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Abstract 
The article proposes a formalized model and methods for the automated design of complex multicomponent 
systems (CMS) using an integrated approach that combines architectural modeling, prompt engineering, 
and large language models (LLM). The developed model describes the state of the process as a typed tuple 
that includes a knowledge base, an architectural graph, a mapping of components to specifications, a set of 
artifacts, and validation reports. Methods for managing the generative orchestrator are proposed, which 
ensure the achievement of target states with minimal risk for given non-functional requirement budgets 
and correctness invariants. To increase reliability, mechanisms for reproducibility and artifact auditing are 
provided. The risk-oriented iterative improvement strategy combines mathematical optimization with 
adaptive queries to LLM, which allows achieving a balance between the quality of decisions and 
computational costs. The effectiveness of the approach is demonstrated by the example of a multi-level 
FMCG supply chain using Monte Carlo simulations, which showed improvements in OTIF performance, a 
reduction in unfulfilled commitments, and optimization of delivery costs. The results confirm the potential 
of the developed model for practical application in the engineering of complex systems in dynamic 
environments. 
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1. Introduction 

Modern complex multi-component systems, such as supply chains, cyber-physical systems, and 
intelligent information infrastructures, are characterized by a high degree of structural and 
functional interdependence of components, as well as dynamic changes in the operating 
environment. The growth in data volumes, the expansion of the range of non-functional 
requirements (e.g., performance, reliability, security), and the need for rapid adaptation to market 
changes pose new challenges for the methods of designing and managing such systems. In this 
context, approaches that combine formal rigor, process automation, and the ability to adaptively 
optimize under uncertainty are of key importance [1]. 

One of the most promising areas of development is the integration of architectural modeling 
methods with the capabilities of large language models (LLMs) and intelligent orchestrators capable 
of performing complex sequences of operations. The use of LLM for automated knowledge 
processing and project decision generation opens up new opportunities in the synthesis and 
optimization of architectures, especially when there are extensive knowledge bases containing 
structured and semi-structured information. Combining such tools with formalized risk assessment 
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methods, non-functional requirements budgeting, and simulation approaches allows the creation of 
systems that not only meet current constraints but are also capable of iterative self-improvement [2]. 

At the same time, there are a number of scientific and practical problems related to ensuring the 
reproducibility of results, integrating heterogeneous components and data sources, and verifying the 
correctness of decisions made in a dynamic environment. Traditional design methods often prove to 
be insufficiently flexible or excessive in terms of resources for solving real-time problems, especially 
in conditions of multi-level optimization and high variability of scenarios. 

The goal of this study is to develop a formal model for automated system design that integrates 
an architecture-oriented approach, risk-oriented management, budgeting of non-functional 
requirements, and the use of LLM as an intelligent orchestrator. The proposed model is focused on 
iterative improvement of the system architecture, taking into account changes in the environment 
and target performance indicators, ensuring a balance between functional and non-functional 
requirements. 

To validate the approach, a multi-level FMCG Supply Chain case was used, which allows assessing 
the effectiveness of the model under conditions of stochastic demand fluctuations, variability of 
delivery times, and resource constraints. Simulation experiments using Monte Carlo methods 
demonstrated that the proposed methodology can improve service levels, reduce unmet demand, and 
lower logistics costs compared to baseline and rule-based approaches. In contrast to previous studies 
that addressed separate aspects of formal modelling or generative design, this work unifies 
architectural modelling, risk-oriented optimisation, and LLM-based orchestration within a single 
reproducible framework. Thus, the study contributes to the development of tools for creating 
reproducible, adaptive, and effective solutions in the field of automated design of complex systems. 

2. Theoretical foundations of complex systems design 

The design of complex multi-component systems (CMS) is one of the key tasks of modern 
engineering and applied computer science. Such systems are distinguished by their multi-level 
structure, heterogeneity of components, high degree of interdependence, and significant influence 
of external factors, including stochastic ones. Classic approaches to their development are based on 
methods of system analysis, architectural modeling, and requirements engineering, which ensure the 
formalization of functional and non-functional characteristics. However, in dynamic environments 
where system parameters and objectives change during operation, there is a need for adaptive, 
iteratively controlled design methods. Analogous adaptative mechanisms have been used in models 
of attitude formation [3]. 

One of the modern directions in the development of such methods is the integration of formal 
architectural models with generative intelligent systems, in particular Large Language Models (LLM). 
LLMs are capable of working with unstructured and semi-structured knowledge, identifying hidden 
dependencies, synthesizing design alternatives, and forming recommendations based on the history 
of previous decisions. This creates the conditions for automating a significant part of the design 
process, including requirements analysis, architectural solution generation, and correctness 
invariant verification [4]. 

The key mechanism for engineers to interact with LLM in design tasks is prompt engineering (the 
development of structured input queries that form a clear context for obtaining relevant and 
reproducible results). Within the scope of CMS design, prompts may include a description of the 
target state, constraints (e.g., budget for non-functional requirements), architectural precedents, and 
risk assessment metrics. This allows LLM to act as a generative orchestrator that aligns multistep 
changes to the system architecture with specified optimization criteria. 

Prompt engineering, combined with formal architectural models, enables a closed iterative design 

5]. This approach combines the rigor of a 
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mathematical model with the flexibility of generative tools, which increases the efficiency and speed 
of adaptation of complex systems to environmental changes. 

Thus, the modern paradigm of CMS design involves the integration of two complementary 
components: formal methods that ensure the verification and reproducibility of solutions, and 
prompt engineering as a means of controlled application of the generative capabilities of LLM [6-8]. 
This creates the foundation for building adaptive and scalable engineering processes capable of 
ensuring an optimal balance between development speed, solution quality, and risk level. 

3. Mathematical model and methodology for automated design of 
complex systems 

3.1. Formal problem statement of automated CMS design 

Imagine a set of stakeholders who submit an initial request for the design of complex systems 𝑝0 
with functional and non-functional requirements, environmental constraints, and business 

annotated vertices-components and edges-flows, in which vertices correspond to functional services 
and edges correspond to interaction contracts. 

Let us assume that all stakeholder requirements can be represented as a finite set of typed 
messages, semantically consistent with a predefined domain vocabulary (ontology). Also, calls to the 
generative model LLM𝜃 are deterministic for fixed parameters 𝜃 = (𝑠𝑒𝑒𝑑, 𝑇, system_ctx), where 
seed is a number that sets the initial state of the random value generator so that each call to the model 
produces the same results; T 
be (the smaller the value, the less diverse);  system_ctx is a text instruction or setting that provides a 

artifacts. The Tools toolset (synthesis of diagrams, OpenAPI/Proto contracts, Docker/Kubernetes 
configurations, security and scalability analysis, etc.) can be called as a deterministic function over 
its inputs [9-11]. 

𝑆𝑝 = 〈𝐾,𝑀, 𝐴,Φ, 𝑅, 𝑉〉, (1) 
where 𝐾 = {(𝑘𝑖, 𝑦𝑖)}𝑖=1𝑚  is a knowledge base consisting of m YAML documents; each of the key 

𝑘𝑖 = 〈𝑝𝑎𝑡ℎ𝑖,  𝑣𝑒𝑟𝑖〉 consists of a hierarchical path in the document tree (𝑝𝑎𝑡ℎ𝑖) and a semantic 
version 𝑣𝑒𝑟𝑖 ∈ ℕ3; each 𝑦𝑖 satisfies the schema 𝑆𝑐ℎ(𝑘𝑖) and fixes the ontological core of the subject 
area; 𝑀 ∈ Σ∗ is a master prompt (the minimum sufficient compression of 𝐾 and previous decisions 
for the LLM𝜃 call context); 𝐴 = 〈𝑉𝐴, 𝐸, 𝛼𝑉𝐴 , 𝛼𝐸〉 is an annotated graph model with sets of components 
𝑉𝐴 and flows 𝐸; 𝛼𝑉𝐴 , 𝛼𝐸 are mappings that store roles, protocols, service-level agreements, and other 
non-functional attributes; Φ:𝑉𝐴 → 𝑆𝑝𝑒𝑐 assigns each vertex component one of the specifications 
𝑆𝑝𝑒𝑐 = {𝐴𝑃𝐼, 𝐿𝑜𝑔𝑖𝑐, 𝐷𝑎𝑡𝑎, 𝐷𝑒𝑝𝑠, 𝑆𝑡𝑎𝑐𝑘}, where 𝐴𝑃𝐼 formalizes the request-response process, 
𝐿𝑜𝑔𝑖𝑐 describes business rules and algorithmic transformations, 𝐷𝑎𝑡𝑎 defines data structures and 
their validation schemes, 𝐷𝑒𝑝𝑠 lists external dependencies with versions, and 𝑆𝑡𝑎𝑐𝑘 characterizes 
the technology stack and execution environment; 𝑅 = (𝑐𝑓𝑔, 𝑠𝑐𝑎𝑓𝑓, 𝑎𝑝𝑖𝑠) are machine-readable 
artifacts: 𝑐𝑓𝑔 are configuration files (YAML/JSON), 𝑠𝑐𝑎𝑓𝑓 are project frameworks and code 
templates, 𝑎𝑝𝑖𝑠 are formal API specifications (OpenAPI/Swagger); 𝑉 = (𝑃𝑟𝑜𝑏𝑙𝑒𝑚𝑠, 𝑇𝑟𝑎𝑐𝑘𝑖𝑛𝑔) is a 
validation report, where 𝑃𝑟𝑜𝑏𝑙𝑒𝑚𝑠 denotes the set of detected problems with importance function 
sev, and 𝑇𝑟𝑎𝑐𝑘𝑖𝑛𝑔 denotes the process of tracking tested scenarios. 

The main objective is to find 〈𝐾,𝑀(𝑛), 𝐴(𝑛),Φ(𝑛), 𝑅(𝑛), 𝑉(𝑛)〉𝑛=1𝑁  (a sequence of N iterations) 
that minimizes the aggregated risk: 

𝑅𝑖𝑠𝑘(𝐴,Φ) = 𝛽𝑠𝑒𝑐𝑅𝑖𝑠𝑘𝑠𝑒𝑐 + 𝛽𝑠𝑐𝑎𝑙𝑅𝑖𝑠𝑘𝑠𝑐𝑎𝑙 + 𝛽𝑝𝑒𝑟𝑅𝑖𝑠𝑘𝑝𝑒𝑟 + 𝛽𝑜𝑝𝑠𝑅𝑖𝑠𝑘𝑜𝑝𝑠, (2) 
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where 𝛽𝑠𝑒𝑐 , 𝛽𝑠𝑐𝑎𝑙 , 𝛽𝑝𝑒𝑟𝑓 , 𝛽𝑜𝑝𝑠 > 0 are weighting coefficients, and each of terms 𝑅𝑖𝑠𝑘𝑠𝑒𝑐 , 𝑅𝑖𝑠𝑘𝑠𝑐𝑎𝑙 ,
𝑅𝑖𝑠𝑘𝑝𝑒𝑟𝑓 , 𝑅𝑖𝑠𝑘𝑜𝑝𝑠 specifies a penalty for failure to meet the relevant KPIs and NFRs (security, 
scalability, performance, operational). 

under the conditions of invariant fulfillment and reachability from the initial state. Formally: 

min
𝐴,Φ

𝑅𝑖𝑠𝑘(𝐴,Φ), (3) 
under the condition: 

𝐼1(𝐴,Φ) ∧ 𝐼2(𝐴,Φ) ∧ 𝐼3(𝐴,Φ) ∧ 𝐼4(𝐴,Φ), (4) 
(𝐴,Φ) ∈ 𝑅𝑒𝑎𝑐ℎ(𝑝0), (5) 

where 𝐼1 is an invariant that guarantees the semantic integrity of component specifications; 𝐼2 is 
an invariant that ensures that the architecture meets functional requirements; 𝐼3 is an invariant that 
tracks compliance with non-functional constraints through the budget 𝐵𝑁𝐹𝑅 (7); 𝐼4 is an invariant 
that defines the termination and reproducibility conditions of the iterative process associated with 
the stationarity metric Δ(𝑛) (8)-(9); 𝑝0 is the initial state; 𝑅𝑒𝑎𝑐ℎ(𝑝0) is the set of reachable 
configurations defined by the closure over LLM operations and tools: 

𝑅𝑒𝑎𝑐ℎ(𝑝0) = {𝑝𝑙|𝑝𝑙 = 𝑂𝑙 ∘ … ∘ 𝑂2 ∘ 𝑂1(𝑝0), 𝑂𝑖 ∈ {LLM𝜃, 𝑇𝑜𝑜𝑙𝑠}, 𝑖 = 1, 𝑙̅̅ ̅̅ , 𝑙 ≥ 1}, (6) 
where 𝑂𝑖 is a valid operation, and the composition of operators specifies the sequence of 

transformations from 𝑝0 to 𝑝𝑙 . 
If at least one invariant 𝐼𝑖 (𝑖 = 1,4̅̅ ̅̅ ) is violated, the system is considered incorrect and needs to be 

corrected before continuing with the design. 
As part of the iterative improvement of the system, a set of non-functional requirements is 

introduced as a set of indices of those metrics that are within acceptable limits. Let for each  
𝑗 = 1,… , 𝐽 there be a mapping 𝑓𝑗: (𝐴,Φ) ⟼ ℝ≥0 that evaluates the j-th non-functional characteristic 
(delay, throughput, resource consumption, etc.) and a scalar threshold 𝑏𝑗 > 0. Then the set of non-
functional requirements is denoted as: 

𝐵𝑁𝐹𝑅 = {𝑗|𝑓𝑗(𝐴,Φ) ≤ 𝑏𝑗}. (7) 
The state (𝐴,Φ) is considered acceptable if all J metrics satisfy the requirements, i.e., |𝐵𝑁𝐹𝑅| = 𝐽. 

To control the convergence of iterations, a stationarity metric is introduced: 

Δ(𝑛) = max{𝑑𝐴(𝐴(𝑛), 𝐴(𝑛 − 1)), 𝑑Φ(Φ(𝑛),Φ(𝑛 − 1)), 𝑑𝑀(𝑀(𝑛),𝑀(𝑛 − 1))}, (8) 
Δ(𝑛) ≤ 𝜀𝑠𝑡𝑜𝑝, (9) 

where 𝑑𝐴, 𝑑Φ, 𝑑𝑀 are the corresponding distance metrics on the spaces of architectures 𝐴, 
mappings Φ, and master prompts 𝑀; 𝜀𝑠𝑡𝑜𝑝 is the stop threshold, which is a priori selected depending 
on the desired accuracy and sensitivity of the system (in practice, it is determined based on the 
analysis of the stability of the model outputs or expert requirements for minimum changes between 
iterations). 

Conditions (7) and (9) can be represented as a process that ends when the changes between 
iterations become insignificant and all non-functional constraints are met. This approach prevents 
excessive calculations and stabilizes the project at an acceptable level of quality. 

The task of automated design of complex multidimensional systems boils down to finding such 
an architecture and corresponding mapping of specifications that minimize the risk function while 
preserving four invariants and ensuring reachability from the initial state through a sequence of calls 
to the generative model and auxiliary tools (2)-(9). At the same time, non-functional constraints are 
introduced in the form of a budget of 𝐵𝑁𝐹𝑅 metrics, which must remain within acceptable thresholds 
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𝑏𝑗, and the convergence criterion of iterations is determined by the stationarity value Δ(𝑛), which 
tracks changes in architecture, specifications, and master prompts between adjacent iterations. This 
formalization provides a single, consistent model of the system state and mechanisms for its gradual 
improvement. 

3.2. Typed knowledge base and correctness invariants 

As defined in subsection 3.1, the knowledge base K is defined as an ordered set of pairs {(𝑘𝑖, 𝑦𝑖)}𝑖=1𝑚 . 
Let 𝕋 be a finite algebra of domain types consistent with the ontology of the subject area, and let the 
typing operator 𝜏: 𝑝𝑎𝑡ℎ → 𝕋 assign a static domain type to each document, while the mapping 
𝑆𝑐ℎ: 𝕋 → 𝑌𝐴𝑀𝐿 𝑆𝑐ℎ𝑒𝑚𝑎 associates the type with a verification schema. The tuple (𝑘𝑖, 𝑦𝑖) is valid 
if: 

𝑦𝑖 ⊨ 𝑆𝑐ℎ(𝜏(𝑝𝑎𝑡ℎ𝑖)). (10) 
At this stage, the system of correctness invariants is formulated: 

• 𝐼1: ∀(𝑘𝑖, 𝑦𝑖) ∈ 𝐾: 𝑦𝑖 ⊨ 𝑆𝑐ℎ(𝜏(𝑝𝑎𝑡ℎ𝑖)); 
• 𝐼2: all references between documents (𝑘𝑖, 𝑦𝑖) are totally defined and type-compatible; in 

particular, if the field 𝑦𝑖[ref] = 𝑘𝑗, then 𝜏(𝑝𝑎𝑡ℎ𝑖) ⇝ 𝜏(𝑝𝑎𝑡ℎ𝑗) belongs to the allowed set of 
relations ℝ𝑑𝑜𝑚; 

•  𝐼3: for each vertex 𝑣𝐴 ∈ 𝑉𝐴 of graph A, there exists a unique document (𝑘𝑖, 𝑦𝑖) ∈ 𝐾 and 
version  𝑣𝑒𝑟𝑖 such that 𝑝𝑎𝑡ℎ𝑖 =  𝑣𝑒𝑟𝑖 and 𝜏(𝑝𝑎𝑡ℎ𝑖) = 𝑣𝐴; at the same time, Φ(𝑣𝐴) refers 
specifically to 𝑦𝑖  a guarantee of the semantic integrity of specifications; 

• 𝐼4: repetitions of calls to LLM𝜃 and deterministic Tools over fixed (𝐾,𝑀(𝑛)) produce identical 
artifacts, that is ∀𝑛1, 𝑛2 ∈ ℕ;𝑂𝑛1 , 𝑂𝑛2 ∈ {LLM𝜃, 𝑇𝑜𝑜𝑙𝑠} ∶ 𝑂𝑛1(𝐾,𝑀(𝑛)) = 𝑂𝑛2(𝐾,𝑀(𝑛)), 
where 𝑂𝑛1 , 𝑂𝑛2 are two independent replicas of the same operator O over fixed inputs K and 
M(n), which ensures the same result for each repeated call of the generative model or 
auxiliary tool with identical arguments. 

Thus, the typed knowledge base K serves as the sole source of truth, while invariants 𝐼𝑖 (𝑖 = 1,4̅̅ ̅̅ ) 
guarantee structural and semantic integrity, full compliance with architectural elements, and 
reproducibility of all subsequent transformations of the system state, which are necessary 
prerequisites for solving optimization problems (3)-(6). 

3.3. Architecture-oriented control of a generative orchestrator 

The iterative design process is managed by a generative orchestrator, which at each step n analyzes 
the current state 𝑆𝑝(𝑛) = 〈𝐾,𝑀(𝑛), 𝐴(𝑛),Φ(𝑛), 𝑅(𝑛), 𝑉(𝑛)〉 and selects the next deterministic 
operation 𝑂𝑛 ∈ {LLM𝜃, 𝑇𝑜𝑜𝑙𝑠}. Formally, the orchestrator is defined by the policy: 

𝜋∗: (𝐴,Φ, 𝑉) → {LLM𝜃 , 𝑇𝑜𝑜𝑙𝑠}, (11) 
which minimizes the expected increase in aggregated risk (2): 

∆𝑅(𝑛) = 𝑅𝑖𝑠𝑘(𝐴(𝑛 + 1),Φ(𝑛 + 1)) − 𝑅𝑖𝑠𝑘(𝐴(𝑛),Φ(𝑛)), (12) 
while preserving invariants 𝐼𝑖 (𝑖 = 1,4̅̅ ̅̅ ) and the next state belonging to the set 𝑅𝑒𝑎𝑐ℎ(𝑝0) (6). 
To make the choice of 𝑂𝑛 architecturally sensitive, we introduce an impact assessment function: 

𝐺𝑎𝑖𝑛 (𝑂, 𝑆𝑝(𝑛)) = −∇(𝐴,Φ)𝑅𝑖𝑠𝑘 [𝑂 (𝑆𝑝(𝑛))], (13) 

which is approximated by difference gradients on graph 𝐴(𝑛) and projections Φ(𝑛). Policy 𝜋∗ is 
implemented by the rule: 
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𝑂𝑛 = arg max
𝑂∈{LLM𝜃,𝑇𝑜𝑜𝑙𝑠}

𝐺𝑎𝑖𝑛 (𝑂, 𝑆𝑝(𝑛)), (14) 

which leads to the action of the generative model when the expected benefit of semantic 
expansion or refactoring of components exceeds the benefit of materializing artifacts, and vice versa. 

The resulting rule can 
available tools and LLM calls, the one that promises the greatest gain in achieving the target 
architecture is selected. This simplifies the optimization process, but at the same time allows 
adaptation to the current state of the system. 

An additional control parameter is the budget of non-functional requirements 𝐵𝑁𝐹𝑅 (7): if 
|𝐵𝑁𝐹𝑅| = 𝐽, the policy refocuses on those graph vertices for which the thresholds 𝑏𝑗 are violated and 
defines 𝑂𝑛 as the target optimization tool for the corresponding metric. Convergence is controlled 
by the stationarity value Δ(𝑛) (8)-(9); the orchestrator stops iterations when Δ(𝑛) ≤ 𝜀𝑠𝑡𝑜𝑝 and at the 
same time 𝐵𝑁𝐹𝑅 is completely filled. 

Thus, the architecture-oriented orchestrator integrates the structural context of the graph, risk 
indicators, and non-functional budgets into a single policy 𝜋∗, which determines the sequence of 
calls to LLM𝜃 and specialized tools and guarantees a monotonic reduction in risk while maintaining 
correctness invariants. 

3.4. Risk-oriented iterative improvement strategy 

The strategy is based on local minimization of aggregate risk, taking into account invariants, 
reachability, and the budget of non-functional requirements, with the utility gain estimate consistent 
with the 𝜋∗ orchestrator policy (11) and the 𝑂𝑛 operation selection rule (14). At step n, we construct 
a local Lagrangian- confidence neighborhood 
around the current state: 

ℒ(𝑛)(𝐴̃, Φ̃, 𝜆) = 𝑅𝑖𝑠𝑘(𝐴̃, Φ̃) +∑𝜆𝑗[𝑓𝑗(𝐴̃, Φ̃) − 𝑏𝑗]+

𝐽

𝑗=1

+  𝜇(𝑛)𝑑𝐴 (𝐴̃, 𝐴(𝑛))

+ 𝑣(𝑛)𝑑Φ (Φ̃,Φ(𝑛)), 

(15) 

where [∙]+ = max{∙ ,0}; 𝑓𝑗, 𝑏𝑗 are NFR metrics and thresholds; 𝑑𝐴, 𝑑Φ are agreed distances that 
are also included in the stationarity criterion Δ(𝑛) (8); 𝐴̃ is a candidate (locally restructured) 
architecture in the confidence neighborhood relative to 𝐴(𝑛); Φ̃ is a candidate mapping of 
specifications in the confidence neighborhood relative to Φ(𝑛); 𝜆𝑗 are binary multipliers; 𝜇(𝑛), 𝑣(𝑛) 
are confidence neighborhood parameters. 

In equation (15), the first term reflects the direct risk assessment, and the second term reflects 
penalties for exceeding non-functional limits. Thus, optimization balances between risk reduction 
and compliance with operational characteristics. 

The next state is defined as: 

(𝐴(𝑛 + 1),Φ(𝑛 + 1)) = arg max
(𝐴̃,Φ̃)∈𝑅𝑒𝑎𝑐ℎ(𝑝0),

𝐼1∧𝐼2∧𝐼3,∧𝐼4

ℒ(𝑛)(𝐴̃, Φ̃, 𝜆), (16) 

that is, only among configurations that preserve invariants (4) and achievable by compositions 
𝑂𝑛 ∈ {LLM𝜃, 𝑇𝑜𝑜𝑙𝑠} (6). 

: 

𝜆𝑗(𝑛 + 1) = [𝜆𝑗(𝑛) + 𝜂(𝑛)(𝑓𝑗(𝐴(𝑛 + 1),Φ(𝑛 + 1)) − 𝑏𝑗)]+, 𝑗 = 1,… , 𝐽, 
(17) 

which focuses subsequent iterations on metrics that exceed the 𝐵𝑁𝐹𝑅 budget (7). 
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Coordination with the orchestrator is achieved by selecting operation 𝑂𝑛 (14) through the 
evaluation of 𝐺𝑎𝑖𝑛 (𝑂, 𝑆𝑝(𝑛)) (13), while accepting the step requires both a monotonic decrease in 
risk and no depletion of the budget: 

𝑅𝑖𝑠𝑘(𝐴(𝑛 + 1),Φ(𝑛 + 1)) ≤ 𝑅𝑖𝑠𝑘(𝐴(𝑛),Φ(𝑛)), |𝐵𝑁𝐹𝑅(𝑛 + 1)| ≥ |𝐵𝑁𝐹𝑅(𝑛)|, (18) 
where |𝐵𝑁𝐹𝑅(∙)| = 𝐽 corresponds to full compliance with NFR (7). 
Condition (18) ensures that each subsequent step of the algorithm does not worsen the overall 

risk assessment. Even if individual metrics may fluctuate temporarily, the overall trend remains 
upward. 

The parameters of the confidence neighborhood 𝜇(𝑛), 𝑣(𝑛) are adapted according to Δ(𝑛) (8): 

dynamics are stable, they decrease, allowing for an increase in the state distances between iterations 
𝑑𝐴, 𝑑Φ. The stopping criterion is set as Δ(𝑛) ≤ 𝜀𝑠𝑡𝑜𝑝 (9) together with the filled budget 𝐵𝑁𝐹𝑅 (7). 
This scheme combines the global goal of risk minimization (3)-(5) with locally controlled orchestrator 
steps (11)-(14), ensuring monotonic convergence to an acceptable solution while maintaining 
invariants and attainability. 

3.5. Reproducibility and auditability of artifacts 

The reproducibility of artifacts is guaranteed by setting the deterministic parameters of the 
generative model 𝜃 = (𝑠𝑒𝑒𝑑, 𝑇, system_ctx) and using deterministic tools that return identical 
outputs for identical inputs. The formal state carrier is still the tuple 𝑆𝑝 (1), so these components are 
subject to audit. For each iteration n, the control state 𝐶(𝑛) is fixed, which includes the control hashes 
of all components of the tuple 𝑆𝑝 (1) and the environment identifiers id𝜃, id𝑇𝑜𝑜𝑙𝑠: 

𝜎(𝑛) = (ℎ(𝐾), ℎ(𝑀(𝑛)), ℎ(𝐴(𝑛)), ℎ(Φ(𝑛)), ℎ(𝑅(𝑛)), id𝜃, id𝑇𝑜𝑜𝑙𝑠). (19) 

Next, an audit log is constructed as a chain of hashes. Starting with 𝑐0 = ℎ(𝜎(0)), define: 

𝑐𝑛+1 = ℎ(𝑐𝑛⊕𝑂𝑛⊕𝜎(𝑛)⊕ 𝜎(𝑛 + 1)⊕ ts𝑛+1), (20) 
where 𝑂𝑛 ∈ {LLM𝜃, 𝑇𝑜𝑜𝑙𝑠} is the executed operation; ts𝑛+1 is the timestamp. 
The log is stored as a hash chain, so any change or forgery is detected as a violation of integrity. 

To verify reproducibility, repeat step n under the fixed id𝜃, id𝑇𝑜𝑜𝑙𝑠, and input 𝜎(𝑛); invariant 𝐼4 
requires that the result 𝑂𝑛(𝐾,𝑀(𝑛)) exactly matches  𝜎(𝑛 + 1) in the log. Each record additionally 
contains the current budget 𝐵𝑁𝐹𝑅 and the stationarity metric Δ(𝑛) for post-step compliance and 
stability checks according to (7)-(9). If necessary, the origin of changes (𝐴(𝑛),Φ(𝑛)) is tracked 
through references to operations {𝑂𝑖} that define reachable states 𝑅𝑒𝑎𝑐ℎ(𝑝0), allowing the complete 
causal sequence to be reconstructed and its correctness verified. In combination, manifests, hash 
chains, and environment fixes provide a transparent, verifiable, and reproducible trajectory of 
artifact synthesis at all stages of iterative design. 

3.6. Algorithm for using the proposed model 

The pseudocode of the algorithm for using the proposed model is shown in Table 1. It implements 
the (11) 𝜋∗ policy of architecture-aware orchestration and iterative risk minimization for invariants 
𝐼1 − 𝐼4 with control of the non-functional requirements budget 𝐵𝑁𝐹𝑅 and stationarity Δ(𝑛). The 
initial query 𝑝0 is converted into a typed knowledge base 𝐾 and prompt 𝑀(0); then cycles of 
decomposition, formalization of specifications, validation, and local improvement are performed. The 
action selection 𝑂𝑛(𝐾,𝑀(𝑛)) is performed according to rule (14), as well as taking into account 𝐺𝑎𝑖𝑛, 
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which ensures architecturally sensitive action selection. Updating the binary factors 𝜆𝑗 directs 
iterations to metrics that exceed the thresholds 𝑏𝑗. 

Table 1 
Frequency of Special Characters 

 Step in the Algorithm 

0: Require: 𝑆𝑝
(0)
= ⟨𝒦,𝑀(0), 𝒜(0), Φ(0), ℛ(0), 𝒱(0)⟩, 𝑝0,{𝑏𝑗}1

𝐽
, 𝜀 , 𝜂(0), 𝜇(0), 𝜈(0), 𝛾↑ > 1,  

𝛾↓ ∈ (0,1)  
Ensure: (𝒜(⋆), Φ(⋆))  𝐼1 ∧⋯∧ 𝐼4 

1: λ(0) ← 0; 𝑝 ← 0; 𝐼 ← {𝐼1 ∧ 𝐼2 ∧ 𝐼3 ∧ 𝐼4} 
2: 𝐵

(0)
← {𝑗 ∣ 𝑓𝑗(𝒜

(0), Φ(0)) ≤ 𝑏𝑗; Δ
(0) ← +∞ 

3: σ(0) ← (ℎ(𝒦), ℎ(𝑀(0)), ℎ(𝒜(0)), ℎ(Φ(0)), ℎ(ℛ(0)), , ); 𝑐0 ← ℎ(σ(0)) 
4: repeat 
5: 𝐺 ← 𝐺𝑎𝑖𝑛 ( , 𝑆𝑝

(𝑛)
), 𝐺 ← 𝐺𝑎𝑖𝑛 ( , 𝑆𝑝

(𝑛)
) 

6: 

𝑂𝑛 ←

{
 
 

 
 

,𝐺 > 𝐺 ,
𝑇𝑜𝑜𝑙𝑠, 𝐺 >  𝐺 ,

𝑇𝑜𝑜𝑙𝑠, 𝐺 =  𝐺 ∧ |𝐵
(𝑛)
| < 𝐽,

, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

7: (𝒜̂, Φ̂, 𝑀̂) ← 𝑂𝑛 (𝑆𝑝
(𝑛)
); (𝒜̂, Φ̂) ← Π (𝑝0)∩𝐼(𝒜̂, Φ̂) 

8: 
(𝒜(𝓃+1), Φ(𝑛+1)) ← arg min

(𝒜̃,Φ̃)∈ (𝑝0), 𝐼

[ ∑𝜆𝑗
(𝑛)
[𝑓𝑗 − 𝑏𝑗]+

𝐽

𝑗=1

+ 𝜇(𝑛)𝑑𝒜 + 𝜈
(𝑛)𝑑Φ] 

9: ℛ(𝓃+1) ← ℛ(𝓃) ⊎ (𝒜(𝓃+1), Φ(𝑛+1));  
𝒱(𝓃+1) ← (𝒜(𝓃+1), Φ(𝑛+1), ℛ(𝓃+1)) 

10: 𝑟(𝑛+1) ← (𝒜(𝓃+1), Φ(𝑛+1)); λ𝑗
(𝑛+1) ← [λ𝑗

(𝑛) + η(𝑛)(𝑓𝑗(𝒜
(𝓃+1), Φ(𝑛+1)) − 𝑏𝑗)]

+
; 

𝐵
(𝑛+1) ← {𝑗 ∣ 𝑓𝑗 ≤ 𝑏𝑗} 

11: Δ(𝑛+1) ← max{ 𝑑𝒜(𝒜
(𝓃+1),𝒜(𝓃)),  𝑑Φ(Φ

(𝑛+1), Φ(𝑛)),  𝑑𝑀(𝑀
(𝑛+1),𝑀(𝑛))} 

12: if 𝑟(𝑛+1) > 𝑟(𝑛)  ∨   |𝐵(𝑛+1)| < |𝐵(𝑛) | then 
13: 𝜇(𝑛+1) ← 𝛾↑𝜇

(𝑛);  𝜈(𝑛+1) ← 𝛾↑𝜈
(𝑛);  

(𝒜(𝓃+1), Φ(𝑛+1), ℛ(𝓃+1), 𝒱(𝓃+1)) ← (𝒜(𝓃), Φ(𝑛), ℛ(𝓃), 𝒱(𝓃)); continue 
14: else 
15: μ(𝑛+1) ← γ↓μ

(𝑛);  ν(𝑛+1) ← γ↓ν
(𝑛) 

16: σ(𝑛+1) ← (ℎ(𝒦), ℎ(𝑀(𝑛+1)), ℎ(𝒜(𝓃+1)), ℎ(Φ(𝑛+1)), ℎ(ℛ(𝓃+1)), , ); 
𝑐𝑛+1 ← ℎ(𝑐𝑛 ∥ 𝑂𝑛 ∥ σ

(𝑛) ∥ σ(𝑛+1) ∥ ) 
17: 𝑝 ← 𝑝 + 1;  𝑛 ← 𝑛 + 1 
18: until Δ(𝑛) ≤ ε   ∧   |𝐵

(𝑛)
| = 𝐽  ∨  𝑝 ≥ 𝑝0 

19: return (𝒜(𝓃), Φ(𝑛), ℛ(𝓃), 𝒱(𝓃)) 
The step is accepted if the monotonicity of risk and non-exhaustion of the NFR budget are 

fulfilled; the stopping criterion uses the condition Δ(𝑛) ≤ 𝜀𝑠𝑡𝑜𝑝 (9) and full execution of the NFR 
budget |𝐵𝑁𝐹𝑅(∙)| = 𝐽 (18). Manifests and hash chains provide a reproducible audit of the process. 

This algorithmic workflow ensures that each iteration not only satisfies structural invariants but 
also maintains semantic coherence across all system components. The orchestration loop 
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dynamically adjusts the balance between exploration of alternative configurations and exploitation 
of verified architectures, enabling convergence toward an optimal, risk-minimized design. As a 
result, the process achieves stable evolution of the system state while preserving full traceability and 
reproducibility of all generated artifacts. 

4. Testing of the model 

The proposed model was validated using a case study of a multi-level supply chain [12-13] in the 
FMCG sector, which includes suppliers, production facilities, distribution centers, and retail outlets. 
This example allows us to test the model's ability to coherently synthesize architecture, optimize 
replenishment and resource allocation policies, and ensure that functional and non-functional 
requirements are met in realistic conditions. 

The modeling of a multi-level FMCG supply chain was implemented in Python 3.11 using the 
NumPy, pandas, and Matplotlib libraries for data generation, processing, and visualization, as well 
as SciPy for statistical analysis. Algorithmic modules were implemented using object-oriented and 
structural approaches, which ensured flexibility in configuring simulation parameters. 

To implement adaptive decision-making logic, the OpenAI GPT-4o API was used, which was 
integrated through the official Python SDK and performed the functions of a generative orchestrator, 
in particular, forming a strategy for responding to stochastic changes in demand and delivery times. 
This made it possible to combine classical mathematical modeling with intelligent components, 
which significantly increased the realism of the simulations and brought them closer to the 
conditions of a real business environment. 

Consider a network consisting of two raw material suppliers, one factory, two regional centers 
(DC1, DC2), and five retail stores (𝑆𝐾𝑈 ∈  {𝐴, 𝐵, 𝐶}); customer orders are stochastic with seasonality, 
delivery lead times vary, computing resource budget and SLA for plan updates are limited. The initial 
request 𝑝0 is formalized as a typed knowledge base K (YAML description of the domain, nodes, and 
flows), master prompt 𝑀(0), architecture 𝐴(0), and mapping Φ(0) with specifications {𝐴𝑃𝐼, 𝐿𝑜𝑔𝑖𝑐,
𝐷𝑎𝑡𝑎, 𝐷𝑒𝑝𝑠, 𝑆𝑡𝑎𝑐𝑘} 𝑅(0) contain simulator 
configurations, pipeline templates, and OpenAPI for integration with ERP. State 𝑆𝑝 evolves in the set 
of reachable configurations 𝑅𝑒𝑎𝑐ℎ(𝑝0) by compositions of calls {LLM𝜃, 𝑇𝑜𝑜𝑙𝑠}. The goal is to reduce 
the aggregated risk 𝑅𝑖𝑠𝑘(𝐴,Φ) (with weights on security/scalability/performance/operability) under 
invariants 𝐼1 − 𝐼4 and budget NFR; NFR metrics 𝑓𝑗 include service level (% On-Time/In-Full), average 
backlog, delivery costs, plan update time; acceptability: |𝐵𝑁𝐹𝑅(∙)| = 𝐽. Test procedure: 

1. initialization of 𝑝0 with sales history and lead time matrices; 
2. orchestrator iterations: synthesis/refactoring of replenishment (𝑠, 𝑆), allocation, and 

transport policies, API and config generation/update, simulator validation; 
3. acceptance of a step based on a monotonic decrease in Risk and no decrease in |𝐵𝑁𝐹𝑅(∙)|; 
4. stop based on stationarity Δ(𝑛) ≤ 𝜀𝑠𝑡𝑜𝑝. 

Reproducibility and audit are ensured by state manifests together with a hash chain of actions 
𝑐𝑛+1 = ℎ(𝑐𝑛||𝑂𝑛||𝜎(𝑛)||𝜎(𝑛 + 1)||ts𝑛+1) and the fixation of environment identifiers id𝜃, id𝑇𝑜𝑜𝑙𝑠. 
The expected result of applying the method is a reproducible set of artifacts (architecture, 
replenishment and allocation policies, integration contracts, pipeline configurations) with improved 
key metrics (OTIF growth, backlog and cost reduction) while adhering to NFR and transparent 
auditing. 

Figure 1 demonstrates that the proposed method shows consistently higher OTIF (On Time In 
Full) performance compared to baseline approaches for a multi-level FMCG supply chain. Based on 
the results of 200 stochastic simulations, the average OTIF for the proposed model remains within 
the range of 0.921 0.926, exceeding the rule-based strategy by 2 4 percentage points and the baseline 
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by 5 7 percentage points during most weeks. The 95% CI ranges do not intersect, indicating a 
statistically significant advantage even in the presence of random fluctuations in demand and 
variability in lead times. This result demonstrates the method's ability to ensure higher order 
fulfillment reliability in the complex conditions of multi-level supply networks. 

The results of 200 stochastic simulations for a multi-level FMCG supply chain demonstrate that 
the proposed model significantly reduces the average backlog level compared to other approaches 
(see Figure 2). The average values for the proposed model are in the range of 70 80 units, which is 
approximately 35 40% less than the rule-based strategy (100 116 units) and approximately 45 50% 
less than the baseline (135 150 units). Narrow 95% CI confidence intervals indicate the stability of 
the results even under conditions of demand fluctuations and delivery time variability. This confirms 
the effectiveness of the method in reducing shortages and increasing order fulfillment rates in 
complex supply networks.  

 
Figure 1: OTIF Dynamics with Confidence Bounds. 

 
Figure 2: Backlog Dynamics with 95% Confidence Bounds. 

Figure 3 shows the dynamics of average delivery costs (in thousands of US dollars) for a 12-week 
period for three approaches: the proposed model, the rule-based algorithm, and the baseline scenario, 
taking into account 95% confidence intervals based on the results of 200 Monte Carlo simulations. 
The proposed method consistently provides the lowest costs, reducing them from $15.8 thousand at 
the beginning to $14.6 thousand at the end of the period, which is about a 7.6% savings from the 
starting level. The rule-based approach starts at $18.6 thousand and decreases to $17.8 thousand, 
while the baseline scenario fluctuates between $21.3 22.4 thousand, remaining 25 30% more 
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expensive than the proposed one. These results indicate that optimizing management decisions in a 
multi-level FMCG supply chain can significantly reduce transportation costs without compromising 
service performance. 

The simulation results for a multi-level FMCG supply chain confirmed the effectiveness of the 
proposed model compared to the baseline and rule-based approaches. Over 12 weeks of simulations, 
the average OTIF remained consistently higher (0.92 vs. 0.88 for rule-based and 0.85 for baseline), 
indicating an increase in the level of timely and complete deliveries. The average level of unmet 
demand (backlog) decreased by 32% compared to the baseline and by 30% compared to the rule-based 
approach. At the same time, average delivery costs decreased by 15% compared to the baseline and 
by 12% compared to rule-based, maintaining stable dynamics even with increasing stochastic 
fluctuations in demand and delivery times. This demonstrates the model's ability to provide balanced 
optimization of key KPIs (service level, inventory, and costs) under realistic supply chain conditions. 

 
Figure 3: Delivery Cost Reduction Dynamics in Multi-Tier FMCG Supply Chains. 

To sum up, the experimental validation on a multi-level FMCG supply chain confirmed that the 
LLM-based orchestrator effectively generated and refined replenishment and allocation policies 
under stochastic demand and delivery conditions. The results demonstrated consistent 
improvements in service level (OTIF), reduction of backlog, and lower delivery costs compared to 
baseline and rule-  

5. Possibilities and limitations of the proposed model 

The proposed model demonstrates significant capabilities in the field of automated design and 
optimization of complex systems, in particular multi-level supply chains, combining formal modeling 
methods with intelligent data processing using LLM. Its architecture-oriented approach allows 
integrating heterogeneous knowledge sources, supporting flexible scenario management, and taking 
into account non-functional requirements through the introduction of constraint budgets. Key 
advantages include scalability, resistance to stochastic parameter fluctuations, and the possibility of 
multi-stage iterative optimization based on risk assessment. At the same time, the model has certain 
limitations: its effectiveness depends on the quality and completeness of the initial knowledge base, 
the accuracy of the evaluation function settings, and the computational resources for performing 
simulations in large configuration spaces. Defining the initial knowledge base 𝐾 in a new or weakly 
formalised domain remains a non-trivial task, requiring domain expertise to ensure consistency, 
adequate coverage, and balanced abstraction. Insufficient structuring at this stage can limit the 
accuracy of subsequent synthesis and adaptation processes. 
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In addition, the integration of LLM-oriented components requires careful control of the 
reproducibility of results and protection against potential errors in generative models, which imposes 
additional requirements on audit and validation procedures. Although GPT-4o was used in the 
experimental implementation due to its stability and reasoning performance, the framework itself is 
model-agnostic; outcomes may vary with alternative LLMs depending on their prompt determinism, 
fine-tuning scope, and inference variability. 

6. Conclusions 

The model proposed in this paper provides a formalized, architecture-oriented approach to 
automated design and optimization of complex systems, integrating risk-oriented management, 
formal modeling methods, and intelligent components based on LLM. Validation conducted on a 
multi-level FMCG supply chain demonstrated a significant improvement in key performance 
indicators (service level, reduction in unmet demand, and reduction in logistics costs) compared to 
rule-based and baseline approaches. The introduction of a budget for non-functional requirements 
allowed the system to remain stable even under stochastic fluctuations, while the use of iterative 
improvement ensured a balanced optimization between cost and service quality. The presented 
integration of formalised architectural modelling with intelligent generative orchestration represents 
a step beyond existing design frameworks, offering a verifiable pathway from conceptual 
specification to adaptive optimisation. This synthesis highlights the contribution of the study 
compared with prior work on automated design methods. 

The results obtained indicate the high suitability of the model for practical application in 
industries characterized by complex network structures and high uncertainty, in particular in 
logistics, manufacturing, and service systems. At the same time, further research can be directed 
toward scaling the approach for even larger data volumes, integration with real IoT and ERP data 
flows, and adaptation of validation methods to improve the reliability of generative components. 
Thus, the proposed methodology creates the prerequisites for building new generations of automated 
intelligent orchestrators capable of dynamically adapting to changes in the environment and 
ensuring increased management efficiency. 
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