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Abstract

This paper presents a comprehensive approach to the safe motion planning of autonomous unmanned
aerial vehicles (UAVs) operating in multi-agent swarm formations. The increasing deployment of UAV
swarms in both civil and military domains necessitate robust, scalable, and adaptable control strategies
that ensure reliable group behavior under dynamic and potentially adversarial conditions.

The proposed architecture integrates a multi-level optimization framework, which combines global
trajectory planning with local collision avoidance. It is enhanced by reinforcement learning algorithms
and safety-guaranteed maneuvering techniques. A hybrid control architecture is developed, supporting
both decentralized and centralized coordination schemes, enabling agents to operate autonomously while
maintaining real-time responsiveness to changes in the environment and swarm composition.

Inspired by biological systems and competitive behavioral patterns observed in nature, the architecture
includes adaptive roles, leader—follower dynamics, and swarm clustering for obstacle avoidance and
attack-defense positioning. A formal system model is defined, along with simulation algorithms for
analyzing various swarm sizes and motion control strategies. The effectiveness of proportional-integral
derivative parameter optimization for improving swarm dynamics is also investigated.

Experimental simulations demonstrate the model’s capability to handle complex interaction scenarios,
prevent inter-agent collisions, and maintain formation integrity. The proposed solution lays the
groundwork for the development of Al-driven swarm systems that can execute coordinated operations in
contested environments.
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1. Introduction

Countering a large number of unmanned aerial vehicles (UAVs) is a pressing issue in the fields of

security and information technologies [1]. The advances in computer electronics and their

miniaturization now enable the integration of onboard networked computational and

communication systems with specialized artificial intelligence into groups of autonomous
unmanned systems [2], facilitating the application of intelligent information technologies to

address this

problem.

The use of large UAV groups is currently at the stage of empirically accumulating successful field

practices, with preliminary computer simulations of group control processes (agents) based on
multi-agent system models in virtual environments [3-4], including group competition [4].
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1.1. Patterns of Aggressive Competition in Large Groups Inspired by Nature

Competition for resources and territorial dominance is inherent to many living organ-isms on
Earth [5]. Therefore, using conflict behavior patterns from groups of living creatures as simulation
scenarios for Al-controlled multi-agent systems is a rational approach that can be further
implemented and tested for managing autonomous UAV groups.

In the animal world, flock control is based on a strict hierarchical principle — there is a leader
and subordinates who perform specific roles within the group. Control structures such as
centralized leadership (in animals) and decentralized swarms are both used to model agent group
control. Hybrid control models, including temporary leadership and swarm clustering for obstacle
avoidance, are also applied [6]. In this paper, we define agents as virtual entities with position,
velocity, and radius, following swarm movement algorithms.

1.2. Definitions

To avoid ambiguity, the following terms are defined:

Agent - an acting entity in any process or phenomenon, including simulations.

UAV (Unmanned Aerial Vehicle) — an aircraft without an onboard pilot, controlled remotely or
programmed to fly autonomously.

Drone - a mobile unmanned device, such as UAVs, robotic systems, or ground/sea/aquatic
unmanned vehicles.

Drone Group — a team or swarm of drones.

Flock — a group of animals, birds, fish, or other organisms that stay together.

Collective — a number of drones (more than one), operating permanently to per-form joint
missions/tasks without direct interaction.

Team — several drones (more than one) that perform a mission/task without direct interaction.

Swarm - a group of drones equipped with swarm intelligence, capable of autonomous
interaction, adaptation to changing conditions, and collective decision-making with minimal or
no operator intervention.

1.3. Objective of the Study

To develop a hybrid control architecture for UAV swarms using reinforcement learning (RL), based
on comprehensive multi-level optimization that integrates global trajectory planning and local
collision avoidance with formal safety guarantees for emergencies. The architecture should ensure
collision-free movement of agents in a dynamic 3D environment through multi-level optimization
and cooperative maneuvering. Additionally, the study aims to investigate the optimization of
consensus PID (Proportional-Integral-Derivative) controller parameters to improve the dynamic
performance of UAV swarms and to develop corresponding algorithmic and software tools for
simulating swarm movement of varying sizes under hybrid control systems.

1.4.  Structure of the Paper

The remainder of the paper is structured as follows.

Section 2 reviews existing swarm control algorithms and analyzes their limitations. It also
presents the general model of swarm agent motion and control, describes individual algorithms -
Potential Field method (PFM), Vicsek, Particle Swarm Optimization (PSO), Reynolds, and evaluates
their applicability to UAV swarm control.

Sections 3 introduces the proposed hybrid architecture with multi-level optimization, including
PID parameter optimization.

Section 4 presents mathematical model of a multi-agent system using CBF-based safety
mechanisms, RL for emergency cases and adaptive consensus PID controllers, its structural
diagram and hybrid architecture.
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Section 5 presents proposed hybrid architecture and optimization strategy for UAV swarm
control, including structural diagram of a swarm oriented multi-agent system, hybrid strategy and
architecture for safe UAV swarm control.

Section 6 reports the results of numerical experiments and compares the proposed system with
classical swarm control methods.

Section 7 concludes the paper and outlines future research directions, including the study of
“swarm vs. swarm” scenarios.

1.5. Main Contributions of the Paper

This paper addresses the problem of safe autonomous UAV swarm control under conditions of
aggressive interaction and complex dynamic environments. The key contributions are development
of a general model of swarm agent motion based on multi-agent dynamics and inter-agent
interaction functions; critical analysis of existing swarm control methods (PFM, Vicsek, PSO,
Reynolds) and identification of their limitations with respect to safety and controllability; proposal
of a hybrid architecture that integrates Model Predictive Control, Control Barrier Functions,
adaptive consensus-based PID controllers, and Reinforcement Learning for emergency maneuvers;
design of a multi-level optimization strategy that combines global trajectory planning, local
collision avoidance, and cooperative maneuvering with formal safety guarantees and
implementation of numerical experiments, confirming zero collisions in dense swarm formations
and demonstrating the superiority of the proposed system in swarm vs. swarm" scenarios
compared to classical algorithms.

2. Review of Existing Models and Their Limitations

In the field of AI ontology, collective decision-making algorithms are part of swarm intelligence
[7]. Computer modeling of UAV collective behavior uses multi-agent technologies, along with
Information and Communications Technology solutions, to enable distributed computing.

Competitive behavior of biological collectives in resource and territory conflicts includes:
reconnaissance (including combat reconnaissance), deep raids into enemy territory, frontal attacks,
flanking and encircling maneuvers, military deception (e.g., diversionary tactics, feigned retreat),
enemy force dispersion (multi-directional attacks), wave attacks (rotational assaults), blocking
enemy retreat (encirclement or siege) and tactical adaptation via route updates based on
information exchange.

Multi-agent Al technologies allow modeling of autonomous agent collectives as self-organizing
swarms or leader-controlled flocks using ad hoc radio networks. Agents collaboratively solve tasks
such as directional movement, obstacle avoidance, and spatial positioning for attack or defense [8].
Therefore, control of agents in swarm/flock formations requires navigation algorithms that
maintain acceptable positioning accuracy to prevent collisions and preserve group cohesion.

2.1. General Model of the Agent Swarm Control System

The basis of agent swarm behavior lies in the principles of cohesion, alignment, and separation (the
Reynolds model) [9]. These are supplemented by collision avoidance strategies with static and
dynamic obstacles and task-specific behavioral patterns (attack, defense, evasion, reconnaissance,
deception, and others).
The swarm consists of N agents Aj,A,,...,An, each of which is characterized at any given moment
by:
Position vector:
x()ER® (1)
Velocity vector:
v(f)ER® (2)
Radius (occupied space):
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HER' (3)
The movement of agents occurs in a limited three-dimensional space that may include static and
dynamic obstacles. The motion of the agents is governed by the following differential equation:
x; = f O, up), (4)
where fis a function describing the agent's dynamics, and the vector u; describes the influence
of the swarm on the agent's movement and control of neighboring swarm agents. The interaction
between swarm agents is introduced using the function g, which depends on their states:
u; = g(x0 Ljen, h(x))). (5)
where N; is the set of neighbors of agent i, and is a function that determines the strength of
influence on the movement of agent i of the neighboring agents in whose neighborhood it is
located. The interaction function may include a description of the rules of movement based on a
weighted sum of forces, for example, repulsion, alignment, attraction, and other methods of social
interaction between N agents:

u; = g, 2) = Yien 0iFi(x;, 2;) (6)
where w; are the weight coefficients, F;, z; are the forces acting on agent i:
z; = Yjen, (%)) (7)

The collective dynamics of a system comprising N agents are described by the following system
of differential equations:
x1 = f(x1,u1)
Xy = f.(xz:uz) ®)

Xy = f(xn, un)

The proposed general model captures the motion of a multi-agent system and the control of a
swarm of agents, accounting for both inter-agent interactions and individual dynamics. The
functions f, g, and h are defined according to the specific characteristics of the system and the
prescribed interaction rules. Previous studies by the authors [9] have demonstrated that existing
algorithms and methods for modeling group agent motion exhibit several limitations, raising
concerns regarding their suitability for controlling agent groups in counter-swarm operations. The
developed general model of group motion and multi-agent system control is employed to analyze
the limitations of existing models describing the motion of agent groups.

Let us examine the limitations of the PFM, the Vicsek algorithm, PSO algorithm, and the
Reynolds algorithm in the context of their application to UAV swarm control under stringent
collision-avoidance requirements.

2.2. Potential Field Methods

In PFM, each agent is influenced by artificial forces generated by virtual potential fields [10]. An
attractive potential toward the target and repulsive potentials from obstacles and other agents are
incorporated into the model. The resulting force determines the agent’s motion. The control vector
for an agent is defined as the gradient of the potential function:

U = Faeer + Frep = _VU(xi) =-V (Uattr(xi) + Urep(xi)): )

where F,, is the attractive force, and F., is the repulsive force, each defined as the gradient of

the attractive potential of agent i toward the target and the repulsive potential from obstacles or
other agents, respectively.

From the perspective of absolute safety and UAV swarm control, the PFM has inherent
limitations. The presence of local minima in the force field can trap agents, preventing target
acquisition and increasing the risk of collisions, which in swarm motion may cause delays,
formation disruption, or partial immobilization.
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2.3. Vicsek Model

The Vicsek model was developed to simulate the collective behavior of self-propelled particles in a
simple way [11]. Each particle moves at a constant speed and, at each step, changes its direction by
averaging the directions of its neighbors within a given radius, with the addition of random noise.
The swarm influence vector is defined as the sum of forces acting on the agent, including
alignment force and random noise:

Ui = Fatigni + M = Kaign Ljen;(V; — vi) + 14 (10)

where F ., is the alignment force, calculated as the sum of velocity differences between agent i
and its neighbors j, multiplied by the alignment coefficient K. Vector 1 represents random noise,
introduced to avoid the perfect synchronization of all agents’ movement directions. Here, Kaign
determines the strength of alignment, v; and v; are the velocities of neighbors and the agent, and N,
is the set of neighbors of agent i.

The Vicsek model of swarm motion, when applied to UAV swarm control, has several inherent
limitations. It is primarily oriented toward achieving global order through direction alignment and
lacks explicit rules or mechanisms for preventing physical collisions between agents. As a result,
collisions remain possible, particularly at high agent densities or in conditions with substantial
noise.

2.4. PSO

PSO is a metaheuristic optimization algorithm inspired by the social behavior of birds in flocks or
fish in schools. PSO algorithm has been applied to a wide range of optimization problems and can
be adapted for swarm control applications [12]. Each agent in the swarm moves under the
influence of a balance between its best-found position and the best position found by the entire
swarm for that agent.

In PSO algorithm, the sum of the force vectors acting on each agent can be explicitly expressed.
These forces include the inertia force, the attraction force toward the personal best position, and
the attraction force toward the global best position.

For each agent i, the resulting control force u; is the sum of three components:

U; = Finertia,i T prest,i + ngest,i (11)

where Finenia is the inertia force determined by the agent’s current velocity; F . is the attraction

force toward the agent’s personal best position, determined by the difference between the personal

best position and the current position; and Fg.s is the attraction force toward the global best

position, determined by the difference between the global best position and the current position.
The sum of these forces defines the agent’s acceleration and motion within the search space.

2.5.  Reynolds’ Boids Algorithm

The Reynolds algorithm, also known as the Boids model, is one of the most well-known
approaches to swarm control [13]. The motion of a swarm of agents under the Boids algorithm can
be described in terms of a general multi-agent system model using the concept of forces acting on
each agent. These forces define the interactions between agents and their behavior within the
swarm.

In the Reynolds algorithm, each agent is influenced by three main forces:

Separation force F.,: determines the intensity of collision avoidance with neighbors.

Alignment force Fun: aligns the agent’s direction of motion with that of its neighbors.

Cohesion force F..: attracts the agent toward the center of mass of its neighbors to maintain
swarm cohesion.

The resulting force acting on an agent can thus be expressed as:

Ui = Frepi + Faiign,i + Fattr, (12)
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Let us consider the main disadvantages of the Boids algorithm from the perspective of UAV
swarm control. The standard Boids model exhibits several limitations with respect to absolute
safety in UAV swarm control. Its reactive nature means that agents respond only to the current
positions, velocities, and proximity of neighbors, without predicting future motion trajectories,
which can be insufficient to prevent collisions in dynamic environments with high speeds or
complex maneuvers. Additionally, groups of agents governed solely by Boids rules may become
trapped in locally stable configurations that carry latent collision risks. Conflicts between cohesion
and alignment rules may further compromise safety, particularly if rule parameters are not
optimally tuned. Finally, the standard Boids model lacks explicit mechanisms for predicting
collisions and planning avoidance maneuvers.

In summary, while each of the considered algorithms offers advantages in specific contexts,
their direct application to UAV swarm control, where zero-collision performance is critical,
presents significant challenges. PFM may lead to agent trapping and does not guarantee safety. The
Vicsek model focuses on global alignment, ignoring collisions. PSO is an optimization algorithm
and requires specific extensions to enable motion control with real-time safety guarantees.
Achieving zero collisions in a dynamic UAV swarm, while preserving controllability and task
performance efficiency, is not feasible using algorithms based solely on simple reactive rules or
general optimization approaches. This requires the development of hybrid approaches or
specialized algorithms that combine proactive prediction, formal safety assurance methods, e.g.,
Control Barrier Functions (CBF), Reachability Analysis (RA) with optimization of UAV motor
controller parameters, enabling the implementation of effective cooperative maneuvering
strategies.

3. PID motor controller parameter optimization to improve the
dynamic characteristics of a UAV swarm

A key challenge in integrating multiple real-world technical systems is the potential degradation of
their original qualitative and quantitative performance metrics and characteristics. For UAV
swarms, such subsystems include the flight controller and the PID controller [14], which directly
controls the motors, as well as the autonomous swarm navigation program. Simulation of flight
and optimization of such a combined system’s parameters can be performed in UAV flight
simulation software.

For initial flight performance testing of UAVs, three test trajectories are used: a circle, a figure-
eight (lemniscate), and a zigzag. Numerical experiments have shown that the relative deviation
values for the lemniscate and circle are approximately the same. For the zigzag trajectory, its step
and amplitude must be known precisely, as they are specific to the motion of certain UAV types
and are useful for determining UAV inertial characteristics during sharp maneuvers — a task
outside the scope of this work. Accordingly, in the subsequent discussion, PID controller parameter
optimization will be tested for simulated agent motion along a circular path.

To demonstrate the effect of PID controller parameter optimization on deviations from the ideal
trajectory, let us formulate the optimization problem for a drone’s circular motion.

3.1. Drone motor model

The mathematical model of the drone motor controller is described by second-order differential
equations for coordinates x and y. Let the drone move in a circle of radius r and angular velocity w.
Then, the equations for the ideal trajectory (circle) are as follows [14]:
x.(t) = rcos(wt), y.(t) = rsin(wt) (23)
The optimization criterion consists of minimizing the RMSD from the ideal trajectory, described
by the following loss function [15]:

J = J, {Ix(®) = 2O + [y(®) — y.()]*}dt (34)

The PID controller’s control signal for each direction #,and u, is defined as [14]:
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dey(t)

U (£) = Kpex (£) + K; [ ex(r)dr + Kq =52 (45)
T de,(t)
uy () = Kpey () + K; [ e, (1)dt + Kg =% (56)

where eJ(f) and &,(t) are the position errors of the drone in space relative to the values obtained
from the solution of the problem.

The solution to the optimization problem is a set of PID controller parameters (Kp, K;, Kq) that
minimize the loss function J, thereby achieving the smallest possible RMSD from the ideal
trajectory. The algorithm for solving the PID parameter optimization problem was based on the
gradient descent method. The results of the numerical experiments are summarized in Classical
PID controller, circular motion, parameters, deviation.

Table 1
Classical PID controller, circular motion, parameters, deviation

Non-optimized PID parameters Optimized PID parameters

K,=2.0,K=0.1,K;=0.5 K,=10.0,K=0.0,Ks=5.0
Mean deviation: 0.4475 Mean deviation: 0.0754
Max deviation: 1.0101 Max deviation: 0.2088

Fig. 1 shows the simulation results of drone movement along a circle with a radius of 3 meters.
The left graph illustrates the movement without optimization, while the right graph shows the
movement with optimization according to the RMSD criterion. The optimization significantly
reduces the deviation from the ideal trajectory.

Figure 1: Classical PID controller, circular motion, parameters, deviation

Similar numerical experiments were conducted for fractional and robust controllers [16].

The average error before optimization was about 15%, and after optimization — 2.5%. Thus, PID
parameter optimization reduced the trajectory deviation by approximately a factor of 6. This means
that developing a multi-level algorithmic framework for group agent control without consensus-
based PID parameter tuning can degrade the controllability and safety of flock movement or
cooperative swarm maneuvering when implemented on real UAVs.

However, this may still be insufficient. To ensure collision avoidance within the swarm,
additional safety mechanisms must be implemented, in particular, the CBF method.

4. Mathematical Model of a Swarm Oriented Multi-Agent System
Using CBF and Adaptive Consensus PID Controllers

Performing rapid aerodynamic maneuvers in swarm movement scenarios — target pursuit or
swarm-scale evasive action — requires a theoretically guaranteed ability to minimize collisions, i.e.,
ensuring that agents never leave the set of safe states.
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4.1. CBF Method for Constrained System Optimization

Since the 2010s, Barrier Functions (BFs) have been used in robotics to mathematically formalize
safety in terms of maintaining minimum distances between agents in constrained systems [17].
CBFs are an extension of these functions for controlled systems, where the motion controller
actively maintains safety [18]. The concept of combining CBFs with Model Predictive Control
(MPC) for robotics [19] gained traction in 2018, and CBFs became widely integrated into modern
robotics between 2020-2023, with applications in autonomous vehicles, robotic manipulators, and
swarm robotics.

Functionally similar to CBFs are Optimal Reciprocal Collision Avoidance (ORCA) algorithms,
which provide weaker mathematical guarantees and are therefore considered as auxiliary solvers in
cases where the CBF method cannot find a feasible solution.

We now present a mathematical model and a concise problem formulation for applying CBFs to
ensure the safety of UAV motion. For each pair of neighboring UAVs, a barrier function is defined
that becomes zero when the distance between them reaches a predefined safety threshold. The
safety condition (imposed on the derivative of the barrier function) constrains the set of admissible
control actions for each UAV, guaranteeing that the safety distance will never be violated.

Problem statement for optimizing the movement of a group of agents.

4.2. System description

We consider a multi-agent system with N agents, where each agent i €{1....,N} has:

State xi(t)=[pi(t),vi(t)]” (position and velocity of the agent at time t);

Local PID controller with parameters 0;=[Kp,K1i,Kp.]";

Data exchange with neighboring agents through a network described by an undirected
connectivity graph G=(V,E), where V is the set of vertices and E is the set of edges, V={1,...,.N}.

4.3. The objective function

The objective function describes a joint minimization of the deviation of the current state of each
agent from its goal; the control error in the agent’s motion; the deviation of the current PID
parameters from the consensus values, according to a quadratic criterion:

J = Jy |2 (@illxi(® = xigoarll” + Billus (D17 + yill6s(0) = 6@)I12)| dt (17)
where a;,(:,y: are weighting coefficients;
Xigoal 18 the target position of agent i;
uy(t) is the control input;
T is the planning horizon;
0(t) is the consensus PID parameter vector:

o(t) =~ 2L, 6,(t) (18)

4.4. Constraints

Constraints include agent motion dynamics, PID parameter adjustment, and safe motion
enforcement using CBF.
The agent dynamics are described by:
x; = f(xu), up = fpip (e, 6;) (19)
where e; is the agent’s position error relative to the computed trajectory.

The PID control law is:
de;(t)
dt

w(t) = Kyey(t) + K; [ e;(1)dr + Kq (20)

where e;(t) is the control error.
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4.5. The barrier function

The barrier function ensuring a minimum safe separation to avoid collisions:
h(x;,x;) < 0,V(0, /), i #j (21)
where
2 2
h(xi %) = |lpi = pjl|” = (i + 15 + dsage)” 2 0 (22)
r;, 1; are the safety radii of agents i and j, and ds.s. is the minimum safe distance.

Consensus conditions for PID parameters have lower priority than safety constraints to ensure
problem feasibility:

0; = = ii1 ay(0; — 6;) + 1 Vo, LiCxiyuy, 6)) (23)
where a;; are adjacency matrix elements of G, 7;>0 is the learning rate, and
LiCxiup 0;) = llegll® + Aglluwgll® + wll6; — 611 (24)

Aipii >0 are regularization coefficients.

4.6. The safety conditions

The safety conditions are based on the second-order derivative of the CBF:
h(xi, x;) + Kah(x;, x;) + Kph(x;, %) = 0 (25)
where

. 2 T
h(xi,x;) = 2||vi = vl|” + 2(pi = p;) (i — ) (26)
Since the safety inequality is linear in u; and uj, it can be solved as a quadratic programming
problem to find safe control inputs.

4.7. Summary

Developing hybrid and specialized algorithms that guarantee safe agent motion is a complex
interdisciplinary task involving control theory, optimization theory, formal verification methods,
and swarm dynamics. This approach is key to achieving the ambitious goal of guaranteeing zero
collisions in autonomous UAV swarms.

5. Proposed Hybrid Architecture and Optimization Strategy for UAV
Swarm Control

The basis of proposed hybrid architecture is the structural diagram of a swarm oriented multi-
agent system for a multi-agent control.

5.1.  Structural Diagram of a Swarm Oriented Multi-Agent System

Figure 1 illustrates a structural scheme for a multi-agent control and communication system using
multi-level optimization [20], which includes an adaptive consensus algorithm for swarm agents’
PID controllers and the data processing workflow.

Sensor data, after preprocessing and formatting, is distributed through the agent network via a
data exchange algorithm. Based on the sensor data, the collision risk estimation algorithm performs
a quick safety assessment.

Data received from other agents is used to check global trajectory compliance, build a short-
term motion prediction model, and update the group PID consensus algorithm. With it:

High threat: the agent’s PID controller performs emergency maneuvers to avoid collisions with
other swarm agents. Low threat: PID parameters are synchronized with nearby agents using a
swarm consensus algorithm. Medium threat: PID parameters are optimized using CBFs, local
routing, trajectory prediction, and obstacle motion prediction algorithms.

69



Wireless Multi-Agent System

Data exchange algorithm in a Collision risk égent Group PID
group of agents assess'ment onst?nsus
algorithm Algorithm
Average
High \|/
Checking compliance with CBF, local
the global trajectory Agent PID routing,
controller trajectory
prediction
Local agent motion
prediction model

Figure 2: A structural scheme for a multi-agent control and communication system using
multi-level optimization

5.2. Hybrid Architecture for Safe UAV Swarm Control

The proposed control system operates on three levels:

Global level - trajectory planning using MPC and Rapidly-exploring Random Tree Star (RRT").

Local level - collision avoidance based on CBFs and adaptive PID controllers.

Emergency level — RL, specifically Q-learning, for critical maneuvers.

The safety system classifies situations into four risk levels: Normal, Warning, Threat, and
Critical.

Main modules and algorithms:
1. Trajectory prediction: Estimates future UAV positions over a 5-step horizon considering control

actions and neighbor responses.

Multi-level safety logic: Risk levels determined based on predicted minimum distances, ensuring
early responses without false alarms.

Adaptive PID tuning: Kp, Ki, Kd dynamically change according to risk and past maneuver
efficiency, preventing conflicts between trajectory tracking and collision avoidance.

Cooperative maneuvering: Coordinated changes in altitude or direction based on priority (agent
ID, threat detection time, etc.).

Communication loss handling: In case of signal loss, the agent continues with avoidance
maneuvers based on the last known neighbor data, preserving formation after reconnection.

Boundary reaction: Instead of abrupt stopping, UAVs smoothly change direction while staying
inside operational space, coordinating maneuvers with other agents.

The proposed hybrid architecture enables a comprehensive multi-level optimization strategy for
the safe movement of agent groups.

5.3. Hybrid Strategy for Comprehensive Multi-Level Optimization of Safe
Group Motion

The strategy combines various optimization levels:
Global planning - MPC and RRT" build trajectories considering speed constraints and obstacles.
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Local optimization — CBF ensures safe distances, while PID provides stabilization and trajectory
tracking.

Emergency maneuvers — RL Q-table controls discrete actions in critical situations.

Cooperative coordination - Control parameters are collectively tuned via consensus
mechanisms to improve robustness and energy efficiency.

The implemented technologies are summarized in Table 3 for a better understanding of the
levels of comprehensive optimization for group safety.

It is also necessary to determine which trajectory computation approach should be used. Both
centralized and decentralized computation can be applied, so both are considered:

Centralized - A single controller calculates all trajectories (using MAPF: Multi-Agent Path
Finding) to coordinate movement. This is suitable for small swarms but lacks scalability.

Decentralized — Each agent plans its motion using local data and partial information from
neighbors. This approach provides scalability and fault tolerance but makes it harder to guarantee
global route optimality.

A compromise between centralized and decentralized approaches can be achieved through
hierarchical coordination:
Global planning sets goals and routes.

Local agents adapt movement in real time according to threats.

Subgroups of agents coordinate actions via elected leaders.

Table 2
Levels of comprehensive safety optimization for agent motion
Component Method / Algorithm Purpose
Quadratic Programming Formal collision

Barrier Functions (CBF) avoidance

Linear model with horizon

Planning (MPC + RRT") Trajectory generation

constraints
Physical Model Second-order equations Realistic dynamics
(position + velocity)
Safety Risk levels + RL Early response
Optimization Gradient descent + swarm Parametric tuning

algorithm

The proposed hybrid architecture for safe UAV swarm control, combining global efficiency with
local safety, is a promising direction for the development of secure swarms. Formal methods such
as CBF will provide mathematical safety guarantees, while decentralization will ensure scalability
and flexibility.

Next steps involve empirical validation, extension to multi-scenario missions, and further
reduction of energy consumption. The feasibility and rationality of the proposed approaches can be
confirmed through swarm motion simulation and relevant numerical experiments.

6. Numerical Experiments of the Multi-Level Agent Motion Control
System and Comparison with Known Group Control Methods

We now present numerical experiments for the multi-level agent motion control system and
compare its performance with established algorithms and methods for group control. The study
focuses on ensuring the safe motion of agent groups, particularly UAVs, in a “swarm versus
swarm” scenario. To evaluate the developed hybrid architecture for UAV swarm safety control,
multi-level optimization of safe UAV motion was performed in a "swarm vs swarm" scenario.
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6.1. Simulation objective

Assess the efficiency of the combined multi-level optimization strategy for safe and coordinated
drone movement in an environment with an opposing swarm.

6.2. Simulation conditions

Two swarms: Blue (friendly) and Red (hostile).

Number of drones: 10 in each swarm.

Simulation field: 100x100 units.

Blue swarm objective: reach a gathering point in sector B, avoiding collisions, threats, and
detection.

Red swarm objective: patrol key areas and respond to Blue’s approach.

Constraints: jamming zones, no-fly areas, dynamic obstacles.

The structure of multilevel optimization is presented in Table 3.

Table 3
Optimization structure in the simulation
Level Algorithm Task
Selection of overall swarm
1. Strategic Genetic Algorithm trajectory (route segments, target
priorities)
Distribution of subgroups and
2. Tactical PSO individual drone paths within the
chosen route
3 Local A* + Avoidance Rules Real-time obstacle avoidance based
on sensor data
6.3. Evaluation metrics

We used the following metrix: Average distance between drones (swarm cohesion); Number of
collisions or entries into risk zones; Time to reach the target; Percentage of detected/intercepted
drones; Energy consumption per agent.

The multilevel optimization model, which integrates global strategic planning with local threat
avoidance, demonstrates high efficiency in swarm-versus-swarm scenarios. This approach enables
drones to achieve mission objectives with a higher probability while simultaneously reducing
incidents and resource consumption. Thus, numerical experiments confirmed that the multi-level
system achieves zero collisions in dense formations — a key indicator of its effectiveness. This is
achieved through the integration of MPC, CBF, adaptive PID, and RL, which provide proactive
prediction and formal safety guarantees.

6.4. Comparison with known algorithms

The analysis identified the limitations of existing group control algorithms (Table 4):

PFM - prone to local minima, oscillations near obstacles, and no formal collision avoidance
guarantees. Vicsek model — lacks explicit collision avoidance, unpredictable behavior due to noise.
PSO - not a direct control algorithm, lacks collision avoidance mechanisms. Boids model -
reactive, susceptible to local optima, lacks explicit collision prediction. Unlike these, the proposed
system provides formal safety guarantees through CBF and proactive collision avoidance, making it
a superior choice for tasks such as "swarm vs swarm". For the simulations conducted in the Google
Colab environment, the following algorithms were used: Hybrid CBF-PID algorithm (Control
Barrier Function + PID) - a collision-avoidance algorithm that uses optimization constraints to
guarantee the maintenance of a safe distance, achieved by combining an adaptive PID controller
with barrier functions. Classical collision-avoidance algorithms: Boids, Vicsek, PFM, PSO;
Algorithms without collision avoidance: Leader-Follower — one agent (leader) moves toward the
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target, while the others (followers) attempt to follow; the algorithm lacks explicit collision-
avoidance mechanisms. Random-Walk - the simplest algorithm, in which agents move in random
directions with speed adjusted to a fixed value. In the simulation, 1,000 agents with movement
constraints were used, and 200 steps of the algorithmic suite were executed (Optimization structure
in the simulation).

Table 4
Comparison of swarm control algorithms (1,000 agents, 200 steps)
Algorithm Collisions Avg. Speed (m/s)  Computation time per agent
movement parameter (us)
CBF-PID 0 3.00 6900.95
Boids 0 - 1.71
Vicsek 0 - 1.67
Potential Field 2605 - 10.68
PSO 85 - 2261.90
Leader-Follower 2203 - 1.64
Random-Walk 1790 - 13.97

The agents followed the following trajectory models: CBF-PID - swarm agents move along
smooth parallel lines with guaranteed spacing. Boids - produces “cohesive” movement with
random deviations but may create clusters. Vicsek - all agents move in the same average direction.
Potential Field — generates curvilinear paths for agents. Leader-Follower — straight-line motion of
the leader, with followers trailing behind. Simulation results show that the classical Boids and
Vicsek algorithms with collision-control mechanisms can produce high-quality results using
minimal computational power in the absence of mobile obstacles. However, they do not provide
safeguards against agent collisions. CBF-PID requires significantly higher computational resources
but guarantees zero collisions.

7. Conclusions

The implementation of safe, real-time autonomous big scale UAV swarm control is a critical
challenge for practical deployment in complex environments. Abandoning standard Boids rules —
or significantly modifying them — and developing custom swarm control rules is a justified and
potentially highly effective approach for achieving zero collisions while maintaining coordinated
swarm motion. One scientific problem requiring resolution is the multi-agent modeling of
autonomous local navigation for groups, flocks, and large swarms to address the “swarm vs
swarm” scenario.

This work addressed the problem of decentralized collective collision avoidance for a group of
agents using predictive planning, adaptive control, and optimization methods with safety
guarantees. For the first time, a hybrid control architecture for UAV swarms was proposed, based
on comprehensive multi-level optimization that combines global trajectory planning and local
collision avoidance with formal safety guarantees. The developed system integrates Model
Predictive Control, Control Barrier Functions, adaptive consensus-based PID controllers, and
Reinforcement Learning for emergency situations. The proposed approach ensures zero collisions
for agent motion in a 3D dynamic environment through multi-level optimization and cooperative
maneuvering. We propose a new collision avoidance strategy for swarms of agents that leverages
control barrier functions in conjunction with a local adaptive consensus scheme for the dynamic
adjustment of PID controller parameters.
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In addition, algorithmic and software tools were developed to simulate UAV swarm motion of
varying sizes with hybrid control systems. Computational experiments demonstrated zero
collisions for tightly packed formations. The result is a comprehensive multi-level optimization
system for safe group motion of agents, aimed at solving the collision problem during aggressive
maneuvers in contested environments and during obstacle avoidance.

Declaration on Generative Al

During the preparation of this work, the authors used ChatGPT in order to grammar and spelling
check.
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