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Abstract 
This paper presents a comprehensive approach to the safe motion planning of autonomous unmanned 
aerial vehicles (UAVs) operating in multi-agent swarm formations. The increasing deployment of UAV 
swarms in both civil and military domains necessitate robust, scalable, and adaptable control strategies 
that ensure reliable group behavior under dynamic and potentially adversarial conditions. 
The proposed architecture integrates a multi-level optimization framework, which combines global 
trajectory planning with local collision avoidance. It is enhanced by reinforcement learning algorithms 
and safety-guaranteed maneuvering techniques. A hybrid control architecture is developed, supporting 
both decentralized and centralized coordination schemes, enabling agents to operate autonomously while 
maintaining real-time responsiveness to changes in the environment and swarm composition. 
Inspired by biological systems and competitive behavioral patterns observed in nature, the architecture 
includes adaptive roles, leader follower dynamics, and swarm clustering for obstacle avoidance and 
attack-defense positioning. A formal system model is defined, along with simulation algorithms for 
analyzing various swarm sizes and motion control strategies. The effectiveness of proportional-integral 
derivative parameter optimization for improving swarm dynamics is also investigated. 

prevent inter-agent collisions, and maintain formation integrity. The proposed solution lays the 
groundwork for the development of AI-driven swarm systems that can execute coordinated operations in 
contested environments. 
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1. Introduction 

Countering a large number of unmanned aerial vehicles (UAVs) is a pressing issue in the fields of 
security and information technologies [1]. The advances in computer electronics and their 
miniaturization now enable the integration of onboard networked computational and 
communication systems with specialized artificial intelligence into groups of autonomous 
unmanned systems [2], facilitating the application of intelligent information technologies to 
address this problem. 
The use of large UAV groups is currently at the stage of empirically accumulating successful field 
practices, with preliminary computer simulations of group control processes (agents) based on 
multi-agent system models in virtual environments [3 4], including group competition [4]. 
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1.1. Patterns of Aggressive Competition in Large Groups Inspired by Nature 

Competition for resources and territorial dominance is inherent to many living organ-isms on 
Earth [5]. Therefore, using conflict behavior patterns from groups of living creatures as simulation 
scenarios for AI-controlled multi-agent systems is a rational approach that can be further 
implemented and tested for managing autonomous UAV groups. 

In the animal world, flock control is based on a strict hierarchical principle  there is a leader 
and subordinates who perform specific roles within the group. Control structures such as 
centralized leadership (in animals) and decentralized swarms are both used to model agent group 
control. Hybrid control models, including temporary leadership and swarm clustering for obstacle 
avoidance, are also applied [6]. In this paper, we define agents as virtual entities with position, 
velocity, and radius, following swarm movement algorithms. 

1.2. Definitions 

To avoid ambiguity, the following terms are defined: 
Agent  an acting entity in any process or phenomenon, including simulations. 
UAV (Unmanned Aerial Vehicle)  an aircraft without an onboard pilot, controlled remotely or 

programmed to fly autonomously. 
Drone  a mobile unmanned device, such as UAVs, robotic systems, or ground/sea/aquatic 

unmanned vehicles. 
Drone Group  a team or swarm of drones. 
Flock  a group of animals, birds, fish, or other organisms that stay together. 
Collective  a number of drones (more than one), operating permanently to per-form joint 

missions/tasks without direct interaction. 
Team  several drones (more than one) that perform a mission/task without direct interaction. 
Swarm  a group of drones equipped with swarm intelligence, capable of autonomous 

interaction, adaptation to changing conditions, and collective decision-making with minimal or 
no operator intervention. 

1.3. Objective of the Study 

To develop a hybrid control architecture for UAV swarms using reinforcement learning (RL), based 
on comprehensive multi-level optimization that integrates global trajectory planning and local 
collision avoidance with formal safety guarantees for emergencies. The architecture should ensure 
collision-free movement of agents in a dynamic 3D environment through multi-level optimization 
and cooperative maneuvering. Additionally, the study aims to investigate the optimization of 
consensus PID (Proportional-Integral-Derivative) controller parameters to improve the dynamic 
performance of UAV swarms and to develop corresponding algorithmic and software tools for 
simulating swarm movement of varying sizes under hybrid control systems. 

1.4. Structure of the Paper 

The remainder of the paper is structured as follows. 
Section 2 reviews existing swarm control algorithms and analyzes their limitations. It also 

presents the general model of swarm agent motion and control, describes individual algorithms  
Potential Field method (PFM), Vicsek, Particle Swarm Optimization (PSO), Reynolds, and evaluates 
their applicability to UAV swarm control. 

Sections 3 introduces the proposed hybrid architecture with multi-level optimization, including 
PID parameter optimization. 

Section 4 presents mathematical model of a multi-agent system using CBF-based safety 
mechanisms, RL for emergency cases and adaptive consensus PID controllers, its structural 
diagram and hybrid architecture.  
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Section 5 presents proposed hybrid architecture and optimization strategy for UAV swarm 
control, including structural diagram of a swarm oriented multi-agent system, hybrid strategy and 
architecture for safe UAV swarm control. 

Section 6 reports the results of numerical experiments and compares the proposed system with 
classical swarm control methods. 

Section 7 concludes the paper and outlines future research directions, including the study of 
 

1.5. Main Contributions of the Paper 

This paper addresses the problem of safe autonomous UAV swarm control under conditions of 
aggressive interaction and complex dynamic environments. The key contributions are development 
of a general model of swarm agent motion based on multi-agent dynamics and inter-agent 
interaction functions; critical analysis of existing swarm control methods (PFM, Vicsek, PSO, 
Reynolds) and identification of their limitations with respect to safety and controllability; proposal 
of a hybrid architecture that integrates Model Predictive Control, Control Barrier Functions, 
adaptive consensus-based PID controllers, and Reinforcement Learning for emergency maneuvers; 
design of a multi-level optimization strategy that combines global trajectory planning, local 
collision avoidance, and cooperative maneuvering with formal safety guarantees and 
implementation of numerical experiments, confirming zero collisions in dense swarm formations 
and demonstrating the superiority of the proposed system in swarm vs. swarm" scenarios 
compared to classical algorithms. 

2. Review of Existing Models and Their Limitations 

In the field of AI ontology, collective decision-making algorithms are part of swarm intelligence 
[7]. Computer modeling of UAV collective behavior uses multi-agent technologies, along with 
Information and Communications Technology solutions, to enable distributed computing. 

Competitive behavior of biological collectives in resource and territory conflicts includes: 
reconnaissance (including combat reconnaissance), deep raids into enemy territory, frontal attacks, 
flanking and encircling maneuvers, military deception (e.g., diversionary tactics, feigned retreat), 
enemy force dispersion (multi-directional attacks), wave attacks (rotational assaults), blocking 
enemy retreat (encirclement or siege) and tactical adaptation via route updates based on 
information exchange. 

Multi-agent AI technologies allow modeling of autonomous agent collectives as self-organizing 
swarms or leader-controlled flocks using ad hoc radio networks. Agents collaboratively solve tasks 
such as directional movement, obstacle avoidance, and spatial positioning for attack or defense [8]. 
Therefore, control of agents in swarm/flock formations requires navigation algorithms that 
maintain acceptable positioning accuracy to prevent collisions and preserve group cohesion. 

2.1. General Model of the Agent Swarm Control System 

The basis of agent swarm behavior lies in the principles of cohesion, alignment, and separation (the 
Reynolds model) [9]. These are supplemented by collision avoidance strategies with static and 
dynamic obstacles and task-specific behavioral patterns (attack, defense, evasion, reconnaissance, 
deception, and others). 

The swarm consists of N agents A1,A2,...,AN, each of which is characterized at any given moment 
by: 

Position vector: 
 xi(t)∈R3                                                                           (1) 

Velocity vector: 
 vi(t)∈R3                                                                            (2) 

Radius (occupied space): 
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 ri∈R+                                                                          (3) 
The movement of agents occurs in a limited three-dimensional space that may include static and 

dynamic obstacles. The motion of the agents is governed by the following differential equation: 
 𝑥̇𝑖 = 𝑓(𝑥𝑖, 𝑢𝑖),                                                                   (4) 

where f is a function describing the agent's dynamics, and the vector ui describes the influence 
of the swarm on the agent's movement and control of neighboring swarm agents. The interaction 
between swarm agents is introduced using the function g, which depends on their states: 

 𝑢𝑖 = 𝑔(𝑥𝑖 , ∑ ℎ(𝑥𝑗)𝑗∈𝑁𝑖
),                                            (5) 

where Ni is the set of neighbors of agent i, and is a function that determines the strength of 
influence on the movement of agent i of the neighboring agents in whose neighborhood it is 
located. The interaction function may include a description of the rules of movement based on a 
weighted sum of forces, for example, repulsion, alignment, attraction, and other methods of social 
interaction between N agents: 

 𝑢𝑖 = 𝑔(𝑥𝑖, 𝑧𝑖) = ∑ 𝜔𝑖𝐹𝑖(𝑥𝑖 , 𝑧𝑖)𝑖∈𝑁                                        (6) 
where wi are the weight coefficients, Fi, zi are the forces acting on agent i: 

 𝑧𝑖 = ∑ ℎ(𝑥𝑗)𝑗∈𝑁𝑖
                                                         (7) 

The collective dynamics of a system comprising N agents are described by the following system 
of differential equations: 

{

𝑥̇1 = 𝑓(𝑥1, 𝑢1)

𝑥̇2 = 𝑓(𝑥2, 𝑢2)
⋮

𝑥̇𝑁 = 𝑓(𝑥𝑁, 𝑢𝑁)

                                                                         (8) 

The proposed general model captures the motion of a multi-agent system and the control of a 
swarm of agents, accounting for both inter-agent interactions and individual dynamics. The 
functions 𝑓, 𝑔, and ℎ are defined according to the specific characteristics of the system and the 
prescribed interaction rules. Previous studies by the authors [9] have demonstrated that existing 
algorithms and methods for modeling group agent motion exhibit several limitations, raising 
concerns regarding their suitability for controlling agent groups in counter-swarm operations. The 
developed general model of group motion and multi-agent system control is employed to analyze 
the limitations of existing models describing the motion of agent groups. 

Let us examine the limitations of the PFM, the Vicsek algorithm, PSO algorithm, and the 
Reynolds algorithm in the context of their application to UAV swarm control under stringent 
collision-avoidance requirements. 

2.2. Potential Field Methods 

In PFM, each agent is influenced by artificial forces generated by virtual potential fields [10]. An 
attractive potential toward the target and repulsive potentials from obstacles and other agents are 

for an agent is defined as the gradient of the potential function: 
 𝑢𝑖 = 𝐹𝑎𝑡𝑡𝑟 + 𝐹𝑟𝑒𝑝 = −𝛻𝑈(𝑥𝑖) = −𝛻 (𝑈𝑎𝑡𝑡𝑟(𝑥𝑖) + 𝑈𝑟𝑒𝑝(𝑥𝑖)),                (9) 

where 𝐹att is the attractive force, and 𝐹rep is the repulsive force, each defined as the gradient of 
the attractive potential of agent 𝑖 toward the target and the repulsive potential from obstacles or 
other agents, respectively. 

From the perspective of absolute safety and UAV swarm control, the PFM has inherent 
limitations. The presence of local minima in the force field can trap agents, preventing target 
acquisition and increasing the risk of collisions, which in swarm motion may cause delays, 
formation disruption, or partial immobilization. 
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2.3. Vicsek Model 

The Vicsek model was developed to simulate the collective behavior of self-propelled particles in a 
simple way [11]. Each particle moves at a constant speed and, at each step, changes its direction by 
averaging the directions of its neighbors within a given radius, with the addition of random noise. 
The swarm influence vector is defined as the sum of forces acting on the agent, including 
alignment force and random noise: 

 𝑢𝑖 = 𝐹𝑎𝑙𝑖𝑔𝑛,𝑖 + 𝜂𝑖 = 𝑘𝑎𝑙𝑖𝑔𝑛 ∑ (𝑣𝑗 − 𝑣𝑖)𝑗∈𝑁𝑖
+ 𝜂𝑖 ,                                    (10) 

where 𝐹align is the alignment force, calculated as the sum of velocity differences between agent 𝑖 
and its neighbors 𝑗, multiplied by the alignment coefficient 𝑘align. Vector 𝜂 represents random noise, 

𝑘align 
determines the strength of alignment, 𝑣𝑗 and 𝑣𝑖 are the velocities of neighbors and the agent, and 𝑁𝑖 
is the set of neighbors of agent 𝑖. 

The Vicsek model of swarm motion, when applied to UAV swarm control, has several inherent 
limitations. It is primarily oriented toward achieving global order through direction alignment and 
lacks explicit rules or mechanisms for preventing physical collisions between agents. As a result, 
collisions remain possible, particularly at high agent densities or in conditions with substantial 
noise.  

2.4. PSO 

PSO is a metaheuristic optimization algorithm inspired by the social behavior of birds in flocks or 
fish in schools. PSO algorithm has been applied to a wide range of optimization problems and can 
be adapted for swarm control applications [12]. Each agent in the swarm moves under the 
influence of a balance between its best-found position and the best position found by the entire 
swarm for that agent. 

In PSO algorithm, the sum of the force vectors acting on each agent can be explicitly expressed. 
These forces include the inertia force, the attraction force toward the personal best position, and 
the attraction force toward the global best position. 

For each agent 𝑖, the resulting control force 𝑢𝑖 is the sum of three components: 
 𝑢𝑖 = 𝐹𝑖𝑛𝑒𝑟𝑡𝑖𝑎,𝑖 + 𝐹𝑝𝑏𝑒𝑠𝑡,𝑖 + 𝐹𝑔𝑏𝑒𝑠𝑡,𝑖                                           (11) 

where 𝐹inertia 𝐹pbest is the attraction 

best position and the current position; and 𝐹gbest is the attraction force toward the global best 
position, determined by the difference between the global best position and the current position. 

 

2.5.  

The Reynolds algorithm, also known as the Boids model, is one of the most well-known 
approaches to swarm control [13]. The motion of a swarm of agents under the Boids algorithm can 
be described in terms of a general multi-agent system model using the concept of forces acting on 
each agent. These forces define the interactions between agents and their behavior within the 
swarm. 

In the Reynolds algorithm, each agent is influenced by three main forces: 
Separation force 𝐹sep: determines the intensity of collision avoidance with neighbors. 
Alignment force 𝐹align  
Cohesion force 𝐹coh: attracts the agent toward the center of mass of its neighbors to maintain 

swarm cohesion. 
The resulting force acting on an agent can thus be expressed as: 

 𝑢𝑖 = 𝐹𝑟𝑒𝑝,𝑖 + 𝐹𝑎𝑙𝑖𝑔𝑛,𝑖 + 𝐹𝑎𝑡𝑡𝑟,𝑖                                                    (12) 
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Let us consider the main disadvantages of the Boids algorithm from the perspective of UAV 
swarm control. The standard Boids model exhibits several limitations with respect to absolute 
safety in UAV swarm control. Its reactive nature means that agents respond only to the current 
positions, velocities, and proximity of neighbors, without predicting future motion trajectories, 
which can be insufficient to prevent collisions in dynamic environments with high speeds or 
complex maneuvers. Additionally, groups of agents governed solely by Boids rules may become 
trapped in locally stable configurations that carry latent collision risks. Conflicts between cohesion 
and alignment rules may further compromise safety, particularly if rule parameters are not 
optimally tuned. Finally, the standard Boids model lacks explicit mechanisms for predicting 
collisions and planning avoidance maneuvers. 

In summary, while each of the considered algorithms offers advantages in specific contexts, 
their direct application to UAV swarm control, where zero-collision performance is critical, 
presents significant challenges. PFM may lead to agent trapping and does not guarantee safety. The 
Vicsek model focuses on global alignment, ignoring collisions. PSO is an optimization algorithm 
and requires specific extensions to enable motion control with real-time safety guarantees. 
Achieving zero collisions in a dynamic UAV swarm, while preserving controllability and task 
performance efficiency, is not feasible using algorithms based solely on simple reactive rules or 
general optimization approaches. This requires the development of hybrid approaches or 
specialized algorithms that combine proactive prediction, formal safety assurance methods, e.g., 
Control Barrier Functions (CBF), Reachability Analysis (RA) with optimization of UAV motor 
controller parameters, enabling the implementation of effective cooperative maneuvering 
strategies. 

3. PID motor controller parameter optimization to improve the 
dynamic characteristics of a UAV swarm 

A key challenge in integrating multiple real-world technical systems is the potential degradation of 
their original qualitative and quantitative performance metrics and characteristics. For UAV 
swarms, such subsystems include the flight controller and the PID controller [14], which directly 
controls the motors, as well as the autonomous swarm navigation program. Simulation of flight 

simulation software. 
For initial flight performance testing of UAVs, three test trajectories are used: a circle, a figure-

eight (lemniscate), and a zigzag. Numerical experiments have shown that the relative deviation 
values for the lemniscate and circle are approximately the same. For the zigzag trajectory, its step 
and amplitude must be known precisely, as they are specific to the motion of certain UAV types 
and are useful for determining UAV inertial characteristics during sharp maneuvers  a task 
outside the scope of this work. Accordingly, in the subsequent discussion, PID controller parameter 
optimization will be tested for simulated agent motion along a circular path. 

To demonstrate the effect of PID controller parameter optimization on deviations from the ideal 
 

3.1. Drone motor model 

The mathematical model of the drone motor controller is described by second-order differential 
equations for coordinates x and y. Let the drone move in a circle of radius r and angular velocity . 
Then, the equations for the ideal trajectory (circle) are as follows [14]: 

 𝑥𝑐(𝑡) = 𝑟𝑐𝑜𝑠(𝜔𝑡), 𝑦𝑐(𝑡) = 𝑟𝑠𝑖𝑛(𝜔𝑡)                                  (23) 
The optimization criterion consists of minimizing the RMSD from the ideal trajectory, described 

by the following loss function [15]: 
 𝐽 = ∫ {[𝑥(𝑡) − 𝑥𝑐(𝑡)]

2 + [𝑦(𝑡) − 𝑦𝑐(𝑡)]
2}𝑑𝑡

𝑇

0
                                  (34) 

𝑢𝑥 and 𝑢𝑦 is defined as [14]: 
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 𝑢𝑥(𝑡) = 𝐾𝑝𝑒𝑥(𝑡) + 𝐾𝑖 ∫ 𝑒𝑥(𝜏)𝑑𝜏
𝑇

0
+ 𝐾𝑑

𝑑𝑒𝑥(𝑡)

𝑑𝑡
                                        (45) 

 𝑢𝑦(𝑡) = 𝐾𝑝𝑒𝑦(𝑡) + 𝐾𝑖 ∫ 𝑒𝑦(𝜏)𝑑𝜏
𝑇

0
+ 𝐾𝑑

𝑑𝑒𝑦(𝑡)

𝑑𝑡
                                       (56) 

where ex(t) and 𝑒𝑦(t) are the position errors of the drone in space relative to the values obtained 
from the solution of the problem. 

The solution to the optimization problem is a set of PID controller parameters (𝐾𝑝, 𝐾𝑖, 𝐾𝑑) that 
minimize the loss function 𝐽, thereby achieving the smallest possible RMSD from the ideal 
trajectory. The algorithm for solving the PID parameter optimization problem was based on the 
gradient descent method. The results of the numerical experiments are summarized in Classical 
PID controller, circular motion, parameters, deviation. 
Table 1 
Classical PID controller, circular motion, parameters, deviation 

Non-optimized PID parameters Optimized PID parameters 

Kp=2.0,Ki=0.1,Kd=0.5       Kp=10.0,Ki=0.0,Kd=5.0 

Mean deviation: 0.4475 Mean deviation: 0.0754 

Max deviation: 1.0101 Max deviation: 0.2088 

Fig. 1 shows the simulation results of drone movement along a circle with a radius of 3 meters. 
The left graph illustrates the movement without optimization, while the right graph shows the 
movement with optimization according to the RMSD criterion. The optimization significantly 
reduces the deviation from the ideal trajectory. 

 
Figure 1: Classical PID controller, circular motion, parameters, deviation 
Similar numerical experiments were conducted for fractional and robust controllers [16]. 
The average error before optimization was about 15%, and after optimization  2.5%. Thus, PID 

parameter optimization reduced the trajectory deviation by approximately a factor of 6. This means 
that developing a multi-level algorithmic framework for group agent control without consensus-
based PID parameter tuning can degrade the controllability and safety of flock movement or 
cooperative swarm maneuvering when implemented on real UAVs. 

However, this may still be insufficient. To ensure collision avoidance within the swarm, 
additional safety mechanisms must be implemented, in particular, the CBF method. 

4. Mathematical Model of a Swarm Oriented Multi-Agent System 
Using CBF and Adaptive Consensus PID Controllers 

Performing rapid aerodynamic maneuvers in swarm movement scenarios  target pursuit or 
swarm-scale evasive action  requires a theoretically guaranteed ability to minimize collisions, i.e., 
ensuring that agents never leave the set of safe states. 
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4.1. CBF Method for Constrained System Optimization 

Since the 2010s, Barrier Functions (BFs) have been used in robotics to mathematically formalize 
safety in terms of maintaining minimum distances between agents in constrained systems [17]. 
CBFs are an extension of these functions for controlled systems, where the motion controller 
actively maintains safety [18]. The concept of combining CBFs with Model Predictive Control 
(MPC) for robotics [19] gained traction in 2018, and CBFs became widely integrated into modern 
robotics between 2020 2023, with applications in autonomous vehicles, robotic manipulators, and 
swarm robotics. 

Functionally similar to CBFs are Optimal Reciprocal Collision Avoidance (ORCA) algorithms, 
which provide weaker mathematical guarantees and are therefore considered as auxiliary solvers in 
cases where the CBF method cannot find a feasible solution. 

We now present a mathematical model and a concise problem formulation for applying CBFs to 
ensure the safety of UAV motion. For each pair of neighboring UAVs, a barrier function is defined 
that becomes zero when the distance between them reaches a predefined safety threshold. The 
safety condition (imposed on the derivative of the barrier function) constrains the set of admissible 
control actions for each UAV, guaranteeing that the safety distance will never be violated. 

Problem statement for optimizing the movement of a group of agents. 

4.2. System description 

We consider a multi-agent system with N agents, where each agent 𝑖 ∈ 𝑁} has: 
State 𝑥𝑖(𝑡)=[𝑝𝑖(𝑡),𝑣𝑖(𝑡)]𝑇 (position and velocity of the agent at time 𝑡); 
Local PID controller with parameters 𝜃𝑖=[𝐾𝑃,𝑖,𝐾𝐼,𝑖,𝐾𝐷,𝑖]𝑇; 
Data exchange with neighboring agents through a network described by an undirected 

connectivity graph 𝐺=(𝑉,𝐸), where 𝑉 is the set of vertices and 𝐸 is the set of edges, 𝑉 𝑁}. 

4.3. The objective function 

The objective function describes a joint minimization of the deviation of the current state of each 

parameters from the consensus values, according to a quadratic criterion: 
 𝐽 = ∫ [∑ (𝛼𝑖‖𝑥𝑖(𝑡) − 𝑥𝑖,𝑔𝑜𝑎𝑙‖

2
+ 𝛽𝑖‖𝑢𝑖(𝑡)‖

2 + 𝛾𝑖‖𝜃𝑖(𝑡) − 𝜃~(𝑡)‖2)𝑁
𝑖=1 ]

𝑇

0
𝑑𝑡      (17) 

where 𝛼𝑖,𝛽𝑖,𝛾𝑖 are weighting coefficients; 
xi,goal is the target position of agent 𝑖; 
𝑢𝑖(𝑡) is the control input; 
𝑇 is the planning horizon; 

(t) is the consensus PID parameter vector: 
 𝜃~(𝑡) =

1

𝑁
∑ 𝜃𝑖(𝑡)
𝑁
𝑖=1                                                                   (18) 

4.4. Constraints 

Constraints include agent motion dynamics, PID parameter adjustment, and safe motion 
enforcement using CBF. 

The agent dynamics are described by: 
 𝑥̇𝑖 = 𝑓(𝑥𝑖, 𝑢𝑖), 𝑢𝑖 = 𝑓𝑃𝐼𝐷(𝑒𝑖, 𝜃𝑖)                                                     (19) 

where 𝑒𝑖  
The PID control law is: 

 𝑢𝑖(𝑡) = 𝐾𝑝𝑒𝑖(𝑡) + 𝐾𝑖 ∫ 𝑒𝑖(𝜏)𝑑𝜏
𝑇

0
+ 𝐾𝑑

𝑑𝑒𝑖(𝑡)

𝑑𝑡
                                (20) 

where 𝑒𝑖(𝑡) is the control error. 
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4.5. The barrier function 

The barrier function ensuring a minimum safe separation to avoid collisions: 
 ℎ(𝑥𝑖, 𝑥𝑗) ≤ 0, ∀(𝑖, 𝑗), 𝑖 ≠ 𝑗                                              (21) 

where 
 ℎ(𝑥𝑖, 𝑥𝑗) = ‖𝑝𝑖 − 𝑝𝑗‖

2
− (𝑟𝑖 + 𝑟𝑗 + 𝑑𝑠𝑎𝑓𝑒)

2
≥ 0                         (22) 

ri, rj are the safety radii of agents 𝑖 and 𝑗, and 𝑑safe is the minimum safe distance. 
Consensus conditions for PID parameters have lower priority than safety constraints to ensure 

problem feasibility: 
 𝜃̇𝑖 = −∑ 𝑎𝑖𝑗(𝜃𝑖 − 𝜃𝑗) + 𝜂𝑖𝛻𝜃𝑖𝐿𝑖(𝑥𝑖, 𝑢𝑖, 𝜃𝑖)

⬚
𝑗=1                                     (23) 

where 𝑎𝑖𝑗 are adjacency matrix elements of 𝐺, 𝜂𝑖>0 is the learning rate, and 
 𝐿𝑖(𝑥𝑖 , 𝑢𝑖, 𝜃𝑖) = ‖𝑒𝑖‖

2 + 𝜆𝑖‖𝑢𝑖‖
2 + 𝜇𝑖‖𝜃𝑖 − 𝜃~‖2                                   (24) 

i, i >0 are regularization coefficients. 

4.6. The safety conditions 

The safety conditions are based on the second-order derivative of the CBF: 
 ℎ̈(𝑥𝑖, 𝑥𝑗) + 𝐾𝑑ℎ̇(𝑥𝑖, 𝑥𝑗) + 𝐾𝑝ℎ(𝑥𝑖, 𝑥𝑗) ≥ 0                                      (25) 

where 
 ℎ̈(𝑥𝑖, 𝑥𝑗) = 2‖𝑣𝑖 − 𝑣𝑗‖

2
+ 2(𝑝𝑖 − 𝑝𝑗)

𝑇
(𝑢𝑖 − 𝑢𝑗)                              (26) 

Since the safety inequality is linear in 𝑢𝑖 and 𝑢𝑗, it can be solved as a quadratic programming 
problem to find safe control inputs. 

4.7. Summary 

Developing hybrid and specialized algorithms that guarantee safe agent motion is a complex 
interdisciplinary task involving control theory, optimization theory, formal verification methods, 
and swarm dynamics. This approach is key to achieving the ambitious goal of guaranteeing zero 
collisions in autonomous UAV swarms. 

5. Proposed Hybrid Architecture and Optimization Strategy for UAV 
Swarm Control 

The basis of proposed hybrid architecture is the structural diagram of a swarm oriented multi-
agent system for a multi-agent control. 

5.1. Structural Diagram of a Swarm Oriented Multi-Agent System 

Figure 1 illustrates a structural scheme for a multi-agent control and communication system using 
multi-
PID controllers and the data processing workflow. 

Sensor data, after preprocessing and formatting, is distributed through the agent network via a 
data exchange algorithm. Based on the sensor data, the collision risk estimation algorithm performs 
a quick safety assessment. 

Data received from other agents is used to check global trajectory compliance, build a short-
term motion prediction model, and update the group PID consensus algorithm. With it: 

other swarm agents. Low threat: PID parameters are synchronized with nearby agents using a 
swarm consensus algorithm. Medium threat: PID parameters are optimized using CBFs, local 
routing, trajectory prediction, and obstacle motion prediction algorithms. 
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Figure 2: A structural scheme for a multi-agent control and communication system using 

multi-level optimization 

5.2. Hybrid Architecture for Safe UAV Swarm Control 

The proposed control system operates on three levels: 
Global level  trajectory planning using MPC and Rapidly-exploring Random Tree Star (RRT*). 
Local level  collision avoidance based on CBFs and adaptive PID controllers. 
Emergency level  RL, specifically Q-learning, for critical maneuvers. 
The safety system classifies situations into four risk levels: Normal, Warning, Threat, and 

Critical. 
Main modules and algorithms: 

1. Trajectory prediction: Estimates future UAV positions over a 5-step horizon considering control 
actions and neighbor responses. 
Multi-level safety logic: Risk levels determined based on predicted minimum distances, ensuring 

early responses without false alarms. 
Adaptive PID tuning: 𝐾𝑝, 𝐾𝑖, 𝐾𝑑 dynamically change according to risk and past maneuver 

efficiency, preventing conflicts between trajectory tracking and collision avoidance. 
Cooperative maneuvering: Coordinated changes in altitude or direction based on priority (agent 

ID, threat detection time, etc.). 
Communication loss handling: In case of signal loss, the agent continues with avoidance 

maneuvers based on the last known neighbor data, preserving formation after reconnection. 
Boundary reaction: Instead of abrupt stopping, UAVs smoothly change direction while staying 

inside operational space, coordinating maneuvers with other agents. 
The proposed hybrid architecture enables a comprehensive multi-level optimization strategy for 

the safe movement of agent groups. 

5.3. Hybrid Strategy for Comprehensive Multi-Level Optimization of Safe 
Group Motion 

The strategy combines various optimization levels: 
Global planning  MPC and RRT* build trajectories considering speed constraints and obstacles. 
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Local optimization  CBF ensures safe distances, while PID provides stabilization and trajectory 
tracking. 

Emergency maneuvers  RL Q-table controls discrete actions in critical situations. 
Cooperative coordination  Control parameters are collectively tuned via consensus 

mechanisms to improve robustness and energy efficiency. 
The implemented technologies are summarized in Table 3 for a better understanding of the 

levels of comprehensive optimization for group safety. 
It is also necessary to determine which trajectory computation approach should be used. Both 

centralized and decentralized computation can be applied, so both are considered: 
Centralized  A single controller calculates all trajectories (using MAPF: Multi-Agent Path 

Finding) to coordinate movement. This is suitable for small swarms but lacks scalability. 
Decentralized  Each agent plans its motion using local data and partial information from 

neighbors. This approach provides scalability and fault tolerance but makes it harder to guarantee 
global route optimality. 

A compromise between centralized and decentralized approaches can be achieved through 
hierarchical coordination: 
Global planning sets goals and routes. 

Local agents adapt movement in real time according to threats. 
Subgroups of agents coordinate actions via elected leaders. 
 

Table 2 
Levels of comprehensive safety optimization for agent motion 

Component Method / Algorithm Purpose 

Barrier Functions (CBF) 
Quadratic Programming Formal collision 

avoidance 

Planning (MPC + RRT*) Linear model with horizon 
constraints 

Trajectory generation 

Physical Model Second-order equations 
(position + velocity) 

Realistic dynamics 

Safety Risk levels + RL Early response 

Optimization Gradient descent + swarm 
algorithm 

Parametric tuning 

The proposed hybrid architecture for safe UAV swarm control, combining global efficiency with 
local safety, is a promising direction for the development of secure swarms. Formal methods such 
as CBF will provide mathematical safety guarantees, while decentralization will ensure scalability 
and flexibility. 

Next steps involve empirical validation, extension to multi-scenario missions, and further 
reduction of energy consumption. The feasibility and rationality of the proposed approaches can be 
confirmed through swarm motion simulation and relevant numerical experiments. 

6. Numerical Experiments of the Multi-Level Agent Motion Control 
System and Comparison with Known Group Control Methods 

We now present numerical experiments for the multi-level agent motion control system and 
compare its performance with established algorithms and methods for group control. The study 

multi-level optimization of safe UAV motion was performed in a "swarm vs swarm" scenario. 
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6.1. Simulation objective 

Assess the efficiency of the combined multi-level optimization strategy for safe and coordinated 
drone movement in an environment with an opposing swarm. 

6.2. Simulation conditions 

Two swarms: Blue (friendly) and Red (hostile). 
Number of drones: 10 in each swarm. 
Simulation field: 100×100 units. 
Blue swarm objective: reach a gathering point in sector B, avoiding collisions, threats, and 

detection. 
 

Constraints: jamming zones, no-fly areas, dynamic obstacles. 
The structure of multilevel optimization is presented in Table 3. 
 
Table 3 
Optimization structure in the simulation 

Level Algorithm Task 

1. Strategic Genetic Algorithm 
Selection of overall swarm 

trajectory (route segments, target 
priorities) 

2. Tactical PSO 
Distribution of subgroups and 

individual drone paths within the 
chosen route 

3. Local A* + Avoidance Rules Real-time obstacle avoidance based 
on sensor data 

6.3. Evaluation metrics 

We used the following metrix: Average distance between drones (swarm cohesion); Number of 
collisions or entries into risk zones; Time to reach the target; Percentage of detected/intercepted 
drones; Energy consumption per agent. 

The multilevel optimization model, which integrates global strategic planning with local threat 
avoidance, demonstrates high efficiency in swarm-versus-swarm scenarios. This approach enables 
drones to achieve mission objectives with a higher probability while simultaneously reducing 
incidents and resource consumption. Thus, numerical experiments confirmed that the multi-level 
system achieves zero collisions in dense formations  a key indicator of its effectiveness. This is 
achieved through the integration of MPC, CBF, adaptive PID, and RL, which provide proactive 
prediction and formal safety guarantees. 

6.4. Comparison with known algorithms 

The analysis identified the limitations of existing group control algorithms (Table 4): 
PFM  prone to local minima, oscillations near obstacles, and no formal collision avoidance 

guarantees. Vicsek model  lacks explicit collision avoidance, unpredictable behavior due to noise. 
PSO  not a direct control algorithm, lacks collision avoidance mechanisms. Boids model  
reactive, susceptible to local optima, lacks explicit collision prediction. Unlike these, the proposed 
system provides formal safety guarantees through CBF and proactive collision avoidance, making it 
a superior choice for tasks such as "swarm vs swarm". For the simulations conducted in the Google 
Colab environment, the following algorithms were used: Hybrid CBF-PID algorithm (Control 
Barrier Function + PID)  a collision-avoidance algorithm that uses optimization constraints to 
guarantee the maintenance of a safe distance, achieved by combining an adaptive PID controller 
with barrier functions. Classical collision-avoidance algorithms: Boids, Vicsek, PFM, PSO; 
Algorithms without collision avoidance: Leader-Follower  one agent (leader) moves toward the 
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target, while the others (followers) attempt to follow; the algorithm lacks explicit collision-
avoidance mechanisms. Random-Walk  the simplest algorithm, in which agents move in random 
directions with speed adjusted to a fixed value. In the simulation, 1,000 agents with movement 
constraints were used, and 200 steps of the algorithmic suite were executed (Optimization structure 
in the simulation). 

 
Table 4 
Comparison of swarm control algorithms (1,000 agents, 200 steps) 

Algorithm Collisions Avg. Speed (m/s) Computation time per agent 
movement parameter (µs) 

CBF-PID 0 3.00 6900.95 

Boids 0 - 1.71 

Vicsek 0 - 1.67 

Potential Field 2605 - 10.68 

PSO 85 - 2261.90 

Leader-Follower 2203 - 1.64 

Random-Walk 1790 - 13.97 

 
The agents followed the following trajectory models: CBF-PID  swarm agents move along 

smooth parallel lines with guaranteed spacing. Boids  
random deviations but may create clusters. Vicsek  all agents move in the same average direction. 
Potential Field  generates curvilinear paths for agents. Leader-Follower  straight-line motion of 
the leader, with followers trailing behind. Simulation results show that the classical Boids and 
Vicsek algorithms with collision-control mechanisms can produce high-quality results using 
minimal computational power in the absence of mobile obstacles. However, they do not provide 
safeguards against agent collisions. CBF-PID requires significantly higher computational resources 
but guarantees zero collisions. 

7. Conclusions 

The implementation of safe, real-time autonomous big scale UAV swarm control is a critical 
challenge for practical deployment in complex environments. Abandoning standard Boids rules  
or significantly modifying them  and developing custom swarm control rules is a justified and 
potentially highly effective approach for achieving zero collisions while maintaining coordinated 
swarm motion. One scientific problem requiring resolution is the multi-agent modeling of 

 
This work addressed the problem of decentralized collective collision avoidance for a group of 

agents using predictive planning, adaptive control, and optimization methods with safety 
guarantees. For the first time, a hybrid control architecture for UAV swarms was proposed, based 
on comprehensive multi-level optimization that combines global trajectory planning and local 
collision avoidance with formal safety guarantees. The developed system integrates Model 
Predictive Control, Control Barrier Functions, adaptive consensus-based PID controllers, and 
Reinforcement Learning for emergency situations. The proposed approach ensures zero collisions 
for agent motion in a 3D dynamic environment through multi-level optimization and cooperative 
maneuvering. We propose a new collision avoidance strategy for swarms of agents that leverages 
control barrier functions in conjunction with a local adaptive consensus scheme for the dynamic 
adjustment of PID controller parameters. 
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In addition, algorithmic and software tools were developed to simulate UAV swarm motion of 
varying sizes with hybrid control systems. Computational experiments demonstrated zero 
collisions for tightly packed formations. The result is a comprehensive multi-level optimization 
system for safe group motion of agents, aimed at solving the collision problem during aggressive 
maneuvers in contested environments and during obstacle avoidance. 

Declaration on Generative AI 
During the preparation of this work, the authors used ChatGPT in order to grammar and spelling 
check. 
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