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Abstract 
The rapid development of large language models has raised serious concerns about the reliability of 
detecting content created by artificial intelligence. This article compares the stylistic metrics of texts 
generated using a multimodal model and an autoregressive model. The results show that the generated 
text is very similar to human-written text in terms of lexical diversity and semantic coherence. In terms of 
perplexity and burstiness, the rephrased texts are practically indistinguishable from the original human-
written texts, which leads to a high level of false negatives in autoregressive detectors. Our analysis 
highlights the need for new detection methods and suggests further directions, including more specific 
stylometric signatures. Relying solely on a single stylometric metric leads to unreliable differentiation 
between generated and human-written text. 
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1. Introduction 

The rapid development of large language models (LLMs) has brought about a new era in text 
generation, opening up a wide range of applications, from automatic content creation to dialogue 
agents. However, this progress is causing concern in fields that have traditionally relied on human-
generated text, and raises important ethical questions. In modern implementations of AI-generated 
text, it is not uncommon to simply request an essay and then literally copy the result. Fortunately, 
there are several tools available to assess the likelihood that a text was created using AI. These 
detection methods mainly target the results of traditional autoregressive models (ARMs). 

Most existing AI-based text recognition tools, such as DetectGPT, GPTZero, and RADAR, are 
designed and tuned to detect the output of autoregressive architectures (GPT-4, LLaMA, etc.). They 
use sequential token prediction artifacts, such as local peaks in logarithmic probability and 
perplexity profiles, to distinguish machine-generated text. This reliance on ARM signatures raises 
the question of whether these detectors can also identify AI-generated content that was created by 
models with other generation mechanisms. For our research, we focused on multimodal LLMs 
(MLLMs). 

MLLMs are trained on datasets that pair images with descriptive captions or user/assistant 
interactions. MLLMs learn to describe pictures and answer questions about visual content, which 
often demands conciseness and step-by-step logic. When applied to a purely text prompt, the 
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model may avoid complex or long clauses, use simpler syntax, and gravitate towards more 
template-like responses. 

Despite the growing number of detection methods, there has been no systematic comparison of 
detectability across ARM and MLLM. To address this gap, we generated samples from ARM and 
MLLM for two tasks, rephrasing and text generation. Instead of testing the performance of existing 
detectors, we calculated chosen metrics: perplexity, burstiness, lexical diversity, semantic 
coherence, BLEU and ROUGE scores. These stylometric and linguistic metrics were used to assess 
how distinguishable the different types of generated texts are in practice. 

In this work, we: 

• Introduce a new dataset of 2,000 samples (500 ARM and 500 MLLM for both rephrasing and 
generation tasks). 

• Compare MLLM- vs. ARM-style outputs and human-written text based on the stylometric 
and linguistic metrics. 

• Use these metrics to measure detection effectiveness, discussing implications for the 
performance of current autoregressive-focused detection tools when faced with outputs 
from a MLLM. 

2. AI-text Detection 

2.1. Detection Methods 

Supervised learning approach of fine-tuning the language model with or without adding a 
classification module was used by OpenAI for their RoBERTa-based classifier [1]. This approach 
entails fine-tuning language models on a mixture of human-authored and LLM-generated texts, 
enabling the implicit capture of textual distinctions. Despite the strong performance, obtaining 
annotations for detection data can be challenging in real-world applications, making the supervised 
paradigms inapplicable in some cases. While deep learning approaches often yield superior 
detection outcomes, their black-box nature restricts interpretability [2]. 

DetectGPT [3] is a zero-shot detection method that does not require training a separate 
classifier on human or AI
probability estimates. The main idea is that AI-generated sequences leave a characteristic 
«signature» in the probability space of the specific model that generated them. DetectGPT assumes 
that machine-
probability function. Simply put, the model assigns higher probability to the text it generated than 
to adjacent alternative fragments. Based on this hypothesis, DetectGPT transforms the input text 
using a mask-filling language model. It then detects the AI-text by comparing the probabilities of 
the text and its filled-in variants. Minor changes in human-written text, such as rephrasing or word 
substitutions, have virtually no impact on the logarithmic probability of the model. Existing zero-
shot detectors rely mainly on statistical features and use pre-trained large language models to 
gather them.  

DetectGPT treats a candidate text x and a set of perturbed variants {𝑥̃𝑖}, and computes  

𝐷(𝑥) = 𝑙𝑜𝑔 𝑃𝑀 (𝑥) −
1

𝐾
∑𝑙𝑜𝑔𝑃𝑀 (𝑥̃𝑖)

𝐾

𝑖=1

 
 
(1) 

A large positive D(x) means that x is a sharp log-probability peak in model M
x was probably generated by model M. 

DetectGPT and FastDetectGPT [4] are earlier examples of perplexity-based methods which look 
at the local curvature in probability space around a given example. Binoculars [5] is an even more 
effective recent approach which uses the cross-perplexity between two different LLMs as a signal 
that text is LLM-generated. 
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In contrast, GPTZero [6] uses a trained classifier that relies on perplexity and burstiness: 

• Perplexity analysis. GPTZero computes sentence-level perplexities to gauge how 
predictable each sentence is to a language model.  

• Burstiness analysis. It measures how much perplexities fluctuate sentence to sentence. 

GPTZero flags AI text by combining low average perplexity under a reference model and low 
burstiness (i.e. consistently uniform sentence perplexities). Thresholds on these statistics are tuned 
to maximize separation between human-written and generated samples. 

Ghostbuster [7] feeds LLM-generated texts into a series of weaker LLMs (from unigram models 
to unadjusted GPT-3 davinci) to obtain token probabilities, and then conducts a structured search 
on the combinations of these model outputs and trains a linear classifier to distinguish text 
generated by LLM. This detector achieves an average F1 score of 99.0, which is an increase of 41.6 
F1 score over GPTZero and DetectGPT. 

Unlike traditional binary classification tasks, stylometry-based approaches focus on 
distinguishing between the writing styles of different authors. Each AI model has its own 
stylometric signature, and identifying these different styles proves to be more effective than simple 
binary classification tasks. DeTeCtive [8] is a multi-task and multi-level platform for contrastive 
learning that achieves excellent results in detecting AI-generated texts both within and outside of 
distribution scenarios. It also introduces a novel feature called «training-free incremental 
adaptation», which allows adaptation to new data without retraining. Shah et al. [9] propose a 
novel approach that combines features such as lexical diversity, readability metrics, and semantic 
distribution with machine learning models for classification. 

As AI models continue to evolve, the detectors themselves must also adapt to maintain high 
levels of performance and accuracy. Adversarial methods have been developed to intentionally 
alter the output of LLMs to evade detection. These methods can include changes in phrasing, 
structure, or the introduction of artificial noise that confounds detection tools. 

2.2. Evading Detection 

Much of the literature has also focused on whether or not AI-generated text can be detected at all 
[10]. Different techniques to attack or evade detectors have been developed and are an active area 
of research. Evasion techniques such as word or sentence substitution, recursive paraphrasing, and 
prompting have been developed to point out the failures in detectors [11].  

A group of researchers [12] devised a framework to rank LLMs based on their detectability, 
claiming that more recent models like GPT-4 are less detectable because perplexity and burstiness 
are less useful evidence markers. The authors of [13] discuss the critical limitations of existing 
detectors, including issues related to real-world data issues, potential attacks, and the lack of an 
effective evaluation framework.  

In addition, other studies have examined methods of attacking AI detectors, as well as other 
ways to circumvent or avoid AI detection. Sadasivan et al. [14] showed that AI text detectors can 
be fooled by paraphrasing attacks. The basic principle is to apply a lightweight paraphrase model 
on LLMs' outputs and change the distribution of lexical and syntactic features of the text to confuse 
the detector. Simple rephrasing techniques are sufficient to evade early zero-shot detectors and 
trained detectors, but recursive rephrasing is necessary to effectively evade more reliable detectors. 
To this end, Krishna et al. [15] proposed DIPPER, a powerful T5-based paraphrasing model that 
significantly enhances the effectiveness of such attacks.  

RADAR [16] is a detector based on RoBERTa-large and trained using an adversarial learning 
model. In this model, a paraphraser is designed to rephrase machine-generated text and mimic 
paraphrase attacks. The RADAR framework incrementally refines the paraphrase model, drawing 
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on feedback garnered from the detector and employing the proximal policy optimization algorithm, 
outperforming zero-shot detection methods including DetectGPT and OpenAI detector. 

AI humanizer, also known as a paraphrasing tool or «text humanization» tool, is used to rewrite 
the AI's output data multiple times in order to imitate the characteristics of human writing style. 
The authors of [17] evaluated 19 popular humanizer tools (e.g., Undetectable AI, WriteHuman, 
StealthWriter) and found that many state-of-the-art detectors fail to flag humanized AI text in over 
80% of cases (e.g. only 15 20% detection rates). Simple paraphrasing loops restore perplexity and 
burstiness to a human-like level and effectively neutralize autoregressive detectors. 

Detection tools are also shown to be unable to cope with texts translated from other languages. 
According to a report released by OpenAI, their AI-text detector is not fully reliable on that front 
[1]. In the reported evaluation of some challenging cases for English texts, their classifier only 
correctly identifies 26% of generated texts while incorrectly classifying 9% of human-written texts. 
The authors of [18] study the effect on AI detectors of translating AI-generated text through 
multiple languages before translating it back into English and find some methods significantly 
more robust than others.  

The accuracy and reliability of AI-generated text detection tools can vary depending on several 
factors, such as the specific tool used, the type of AI model generating the text, and the content 
being analyzed. Most of the detection tools achieve a 70-80% accuracy rate in detecting text 
generated by models like GPT-3. Detectors also struggle with short text paragraphs and with more 
advanced outputs from later-generation models like GPT-4 [11]. 

3. Multimodal LLMs 

The trend toward integrating multiple modalities into architectures is becoming increasingly 
widespread and is leading to the emergence of multimodal large language models (MLLMs). 
Multimodal generation represents the pinnacle of achievements in individual modalities and 
integrates text, images, video, and audio into context-aware outputs. For example, tasks such as 
text-to-image, text-to-video, and text-to-speech represent multimodal systems that go beyond pure 
text generation and use text prompts to control the generation of visual content [19]. 

The architecture is typically modular or monolithic. However, most existing MLLMs use a 
modular architecture in which visual encoding and language decoding are processed separately. 
This approach is typically realized by combining a pre-trained visual encoder (e.g., a CLIP-based 
ViT) with a LLM [20].  

These models differ from traditional text-only LLMs not only in architecture but also in the 
diversity of their training data, which includes image-text pairs, visual reasoning tasks, and cross-
modal alignments. Broader training scope introduces new challenges for detectors: while 
traditional detectors focus on linguistic features, MLLM-generated text may exhibit distinct 
stylistic patterns influenced by multimodal conditioning, making detection strategies based solely 
on text stylometry less reliable.  

Both commercial models, such as GPT-4o and the Gemini series, and open-source ones, such as 
BLIP [21] and LLaVA [22], have been actively working on combining image and language 
modalities. They often link LLMs with large vision models (LVMs) through intermediate layers. 
Recent open-source frameworks demonstrate the efficacy of modular designs. Through large-scale 
multimodal pre-training and advanced visual-language alignment techniques, they achieve 
outcomes on par with leading commercial models.  

Despite their multimodal capabilities, MLLMs can perform pure text generation tasks, 
functioning similarly to autoregressive LLMs. During inference without visual inputs, the language 
component processes text prompts and generates continuations based on learned distributions. 
However, their stylistic tendencies often differ from text-only LLMs because of exposure to image-
caption datasets and conversational multimodal instructions during training. This bias can 
manifest as shorter, more descriptive sentences, preference for concrete nouns, and a more 
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directive or explanatory tone. Additionally, MLLMs often rely on special tokens or structured 
prompts to manage dialogue or multimodal context, which influences their default response 
format. 

The text generation process in MLLMs, as in LLMs, depends on sampling methods that control 
diversity and determinism. In multimodal contexts, sampling occurs after modality fusion or token 
alignment, so the language model conditions its predictions on both text and any embedded visual 
features. For deterministic tasks such as text generation, non-sampling settings are typically 
preferred to ensure consistency and minimize stylistic variance. It affects not only output fluency 
but also the detectability of generated text, as different decoding strategies produce different 
stylometric fingerprints. 

4. Metrics 

Stylistic features primarily focus on the frequency of words that specifically highlight the stylistic 
elements of the text, including the frequency of capitalized words, proper nouns, verbs, past tense 
words, stopwords, technical words, quotes, and punctuation. Complexity features are extracted to 
represent the complexity of the text, such as the type-token ratio and textual lexical diversity. 
Psychological features are generally related to sentiment analysis and can be derived based on 
existing tools to calculate sentiment scores, or extracted using sentiment classifiers. 

To quantify stylistic and statistical differences among original, ARM-generated, and MLLM-
generated texts, we compute the following metrics. 

Perplexity, to measure how predictable a text is to a strong ARM. For a model M the perplexity 
of text x1:N is  

𝑃𝑃𝑀(𝑥1:𝑁) = 𝑒𝑥𝑝(−
1

𝑁
∑𝑙𝑜𝑔𝑃𝑀 (𝑥𝑡|𝑥1:𝑡−1)

𝑁

𝑡=1

) 
 
(2) 

Lower PP means that the model finds the text more predictable. AI text has lower PP than 
human text. 

Burstiness, which refers to how unevenly or clustered certain words or other features appear 
in a text. The variance of sentence-level perplexities:  

𝐵𝑢𝑟𝑠𝑡(𝑥) = 𝑉𝑎𝑟{𝑃𝑃𝑀(𝑠)|𝑠 ∈ 𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒𝑠(𝑥)} (3) 
Human writing often shows higher burstiness than machine-generated texts; generated outputs 

tend to be more uniform. Autoregressive models show less burstiness especially if they are trained 
to avoid repetition. Burstiness can be measured by the following: 

• variance-to-mean ratio (index of dispersion) for word frequency across segments of a text; 
• statistical indicators of deviation from a uniform distribution; 
• temporal autocorrelation in sequential token occurrence. 

Lexical diversity, a type-token ratio. 
Semantic consistency, average cosine similarity between adjacent sentence embeddings:  

1

𝐾 − 1
∑ 𝑐𝑜𝑠(𝑒𝑚𝑏(𝑠𝑖), 𝑒𝑚𝑏(𝑠𝑖+1))

𝐾−1

𝑖=1

 
 
(4) 

Higher values indicate smoother transitions and greater coherence. 
BLEU, precision. Scores are calculated for individual sentences by comparing them with a set of 

reference sentences. Those scores are then averaged to get an estimate of the overlap. Intelligibility 
and grammatical correctness are not taken into account. 
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ROUGE-1, refers to the overlap of unigrams between the model and reference sequences.  
ROUGE-L, is based on the longest common subsequence. It considers sentence-level structure 

similarity and identifies longest co-occurring in sequence n-grams. 
These stylometric and linguistic metrics reveal both surface-level and deeper linguistic patterns. 

5. Experimental Part 

For our experiments we used the ArXiv Paper Abstracts dataset [23], which comprises articles' 
titles, and abstracts. We randomly sample 500 title-abstract pairs from this corpus. We define two 
tasks for each selected pair: 

1. Rephrasing task. We feed the original abstract to each model with the prompt: 

Rephrase the following academic abstract: {original abstract}. Provide only the rephrased abstract. 

2. Abstract generation. We feed the article  

Write an academic abstract for a paper titled: {title}. Provide only the abstract. 
 
We compare text variants per each pair (original, ARM output, MLLM output) for both tasks, for 

a total of 2 × 3 × 500 = 3000 samples. 
ARM baseline: We use the Microsoft model Phi-3-Mini-4K [24] via HuggingFace Transformers. 

At inference we apply deterministic sampling with the following settings: 
 

temperature = 0.0, top_p = 1.0, max_new_tokens = 128, do_sample = False. 
 

MLLM baseline: We use the IDEFICS-9B model [25] with the same settings and a dummy image 
the model requires. 

Perplexity was calculated using pretrained gpt2 model, the smallest version of GPT-2 with 124M 
parameters [26]. Semantic consistency was calculated using all-MiniLM-L6-v2, a pretrained 
Sentence Transformers model with over 22M parameters [27].  

All runs are performed on a Google Colab A100 GPU. 

Table 1 
Mean and SD of key metrics for the rephrasing task 

Metric Original ARM MLLM 
Perplexity 47.99 ± 18.56 46.49 ± 24.08 44.56 ± 18.5 
Burstiness 5.82 ± 2.66 2.2 ± 1.376 4.22 ± 2.41 
Lexical diversity 0.63 ± 0.06 0.77 ± 0.059 0.665 ± 0.07 
Semantic coherence 0.39 ± 0.086 0.35 ± 0.125 0.396 ± 0.1 

Table 2 
Mean and SD of key metrics for the text generation task 

Metric Original ARM MLLM 
Perplexity 47.99 ± 18.56 24.72 ± 6.85 17.49 ± 7.25 
Burstiness 5.82 ± 2.66 2.25 ± 1.29 1.79 ± 1.28 
Lexical diversity 0.63 ± 0.06 0.74 ± 0.05 0.62 ± 0.11 
Semantic coherence 0.39 ± 0.086 0.435 ± 0.12 0.46 ± 0.15 
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Table 3 
Mean of BLEU/ROUGE metrics for the rephrasing task 

 BLEU ROUGE-1 ROUGE-L 
ARM 0.046 0.39 0.26 
MLLM 0.6 0.82 0.78 

 
To give a better overview the distributions are illustrated in Figures 1-3. 

 
Figure 1: Perplexity and Burstiness Distribution. 

 
Figure 2: Lexical Diversity and Semantic Consistency Distribution. 

  
Figure 3: Perplexity vs. Burstiness for Rephrasing and Generation Tasks. 

In the rephrase task ARM paraphrases at T = 0 achieve perplexities virtually indistinguishable 
from human originals, whereas MLLM outputs yield burstiness only slightly lower than human 
originals, which makes its outputs stealthier. Therefore, detectors that report low perplexity miss 
both models whose deterministic samples fall within the human range.  
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In the text generation task, both models used T = 0 again, yielding much lower perplexity and 
burstiness than human-written abstracts, which makes both models quite predictable. Although, 
the models' outputs can still trick many detectors, that are tuned only to perplexity and sentence-
length variability. 

Setting the temperature to zero emphasizes the characteristic features of each model's style and 
at the same time ensures that the output results are completely deterministic and predictable 
compared to texts whose samples were selected at higher temperatures. Since our analysis is 
limited to abstract-length sentences, we may miss stylometric cues that are only found in longer 
documents. 

Main strengths and weaknesses of the two models are listed below. 
 
ARM: 

• High perplexity in the rephrasing task.  
• High lexical diversity and semantic coherence in both tasks support novel wording and 

stylistic variety.  
• In text generation, perplexity is low which makes the results obvious to autoregressive 

detectors.  

MLLM: 

• In rephrasing, perplexity and burstiness remain within human range.  
• High BLEU/ROUGE scores preserve source wording.  
• High lexical diversity and semantic coherence is demonstrated in both tasks. 
• Low perplexity and burstiness in the text generation task. 

6. Conclusions 

In this work, a comprehensive stylometric analysis was conducted to assess the detection-
performance of AI-generated abstracts, comparing the results from an autoregressive model, a 
multimodal model, and original human-written texts. All model outputs were generated with a 

Deterministic approach reduces perplexity, but makes autoregressive detectors over-confident. 
Future studies should examine higher-temperature samples to assess its effect on detectability. 

The obtained results show that reliance on a single metric, such as a fixed perplexity threshold, 
is insufficient for robust AI-text detection. Detection pipelines should combine multiple stylometric 
signals (perplexity, burstiness, lexical diversity, etc.) to improve sensitivity to both ARM and 
MLLM outputs. These results indicate the need for next-generation detection. Future research will 
expand the dataset to other model families and explore other linguistic and semantic metrics. 

Future research will extend the analysis from articles  abstracts to full-text in order to 
investigate how stylometric metrics evolve with document length and topic. In addition, attack-
and-defense cycles will be studied to evaluate the resistance of detectors to adversarial attacks. 
Adaptation to novel humanization tools will enhance detectors robustness. 

Declaration on Generative AI 
During the preparation of this work, the authors used Phi-3-Mini-4K and IDEFICS-9B models to 
generate datasets for subsequent linguistic analysis. The authors used pretrained gpt2 model to 
calculate perplexity in text. The authors used all-MiniLM-L6-v2 model to calculate semantic 
consistency in text.  
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