this stage, the system of correctness invariants is formulated:

o 1;:¥(k;y;) € K:y; E Sch(z(pathy));

e [,: all references between documents (k;,y;) are totally defined and type-compatible; in
particular, if the field y;[ref] = k;, then T(path;) -» t(path;) belongs to the allowed set of
relations R;om;

e [3: for each vertex v, € V, of graph A, there exists a unique document (k;,y;) € K and
version ver; such that path; = ver; and T(path;) = v,; at the same time, ®(v,) refers
specifically to y; — a guarantee of the semantic integrity of specifications;

e [,:repetitions of calls to LLMg and deterministic Tools over fixed (K M (n)) produce identical
artifacts, that is Vny,n, € N;0,,,0,, € {LLMg, Tools} : On, (K,M(n)) = O, (K,M(n)),
where 0, , O,, are two independent replicas of the same operator O over fixed inputs K and

M(n), which ensures the same result for each repeated call of the generative model or
auxiliary tool with identical arguments.

Thus, the typed knowledge base K serves as the sole source of truth, while invariants I; (i = 1,4)
guarantee structural and semantic integrity, full compliance with architectural elements, and
reproducibility of all subsequent transformations of the system state, which are necessary
prerequisites for solving optimization problems (3)-(6).

3.3.  Architecture-oriented control of a generative orchestrator

The iterative design process is managed by a generative orchestrator, which at each step n analyzes
the current state S,(n) =(K,M(n),A(n), ®(n),R(n),V(n)) and selects the next deterministic
operation O, € {LLMy, Tools}. Formally, the orchestrator is defined by the policy:

*: (A, ®,V) - {LLMgy, Tools}, (11)

which minimizes the expected increase in aggregated risk (2):

Ag(n) = Risk(A(n + 1), ®(n + 1)) — Risk(A(n), ®(n)), (12)
while preserving invariants I; (i = 1,4) and the next state belonging to the set Reach(p,) (6).
To make the choice of 0,, architecturally sensitive, we introduce an impact assessment function:

Gain (0, Sy (n)) = —V(a,0)Risk [0 (Sp (n))], (13)
which is approximated by difference gradients on graph A(n) and projections ®(n). Policy * is

implemented by the rule:
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On - arg OE{LI_l:lr\l’I?,)'%OOlS} Gain (0' Sp (Tl)), (14)

which leads to the action of the generative model when the expected benefit of semantic
expansion or refactoring of components exceeds the benefit of materializing artifacts, and vice versa.

The resulting rule can be interpreted as a “greedy” step in selecting the next action: from all
available tools and LLM calls, the one that promises the greatest gain in achieving the target
architecture is selected. This simplifies the optimization process, but at the same time allows
adaptation to the current state of the system.

An additional control parameter is the budget of non-functional requirements Bypr (7): if
|Byrr| = J, the policy refocuses on those graph vertices for which the thresholds b; are violated and
defines O, as the target optimization tool for the corresponding metric. Convergence is controlled
by the stationarity value A(n) (8)-(9); the orchestrator stops iterations when A(n) < &4, and at the
same time Bypg is completely filled.

Thus, the architecture-oriented orchestrator integrates the structural context of the graph, risk
indicators, and non-functional budgets into a single policy 7", which determines the sequence of
calls to LLMy and specialized tools and guarantees a monotonic reduction in risk while maintaining
correctness invariants.

3.4. Risk-oriented iterative improvement strategy

The strategy is based on local minimization of aggregate risk, taking into account invariants,
reachability, and the budget of non-functional requirements, with the utility gain estimate consistent
with the * orchestrator policy (11) and the O,, operation selection rule (14). At step n, we construct
a local Lagrangian-like function with “penalties” for NFR violations and a confidence neighborhood
around the current state:

J

Lo (4,8,2) = Risk(4,8) + > 4[f;(4,8) - b], + u00da (4,4m)
j=1

+v(n)dg (&, d(n)),
where [], = max{:,0}; fj, b; are NFR metrics and thresholds; d4, d¢ are agreed distances that

(15)

are also included in the stationarity criterion A(n) (8); A is a candidate (locally restructured)
architecture in the confidence neighborhood relative to A(n); ® is a candidate mapping of
specifications in the confidence neighborhood relative to ®(n); 4; are binary multipliers; u(n), v(n)
are confidence neighborhood parameters.

In equation (15), the first term reflects the direct risk assessment, and the second term reflects
penalties for exceeding non-functional limits. Thus, optimization balances between risk reduction
and compliance with operational characteristics.

The next state is defined as:

A(n+1),®(n+1)) =ar max Liny(4,®,2),
A+ DO+ D) =arg o max . Loy(4P,)
I AL A I3, AL
that is, only among configurations that preserve invariants (4) and achievable by compositions
0,, € {LLMg, Tools} (6).

The binary factors A are updated by the projection lift step:

(16)

Ai(n+1) = [Aj(n) + n(n)(fj(A(n +1),d(n+ 1)) — bj)]+,j =1,..,], (17)

which focuses subsequent iterations on metrics that exceed the Bygg budget (7).
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Coordination with the orchestrator is achieved by selecting operation 0,, (14) through the
evaluation of Gain (0, Sy (n)) (13), while accepting the step requires both a monotonic decrease in

risk and no depletion of the budget:

Risk(A(n + 1), ®(n + 1)) < Risk(A(n), ®(n)), |Bypr(n + 1| = [Bypr(n)|, (18)

where |Byrg ()| = J corresponds to full compliance with NFR (7).

Condition (18) ensures that each subsequent step of the algorithm does not worsen the overall
risk assessment. Even if individual metrics may fluctuate temporarily, the overall trend remains
upward.

The parameters of the confidence neighborhood u(n), v(n) are adapted according to A(n) (8):
when there is a large change in state, they increase, “narrowing” the search space; when the
dynamics are stable, they decrease, allowing for an increase in the state distances between iterations
d4, do. The stopping criterion is set as A(n) < &gp (9) together with the filled budget Bypg (7).
This scheme combines the global goal of risk minimization (3)-(5) with locally controlled orchestrator
steps (11)-(14), ensuring monotonic convergence to an acceptable solution while maintaining
invariants and attainability.

3.5. Reproducibility and auditability of artifacts

The reproducibility of artifacts is guaranteed by setting the deterministic parameters of the
generative model 0 = (seed, T, system_ctx) and using deterministic tools that return identical
outputs for identical inputs. The formal state carrier is still the tuple S, (1), so these components are
subject to audit. For each iteration n, the control state C (n) is fixed, which includes the control hashes
of all components of the tuple S, (1) and the environment identifiers idg, id7ooss:

o(n) = (h(K), h(M(n)), h(A(0)), (P (M)), A(R(n)),idg, idroess)- (19)
Next, an audit log is constructed as a chain of hashes. Starting with ¢y = h(a(O)), define:

Cn+1 = h(Cn @ On @ O'(Tl) @ O'(Tl + 1) @ tSn+1)' (20)
where 0,, € {LLMy, Tools} is the executed operation; ts, 4 is the timestamp.

The log is stored as a hash chain, so any change or forgery is detected as a violation of integrity.
To verify reproducibility, repeat step n under the fixed idg,id 705, and input o(n); invariant I,
requires that the result 0, (K, M(n)) exactly matches o(n + 1) in the log. Each record additionally
contains the current budget Bygg and the stationarity metric A(n) for post-step compliance and
stability checks according to (7)-(9). If necessary, the origin of changes (A(n),cl)(n)) is tracked
through references to operations {0;} that define reachable states Reach(p,), allowing the complete
causal sequence to be reconstructed and its correctness verified. In combination, manifests, hash
chains, and environment fixes provide a transparent, verifiable, and reproducible trajectory of
artifact synthesis at all stages of iterative design.

3.6. Algorithm for using the proposed model

The pseudocode of the algorithm for using the proposed model is shown in Table 1. It implements
the (11) * policy of architecture-aware orchestration and iterative risk minimization for invariants
I, — I, with control of the non-functional requirements budget Bypr and stationarity A(n). The
initial query pg is converted into a typed knowledge base K and prompt M(0); then cycles of
decomposition, formalization of specifications, validation, and local improvement are performed. The

action selection O, (K , M (n)) is performed according to rule (14), as well as taking into account Gain,
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which ensures architecturally sensitive action selection. Updating the binary factors 4; directs

iterations to metrics that exceed the thresholds bj.

Table 1
Frequency of Special Characters

Ne

Step in the Algorithm

@

10:

11:
12:

13:

14:
15:
16:

17:
18:

19:

Require: S5 = (K, M©®, A®, 0@, RO, pO), po (b}, &40, 1@, @, v, y; > 1,
YL € (0'1)
Ensure: (o‘l(*), dD(*)) with minimal risk under I; A+ A I,
AO —0;p—0;1 < {I; AT, AI3 ALY
B% « 1 f;(A@,0©@) < h;; A®  +oo
0® « (h(50), R(M©@), R(AD), h(P@), A(R©®),idg,id 10015 ); co < (o)
repeat
Guuy < Gain (LLMg, 55, Grools < Gain (Tools, ST )

( LLMe' GLLM > GTools'
Tools, Groois > Grim

0.
n < TOOlS; GTools = GLLM A |BIEI7I§I){| <]’
LLMy, otherwise
(A.8,1) < 0, (557): (A4.B)  Macanipppni (4. B)

J

(AD, D) «  argmin Risk+z A}n) [fi =], + #™Mdg +vMdg

(cﬁ,(f))EReach(pO),I =

R+ (M) y Materialize(c/l(””l), CD(nH));

pn+l) Validate(c/l(““), o+ R(”"“))

rn+) Risk(dq(n+1)’q)(n+1)); 7\}”“) - [)L](n) + n(n)(fj(dq(n+1)’q)(n+1)) _ bj)]
1 ,

B < U1 f; < by

A(n+1) - max{ dcﬂ(dq(n+1)’ﬂ(n)), d¢(q)(n+1)’q)(n))’ dM(M(n+1),M(n))}

if r+D > 7@ v |BE| < |BG | then

)
+

p+D oy (D) g (),
(AMHD, @t R (D) Pt (W) o) R P()); continue
else
NG IPERVCOPNC S S DIV (>
oD  (h(H), A(MTHD), R(APFD), A(@M D), A(RHD)) idg,id 01 )5
i1 < h(cn 11 Oy 11 6@ 1| 6D |l ts,,,)
pept+tlinen+tld
until A® < g, A [BSR| =7V p = o
return (c/l (n) ) ) pn) )

The step is accepted if the monotonicity of risk and non-exhaustion of the NFR budget are
fulfilled; the stopping criterion uses the condition A(n) < €4, (9) and full execution of the NFR
budget |Byrr(*)| = J (18). Manifests and hash chains provide a reproducible audit of the process.

This algorithmic workflow ensures that each iteration not only satisfies structural invariants but
also maintains semantic coherence across all system components. The orchestration loop
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dynamically adjusts the balance between exploration of alternative configurations and exploitation
of verified architectures, enabling convergence toward an optimal, risk-minimized design. As a
result, the process achieves stable evolution of the system state while preserving full traceability and
reproducibility of all generated artifacts.

4. Testing of the model

The proposed model was validated using a case study of a multi-level supply chain [12-13] in the
FMCG sector, which includes suppliers, production facilities, distribution centers, and retail outlets.
This example allows us to test the model's ability to coherently synthesize architecture, optimize
replenishment and resource allocation policies, and ensure that functional and non-functional
requirements are met in realistic conditions.

The modeling of a multi-level FMCG supply chain was implemented in Python 3.11 using the
NumPy, pandas, and Matplotlib libraries for data generation, processing, and visualization, as well
as SciPy for statistical analysis. Algorithmic modules were implemented using object-oriented and
structural approaches, which ensured flexibility in configuring simulation parameters.

To implement adaptive decision-making logic, the OpenAI GPT-40 API was used, which was
integrated through the official Python SDK and performed the functions of a generative orchestrator,
in particular, forming a strategy for responding to stochastic changes in demand and delivery times.
This made it possible to combine classical mathematical modeling with intelligent components,
which significantly increased the realism of the simulations and brought them closer to the
conditions of a real business environment.

Consider a network consisting of two raw material suppliers, one factory, two regional centers
(DC1,DC2), and five retail stores (SKU € {4, B, C}); customer orders are stochastic with seasonality,
delivery lead times vary, computing resource budget and SLA for plan updates are limited. The initial
request pg is formalized as a typed knowledge base K (YAML description of the domain, nodes, and
flows), master prompt M (0), architecture A(0), and mapping ®(0) with specifications {API, Logic,
Data, Deps, Stack} for nodes “Supplier/Plant/DC/Store”; artifacts R(0) contain simulator
configurations, pipeline templates, and OpenAP]I for integration with ERP. State S}, evolves in the set
of reachable configurations Reach(p,) by compositions of calls {LLMg, Tools}. The goal is to reduce
the aggregated risk Risk (A, ®) (with weights on security/scalability/performance/operability) under
invariants I; — I, and budget NFR; NFR metrics f; include service level (% On-Time/In-Full), average

backlog, delivery costs, plan update time; acceptability: |[Bygg(-)| = J. Test procedure:

1. initialization of pg with sales history and lead time matrices;

2. orchestrator iterations: synthesis/refactoring of replenishment (s,S), allocation, and
transport policies, API and config generation/update, simulator validation;

3. acceptance of a step based on a monotonic decrease in Risk and no decrease in |Bygg(*)l;

4. stop based on stationarity A(n) < &gp-

Reproducibility and audit are ensured by state manifests together with a hash chain of actions
Cne1 = h(cn||0n||0(n)||a(n + 1)|[tsp4+1) and the fixation of environment identifiers idg, id7oo;s-
The expected result of applying the method is a reproducible set of artifacts (architecture,
replenishment and allocation policies, integration contracts, pipeline configurations) with improved
key metrics (OTIF growth, backlog and cost reduction) while adhering to NFR and transparent
auditing.

Figure 1 demonstrates that the proposed method shows consistently higher OTIF (On Time In
Full) performance compared to baseline approaches for a multi-level FMCG supply chain. Based on
the results of 200 stochastic simulations, the average OTIF for the proposed model remains within
the range of 0.921-0.926, exceeding the rule-based strategy by 2—4 percentage points and the baseline
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by 5-7 percentage points during most weeks. The 95% CI ranges do not intersect, indicating a
statistically significant advantage even in the presence of random fluctuations in demand and
variability in lead times. This result demonstrates the method's ability to ensure higher order
fulfillment reliability in the complex conditions of multi-level supply networks.

The results of 200 stochastic simulations for a multi-level FMCG supply chain demonstrate that
the proposed model significantly reduces the average backlog level compared to other approaches
(see Figure 2). The average values for the proposed model are in the range of 70-80 units, which is
approximately 35-40% less than the rule-based strategy (100-116 units) and approximately 45-50%
less than the baseline (135-150 units). Narrow 95% CI confidence intervals indicate the stability of
the results even under conditions of demand fluctuations and delivery time variability. This confirms
the effectiveness of the method in reducing shortages and increasing order fulfillment rates in
complex supply networks.
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Figure 1: OTIF Dynamics with Confidence Bounds.
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Figure 2: Backlog Dynamics with 95% Confidence Bounds.

Figure 3 shows the dynamics of average delivery costs (in thousands of US dollars) for a 12-week
period for three approaches: the proposed model, the rule-based algorithm, and the baseline scenario,
taking into account 95% confidence intervals based on the results of 200 Monte Carlo simulations.
The proposed method consistently provides the lowest costs, reducing them from $15.8 thousand at
the beginning to $14.6 thousand at the end of the period, which is about a 7.6% savings from the
starting level. The rule-based approach starts at $18.6 thousand and decreases to $17.8 thousand,
while the baseline scenario fluctuates between $21.3-22.4 thousand, remaining 25-30% more
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expensive than the proposed one. These results indicate that optimizing management decisions in a
multi-level FMCG supply chain can significantly reduce transportation costs without compromising
service performance.

The simulation results for a multi-level FMCG supply chain confirmed the effectiveness of the
proposed model compared to the baseline and rule-based approaches. Over 12 weeks of simulations,
the average OTIF remained consistently higher (0.92 vs. 0.88 for rule-based and 0.85 for baseline),
indicating an increase in the level of timely and complete deliveries. The average level of unmet
demand (backlog) decreased by 32% compared to the baseline and by 30% compared to the rule-based
approach. At the same time, average delivery costs decreased by 15% compared to the baseline and
by 12% compared to rule-based, maintaining stable dynamics even with increasing stochastic
fluctuations in demand and delivery times. This demonstrates the model's ability to provide balanced
optimization of key KPIs (service level, inventory, and costs) under realistic supply chain conditions.

211 T T T T T T = ~=—= _Proposed {mean)
e = iy

20 1 e — - RuleBased {mean)
— - . S
8 == Baseline (mean)
S 19
%
:18' -—---—.__'__ _________ _.._____-_-
Z —~—
O 174 e
>
_
U 16 -
>
©
0 154 ——

N \

Week

Figure 3: Delivery Cost Reduction Dynamics in Multi-Tier FMCG Supply Chains.

To sum up, the experimental validation on a multi-level FMCG supply chain confirmed that the
LLM-based orchestrator effectively generated and refined replenishment and allocation policies
under stochastic demand and delivery conditions. The results demonstrated consistent
improvements in service level (OTIF), reduction of backlog, and lower delivery costs compared to
baseline and rule-based approaches, confirming the model’s effectiveness and reproducibility.

5. Possibilities and limitations of the proposed model

The proposed model demonstrates significant capabilities in the field of automated design and
optimization of complex systems, in particular multi-level supply chains, combining formal modeling
methods with intelligent data processing using LLM. Its architecture-oriented approach allows
integrating heterogeneous knowledge sources, supporting flexible scenario management, and taking
into account non-functional requirements through the introduction of constraint budgets. Key
advantages include scalability, resistance to stochastic parameter fluctuations, and the possibility of
multi-stage iterative optimization based on risk assessment. At the same time, the model has certain
limitations: its effectiveness depends on the quality and completeness of the initial knowledge base,
the accuracy of the evaluation function settings, and the computational resources for performing
simulations in large configuration spaces. Defining the initial knowledge base K in a new or weakly
formalised domain remains a non-trivial task, requiring domain expertise to ensure consistency,
adequate coverage, and balanced abstraction. Insufficient structuring at this stage can limit the
accuracy of subsequent synthesis and adaptation processes.
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In addition, the integration of LLM-oriented components requires careful control of the
reproducibility of results and protection against potential errors in generative models, which imposes
additional requirements on audit and validation procedures. Although GPT-40 was used in the
experimental implementation due to its stability and reasoning performance, the framework itself is
model-agnostic; outcomes may vary with alternative LLMs depending on their prompt determinism,
fine-tuning scope, and inference variability.

6. Conclusions

The model proposed in this paper provides a formalized, architecture-oriented approach to
automated design and optimization of complex systems, integrating risk-oriented management,
formal modeling methods, and intelligent components based on LLM. Validation conducted on a
multi-level FMCG supply chain demonstrated a significant improvement in key performance
indicators (service level, reduction in unmet demand, and reduction in logistics costs) compared to
rule-based and baseline approaches. The introduction of a budget for non-functional requirements
allowed the system to remain stable even under stochastic fluctuations, while the use of iterative
improvement ensured a balanced optimization between cost and service quality. The presented
integration of formalised architectural modelling with intelligent generative orchestration represents
a step beyond existing design frameworks, offering a verifiable pathway from conceptual
specification to adaptive optimisation. This synthesis highlights the contribution of the study
compared with prior work on automated design methods.

The results obtained indicate the high suitability of the model for practical application in
industries characterized by complex network structures and high uncertainty, in particular in
logistics, manufacturing, and service systems. At the same time, further research can be directed
toward scaling the approach for even larger data volumes, integration with real IoT and ERP data
flows, and adaptation of validation methods to improve the reliability of generative components.
Thus, the proposed methodology creates the prerequisites for building new generations of automated
intelligent orchestrators capable of dynamically adapting to changes in the environment and
ensuring increased management efficiency.
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