
76

Agent-Orchestrated Architecture for Distributed AI
Systems

Ihor Novoseltsev1,∗, , Mykola Korablyov2 , Iurii Iurchenko3 and Oleksandr Tkachuk2,

1 Independent Researcher, Carlsbad 92009, United States
2 Kharkiv National University of Radio Electronics, Kharkiv 61166, Ukraine
3 Independent Researcher, Salt Lake City 84103, United States

Abstract
In modern AI systems, agents play a key role in making workflows flexible and adaptive, and their
importance continues to grow. Agents are small components that perform focused tasks and exchange
results through clear rules, which makes them useful for building reliable adaptive systems. This paper
introduces an agent-orchestrated architecture for adaptive AI systems. It consists of an orchestrator and
domain agents working together. The orchestrator maintains a small plan with guarded steps, applies clear
rules when inputs are missing or confidence is low, and records a per-case thread for audit. Domain agents
(models, tools, services) plug in behind stable contracts and handle specialized tasks. As a practical
implementation, the architecture is demonstrated through a Melanoma Diagnostic Workflow: one agent
gathers structured answers through focused questions and another provides a risk score from images. The
orchestrator combines both signals and applies two thresholds on the score to determine the next action -
reassure with a reminder, request one or two follow-ups or a clearer photo, or recommend an in-person
exam - while logging every decision. The workflow is practical, auditable, and adjustable to local practice
without adding complexity. The proposed architecture is applicable to domains where uncertainty and
partial information are common, providing a structured way to keep systems safe, explainable, and
adaptable. Beyond the medical domain, the approach generalizes to incident response, financial monitoring,
and customer support, where adaptability is critical. The contribution lies in combining orchestration,
reasoning, and observability as first-class design elements, offering a reproducible framework for building
safer and regulation-ready AI systems.

Keywords
Adaptive AI systems, agent-based architecture, agents, decision rules, guarded plan, orchestrator,
uncertainty handling1

1. Introduction

In modern AI systems, pipelines are critical - they do the real work of moving data through models,
checking results, triggering the next step, and connecting to users. An AI pipeline is the path from
input to decision: data is collected, cleaned, passed through a model, the results are post-processed,
a decision is made, and the user is notified. In many organizations this pipeline is fixed. When inputs
are missing, tools break, or the model is unsure, the pipeline does not adapt by itself - it usually needs
a person to change it.

Pipelines matter because they are where AI meets the real world. Every alert, report, or action a
user sees comes from a pipeline that chains models, tools, and services together. If this chain cannot
adapt to uncertainty or failure, the end result is slower, less reliable, and harder to trust. These
limitations become evident when considering tasks where uncertainty is intrinsic. Data may be noisy

Information Technology and Implementation (IT&I-2025), November 20-21, 2025, Kyiv, Ukraine

Corresponding author.
These authors contributed equally.

 i.v.novoseltsev@gmail.com (I. Novoseltsev); mykola.korablyov@nure.ua (M. Korablyov); 4iurchenko@gmail.com
(I. Iurchenko); oleksandr.tkachuk@nure.ua (O. Tkachuk)

 0009-0004-7353-7498 (I. Novoseltsev); 0009-0005-2540-7741 (M. Korablyov); 0009-0008-8708-9437 (I. Iurchenko); 0009-
0006-2943-9887 (O. Tkachuk)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

published 2026-02-07

mailto:i.v.novoseltsev@gmail.com
mailto:4iurchenko@gmail.com
mailto:oleksandr.tkachuk@nure.
https://orcid.org/0009-0004-7353-7498
https://orcid.org/0009-0005-2540-7741
https://orcid.org/0009-0008-8708-9437
https://orcid.org/0009-0006-2943-9887
https://orcid.org/0009-0006-2943-9887

77

or partially missing, intermediate steps may return errors, or model confidence may vary across
cases. Fixed pipelines are unable to interpret these signals or change their execution strategy in
response. As a result, outcomes become fragile, and the overall system fails to deliver reliability under
real-world conditions.

Most AI systems today are model-centric. They are built around a single prediction step and
assume clean inputs and reliable services. Real problems are different: they are multi-step, inputs can
be missing or out of order, tools can fail, model confidence can vary, and a human may need to step
in. A fixed pipeline cannot reason about these conditions or change the plan while it is running. A
lack of adaptability limits the application of AI systems in environments where reliability must be
demonstrated rather than assumed. In such settings, pipelines must not only deliver predictions but
also make their decision process transparent, particularly when inputs are uncertain or tools fail. To
be reliable in practice, such systems need mechanisms that detect uncertainty, apply corrective
actions, and make each adjustment understandable to reviewers.

This paper proposes a plan-first, reasoning-driven design that places the orchestrator at the center
instead of any single model. The orchestrator manages three things:

• a plan that describes the task as a small graph with branches and guards (rules that decide
the next step),

• reasoning rules that react to uncertainty and failures (for example, timeouts, low confidence,
or a tool outage), and

• a thread state that tracks each case from start to finish.

Domain components - models, tools, services, user interfaces (UI) - connect to the orchestrator
through a registry with simple contracts. This makes the system easier to adapt, explain, and
maintain.

The main contribution of this work is an architectural framework that makes adaptability and
observability central to AI pipeline design. By separating planning, reasoning, and case-level state
into explicit components, the framework enables systems to react consistently to uncertainty while
recording the decision process in a reproducible form. This design provides both flexibility and
transparency, ensuring that outcomes can be explained and validated. The architecture is
demonstrated on a Melanoma Diagnostic Workflow, but its design is domain-agnostic and applicable
wherever reliability under uncertainty is required.

2. Related work

This work sits at the intersection of agent frameworks, workflow/orchestration, runtime control, and
observability. Early reason-and-act agents demonstrated that interleaving explicit reasoning with
tool use can improve task success while making intermediate decisions observable. By exposing
thoughts as structured steps and binding them to concrete tool calls, these systems produced clearer
action traces and more reliable exception handling.

planning from execution, links reasoning steps to capability-specific tools, and preserves a
transparent record of how each outcome was reached.

ReAct (Reason + Act) exemplifies this direction, showing how language models can interleave
reasoning traces with task-specific actions, exposing intermediate decisions while interacting with
external tools or environments [1].

AutoGen provides an open-source framework for building LLM applications through multi-agent
conversation. Agents are customizable, conversable, and can operate in modes that combine
language models, tools, and human input. Interaction behaviors and conversation patterns can be
flexibly defined in either natural language or code. This framework exemplifies an orchestrator-and-

78

registry pattern, where roles and capabilities are explicitly configured to enable collaboration across
agents [2].

Adaptive execution has deep roots in autonomic computing. The early autonomic computing
manifesto described systems that could manage themselves when given high-level goals, reducing
complexity through self-monitoring and self-adjustment [3]. The MAPE-K (Monitor Analyze Plan
Execute over shared Knowledge) loop expresses this idea as a control pattern: monitor runtime
signals, analyze conditions, plan adaptations, and execute responses. Recent work applies MAPE-K
loops to adaptive workflow management in environments such as smart factories, using event
processing and automated planning to recover from failures in near real time [4]. The architecture
here follows this pattern to trigger retries, re-bindings, and escalations. Formal workflow notations
such as BPMN (Business Process Model and Notation) represent processes as directed graphs with
conditional branches and guards; this aligns naturally with the plan representation (task graph +
conditions) [5, 6]. In BPMN, task nodes correspond to capability invocations, gateways encode
conditional routing that matches guarded edges, and boundary events capture exceptions analogous
to runtime signals. This correspondence preserves execution semantics - branching, escalation, and
termination - and supports auditability by making control flow explicit.

Surveys of fault-tolerant cloud workflows describe common recovery strategies such as retry,
checkpoint/restart, task migration, and multi-version execution [7]. The re-planning loop applies the
same ideas to AI toolchains, turning runtime signals like low confidence, timeouts, or tool failures
into policy-driven responses. Complementary surveys on Human-in-the-Loop (HITL) methods
examine where and how human expertise should be integrated into machine learning workflows,
highlighting conditions such as low confidence, model disagreement, or conflicting signals as
triggers for review [8, 9]. These studies not only classify technical approaches - from data preparation
and interventional training to deployment patterns - but also emphasize design trade-offs such as
cost, latency, and reliability when involving humans. This guidance supports the use of explicit
escalation branches and audit trails in adaptive architectures, where automated policies handle
routine cases but defer uncertain outcomes to human oversight.

Observability has also become a focus of recent research. Studies of deep learning microservices
emphasize that traditional monitoring is insufficient, and propose structured telemetry for proactive
detection, root cause analysis, and reproducible traces [10]. Work on production ML pipelines
likewise argues for dedicated observability layers that provide end-to-end visibility for anomaly

append-only logs and structured traces to ensure that re-planning decisions remain transparent and
reviewable.

In addition to these technical foundations, application-specific surveys highlight the importance
of adaptive and transparent systems in practice, particularly for melanoma detection. AI in
dermatology has been extensively reviewed in recent literature. Behara et al. (2024) provide a
comprehensive analysis of 95 studies on AI applications in skin cancer detection, highlighting how
convolutional networks, SVMs, and ensemble methods improve diagnostic accuracy, efficiency, and
accessibility while identifying persistent challenges such as data privacy, integration into clinical
workflows, and the need for larger, more diverse datasets [12]. Liu et al. (2025) focus more narrowly
on early melanoma detection, surveying advanced computer vision and deep learning architectures
such as YOLO, GANs, Mask R-CNN, ResNet, and DenseNet, and emphasizing the role of benchmark
datasets like PH2, ISIC, DERMQUEST, and MED-NODE in enabling robust model development; they
also call for better integration of multimodal data and enhanced interpretability to support clinical
adoption [13]. Complementing these performance-oriented reviews, Smith et al. (2023) examine
explainable AI approaches in dermatology, surveying saliency mapping, attention visualization, and
concept-based techniques, and concluding that consistent, human-centered interpretability remains
essential for clinician trust and regulatory acceptance [14]. Together, these surveys show both the
rapid progress and the continuing limitations of AI-based melanoma detection, motivating

79

architectures that address not only model accuracy but also transparency, auditability, and safe
escalation under uncertainty.

Taken together, existing approaches remain fragmented. Agent frameworks emphasize reasoning
and tool use, but they typically stop at generating or sequencing actions and do not provide explicit
models for handling failures, uncertainty, or recovery. Workflow engines describe tasks as directed
graphs with branches, which works well under the assumption of reliable execution, but these
systems often lack the ability to adapt when inputs are missing, tools fail, or conditions change at
runtime. Observability systems provide detailed traces, metrics, and logs that are valuable for
debugging and compliance, yet they remain passive - they do not influence the execution flow or
drive corrective action. Because each category addresses only part of the problem, none alone offers
a mechanism for adapting execution while keeping decision paths transparent. The architecture
proposed in this paper addresses this gap by integrating planning, re-planning, and observability
into a single design that can operate reliably under uncertainty.

3. Reference architecture

This section describes a reusable architecture centered on an orchestrator. It runs the plan, applies
policies when conditions change, and keeps a trace of every decision so results are auditable and
safe. The overall flow is shown in Figure 1.

The system follows a simple chain. The operator is a person or an upstream system that starts a
case. The orchestrator sits at the center and owns the plan (a small graph of steps with guards), the
reasoning rules (policies for uncertainty and failures), and the thread state (everything about this
case from start to finish). Agents are the domain parts - models, tools, and services - that do the work.
The UI shows status, decisions, and the audit trail to humans (Fig. 1).

Figure 1: System overview.

Each case runs inside a thread that stores inputs, intermediate results, decisions, timestamps, and
links to artifacts. The plan is modeled as a guarded directed acyclic graph (DAG) 𝐺 = (𝑉, 𝐸), where
each vertex v ∈ V declares a capability contract (inputs, outputs, error codes) and each outgoing edge
e = (v → u) carries a guard γe(s, q, r, σ) ∈ {0,1}. Contracts make tools interchangeable without
changing domain logic; guards specify when to move to the next step. In the melanoma workflow,
the base plan has three vertices: QA → ICA → Decision. Additional edges encode safe fallbacks (e.g.,
from ICA back to QA for a retake) but the plan remains small and acyclic under a bounded number
of loops (controlled by retry/rebind caps).

At runtime, each vertex emits a compact state (s, q, r, σ): classifier score s ∈ [0,1], model
confidence q ∈ [0,1], red-flag count r ∈ 𝑁, and a binary signal vector σ (timeout, internal_error,
photo_quality_fail, answer_conflict, missing_answers). Guards read only this tuple, which keeps
decisions transparent and auditable. Every step appends a thread event

80

(,   ,  s,  q,  r,  σ,  at,  ) to an append-only case thread. This supports audit,
debugging, and exact replay (given model versions).

Composed policy and state update. We use a bounded action set 𝒜 =

{ ,   ,   ,   ,   } . Guards (evaluated in a fixed priority)
determine the eligible actions at step t:

𝒜𝓉⋆ = EligibleActions(𝑠𝑡, 𝑞𝑡 , 𝑟𝑡, σ𝑡)  ⊆  𝒜. (1)
A learned selector π(a | st, qt, rt, σt; θ) scores actions; the composed policy chooses the top valid

action:

𝑎𝑡 = 𝑃(𝑠𝑡 , 𝑞𝑡, 𝑟𝑡 , 𝜎𝑡; 𝜃) = 𝑎𝑟𝑔 max
𝑎∈𝒜𝓉

⋆
 𝜋(𝑎 | 𝑠𝑡 , 𝑞𝑡, 𝑟𝑡 , 𝜎𝑡; 𝜃). (2)

The thread state then updates via a deterministic function f that appends the event and returns
the new state:

𝑠𝑡+1 = 𝑓(𝑠𝑡 ,  𝑣𝑡 ,  𝑦𝑡 ,  𝑞𝑡,  𝜎𝑡 ,  𝑎𝑡) (3)
where 𝑠𝑡 ∈ S is the current thread state; 𝑣𝑡 ∈ V is the current step; 𝑦𝑡 is the tool output at 𝑣𝑡 , 𝑞𝑡

∈ [0,1] is the model confidence (quality signal); σ𝑡 ∈ {0,1}𝑑 is the runtime signal vector (e.g. timeout,
internal_error, photo_quality_fail, answer_conflict, missing_answers), 𝑎𝑡 ∈ 𝒜 is the chosen action
(from the composed policy); and 𝑓(⋅) is the deterministic function that appends the event and returns
the new state 𝑠𝑡+1.

Next, the choice of the following step is made by checking guards on outgoing edges using the
updated state and signals:

𝑣𝑡+1 ∈ { 𝑣 | (𝑣𝑡 → 𝑣) ∈ 𝐸, 𝛾(𝑣𝑡→𝑣)(𝑠𝑡+1,  𝜎𝑡+1) = 1 } , (4)
where each edge 𝑒 = (u → 𝑣) ∈ 𝐸 has a binary guard 𝛾e: 𝑆 × {0,1}𝑑 → {0,1} that checks

𝜎𝑡+1 is the
next signal vector derived/observed after the update.

This abstraction makes it possible to reason about execution independently of the underlying
domain. For example, in healthcare the vertices may represent imaging, scoring, and escalation steps,
while in finance the same structure could encode transaction checks, risk scoring, and escalation to
manual review. The use of a guarded DAG provides a common template that can be specialized
without altering the core orchestration logic.

The execution loop consists of running the current step, updating the state by (3), and selecting
the next step by evaluating guards in (4). The plan is a guarded DAG with a Start node and two
terminals (Decision, Abort), and each case is tracked in an append-only thread. The following
properties hold for plans executed according to (3)-(4):

1. Coverage. Every nonterminal node has at least one satisfiable outgoing guard, preventing
unintended dead ends.

2. Deterministic next step. For a given updated state and signals, at most one outgoing edge is
enabled; when multiple are true, a fixed priority orders them, making 𝑣𝑡+1 unique.

3. Bounded adaptation and termination. Policy limits on retries, backoff, and escalation depth
guarantee that execution either reaches Decision or takes the safe Abort edge when no guard
remains enabled.

4. Replayability. The thread is append-only: reapplying (3)-(4) to the recorded events
reconstructs the same path through the plan.

5. Justified actions. Each adaptation (retry, rebind, downgrade, request input, escalate) is
executed only when its guard predicate holds, and we log the triggering signals.

81

6. Stable tie-breaking. The priority over outgoing edges is fixed and versioned with the plan, so
identical inputs yield identical choices across runs.

7. Plan versioning. Plans are versioned, and the thread records the exact plan revision used for
each step, ensuring that results can be attributed to a specific specification.

8. Safety invariant. If no enabled edge satisfies the policy, the Abort edge is enabled by
construction, ensuring a defined and auditable termination path.

Unlike a fixed sequence of hard-coded business rules, the architecture's reliance on runtime
signals σ𝑡, the composed policy P(⋅) (guards + learned selector), and guarded transitions γe ensures
that the execution path is dynamically adjusted based on observed conditions, not static assumptions.

These constraints ensure predictable, transparent execution with a guaranteed safe termination
path and full reproducibility by plan/version and runtime signals. Tools connect through a capability
registry. A capability states what is needed (for example,
a tool states how it will do it. Each tool declares a simple contract: required inputs, outputs, latency
targets, error codes, and a quality signal. At runtime the orchestrator asks the registry for a tool that
matches the requested capability. If a tool fails or violates a budget, the orchestrator can re-bind to
another tool with the same contract. This hides heterogeneity, keeps the plan stable, and makes
swaps safe.

This registry pattern also simplifies extensibility. A new model or service can be added by
publishing its contract, after which the orchestrator can immediately use it in place of existing tools.
In practice, this allows domains to evolve without redesigning the entire pipeline, since capabilities
remain stable even as underlying implementations change.

A Scheduler runs steps in order and starts parallel branches when the plan allows it. It respects

fails, it applies retry and backoff rules from the policy. Each attempt emits an event with timing and
outcome, enabling precise reconstruction of what occurred.

Observability is a core feature. Every step records traces, metrics, and logs to support debugging
and post-hoc verification. Traces show the path through the plan (one span per step). Metrics track
latency, success rate, re-binding rate, escalation rate, and p95 decision latency. Logs capture
structured events: inputs (hashed or redacted), outputs (summaries), and policy choices (for example,

-only to support audit and replay.
This design choice is especially important for compliance and reproducibility. Because traces and

logs are recorded uniformly across domains, the same infrastructure can be used to demonstrate
regulatory compliance in healthcare, provide reproducibility in scientific applications, or support
accountability in financial systems.

Some branches require a human decision. The UI explains why execution paused (for example,

input. Their choice becomes an event in the audit trail, and the plan continues from there. The UI
also shows the current step, the confidence, and a short explanation of what the system did and why.

Data and actions are protected by default. Each input and output carries a sensitivity label (for
example, public, internal, restricted). Tools run with least privilege using scoped credentials, and
plans can mark certain steps as human-required so a person must approve before the system
continues. Escalations and overrides are always written to an immutable record, allowing later
review of who acted, when, and why.

These protections sit within a set of core components. The plan is a directed acyclic graph with
guarded transitions. Reasoning is a set of explicit decision rules over runtime signals. The thread
holds the persistent state of one execution. The capability registry provides typed interfaces so tools
can be safely swapped. Observability ensures a reproducible trace of the full decision process.

Altogether, the architecture separates domain-specific computation (agents) from domain-
independent orchestration (the plan, reasoning, and registry). This separation provides adaptability

82

without loss of transparency and ensures that the same architectural pattern can be applied across
diverse application areas.

4. Adaptive execution and re-planning

At each step, guards (in a fixed priority) decide which actions are eligible from a small set (retry,
rebind, downgrade, request-input, escalate). A learned selector picks the top valid action;
retry/rebind caps and fixed priorities guarantee termination and exact replay (with versions logged).
This keeps a simple deterministic scaffold around the learned choice, preventing rule explosion while
preserving auditability.

Operational workloads exhibit variability, uncertainty, and occasional failures. Inputs may be
incomplete, tools can return errors, model confidence may be low, and decisions must respect latency
budgets. The orchestrator treats these as runtime signals and adapts at runtime: it retries, rebinds to
another tool, downgrades capability, requests additional input, or escalates to a human, then
continues the plan. We use a learned selector inside a deterministic scaffold: guards are evaluated in
a fixed priority to gate which actions are eligible; the selector scores the eligible actions and we apply
the top valid one; retry/rebind caps and capability contracts ensure termination, exact replay given
the model version, and safe tool swaps without changing business logic. This ability to dynamically
change the execution path separates the orchestrator from traditional, fixed-logic pipelines: unlike
systems where failure logic is hardcoded, the proposed architecture separates domain logic (agents)
from failure handling (reasoning rules), enabling adaptation through explicit, logged policy decisions
over runtime signals and guarded transitions. Even with a small toolset, the combinations of failures,
quality flags, and latency constraints grow quickly; the learned selector captures these interactions
without rule explosion, while the guard/cap scaffold keeps behavior bounded and auditable.

After each step in the plan, the orchestrator looks at the current case state and the signals
produced by tools - confidence values, time budgets, error codes, input-quality flags, and, when
relevant, disagreement between models. These runtime signals are checked by explicit guards. If a
guard indicates trouble (for example, confidence below a threshold, a timeout, a missing image, or a
tool failure), the system adapts rather than stopping.

Adaptation uses a small, fixed set of responses. The policy selects one action based on the signals:
retry the same tool (usually with backoff), re-bind to another tool that satisfies the same capability
contract, downgrade to a simpler but more robust capability, request additional input from the user
or upstream system, or escalate to a human for review. The chosen action is applied, the case state
is updated, and execution continues along the plan from the appropriate branch. Because the guards
and the policy are written as simple rules, they are easy to read, revise, and audit.

The execution pattern is a compact loop that repeats for every step -
- as shown in Figure 2. This loop is the same across domains because

plans, policies, and capabilities are declared explicitly and kept separate from domain tools. Figure 2

The execution loop can be viewed as a domain-independent execution template. In healthcare, it

may involve image analysis, structured questioning, and escalation to a clinician; in finance, it could
run transaction checks, apply fraud scoring, and escalate to a human reviewer. The pattern remains
constant even as the underlying tasks differ, because adaptation decisions are driven by runtime
signals and policies, not by the tools themselves.

When escalation is required, it is handled as a normal branch. The user interface explains why
execution paused (for example, low confidence or model disagreement), shows the relevant evidence,
and records the human decision. That decision becomes a structured event in the audit trail, and the
plan resumes from the next step indicated by the guards.

Traceability is built in. Each adaptation writes a structured log entry with the step and tool
identifiers, input/output digests, the quality/confidence signals, the selected action, and timing.

83

Traces preserve the path through the plan, and metrics summarize latency, success rate, re-binding
rate, and escalation rate. Because records are append-only, a case can be replayed to justify each
decision. This not only enables debugging but also supports regulatory compliance and
reproducibility in applied domains.

Figure 2: Adaptive execution loop.

A simple reliability model helps set sensible retry limits. If a tool succeeds with probability p per
attempt and up to N attempts are allowed, the probability of finishing within those attempts and the
expected number of attempts are:

𝑃succ(𝑁) = 1 − (1 − 𝑝)𝑁 (5)

𝐸[attempts] = ∑ 𝑘

𝑁

𝑘=1

 𝑝(1 − 𝑝)𝑘−1 + 𝑁(1 − 𝑝)𝑁 ,
(6)

where p is the per-attempt success probability and N is the maximum number of attempts (initial try
plus retries). These expressions make the latency reliability trade-off explicit and help choose policy
parameters; the Select response node in Figure 2 is where these parameters determine whether to
retry, switch tools, request input, or escalate.

For example, if a tool has an 80% chance of success on each attempt (𝑝 = 0.8) and the system
allows three tries (𝑁 = 3), the probability of eventual success is 99.2%, while the expected number of
attempts is only 1.25. This shows that modest retry policies can dramatically improve reliability
without adding unacceptable delay. Such calculations help balance responsiveness and robustness in
real deployments.

Altogether, adaptive execution transforms a brittle pipeline into a resilient process. By monitoring
runtime signals, applying explicit rules, and recording every adjustment, the orchestrator ensures
that workflows remain reliable under uncertainty while maintaining a transparent record of how
each outcome was reached.

84

5. Application example: melanoma diagnostic workflow

- someone

and descriptions vague, so the agent-based approach focuses on clarity: one agent asks only the most
useful follow-ups to firm up the basics, another evaluates the images, and the orchestrator combines
both signals to choose a safe next step - reassure and set a reminder, request a better photo or one
or two targeted answers, or route the person to a clinician - with every action traceable.

This workflow maps the general architecture to a simple first-line assessment loop. The
Questionnaire Agent (QA) asks a short, focused set of questions and turns answers into a compact
feature vector. The Image Classification Agent (ICA) runs a neural image classifier on one or more
photos and returns a malignancy score with confidence; and the orchestrator combines both signals
under clear guards -
policy favors a small clarification over a low-confidence label, and every action (prompt, score, guard,
decision) is appended to the case thread for audit and clinician review.

The process starts by asking a few focused questions with the QA (e.g., recent change in size/color,
bleeding, itch/pain, asymmetry, border irregularity, multiple colors, diameter increase, intense sun
exposure, family history). Answers are encoded as a small vector 𝑥  ∈  {0,1,2}𝑘 (0 = no, 1 = unsure,
2 = yes). For a designated red-flag index set 𝑅 (e.g., bleeding, rapid growth), we compute the red-flag
count r = ∑ 1 {xii∈R = 2} and set QA signal flags for σ[] and σ[]
(one short clarification is issued if a conflict is detected).

Then the ICA analyzes one or more photos, standardizes resolution/aspect, and returns a risk
score s ∈ [0,1] and model confidence q ∈ [0,1] per image. A lightweight photo-quality vector ϕ
(blur, glare, exposure, framing) is computed per image; an image is valid if all quality checks pass.
For safety we aggregate across valid images by s = 𝑚𝑎𝑥𝑗 sj and q = 𝑚𝑎𝑥𝑗 qj; if none are valid,
σ[]
recommendation.

The orchestrator combines both signals and applies simple thresholds: low risk (reassure and set
a reminder), borderline (ask one or two follow-ups or request a clearer photo), or high risk
(recommend an in-person exam). When uncertain, the system prefers a brief clarification instead of
producing a low-confidence label.

For observability and replay, the thread logs (module + version, s, q, r, per-image quality flags,
signal vector σ including σ[], 𝜎[], 𝜎[], 𝜎[],
𝜎[], image count, and latency), along with the selected action. These signals drive
the guards: low risk → reassure; borderline or any red flag → request input (clarify/retake); high risk
or multiple red flags → escalate.

The whole flow repeats as a small loop: ask or clarify (QA), analyze photos (ICA), combine signals,
then choose the next step - reassure, ask a bit more, request a clearer photo, or escalate; if the result
is still unclear, the loop runs once more with a minimal follow-up (see Fig. 3).

This example illustrates how the abstract orchestration model described earlier is specialized for
a real medical use case. The QA and ICA are domain-specific tools, but their integration follows the
same rules of planning, monitoring, and adaptation as in other domains. This shows how the
framework preserves generality while supporting safety-critical workflows.

The image classifier produces a continuous risk score between 0 and 1. To turn this score into
₁) and answers

look low-risk, the system gives routine advice and a reminder to recheck later. If the score is between
₁ ₂), or an answer raises concern, it asks one or two targeted follow-ups

₂, or several answers are worrying, it recommends
an in-pe ₁ aims for
high recall (catching as many true melanomas as possible, even if it means more follow- ₂

85

marks scores that are clearly high and should not wait. Clinics can adjust these values later to match
local practice.

Figure 3: Melanoma screening plan.

The threshold design highlights the balance between sensitivity and usability. A lower value for
₁ reduces the chance of missed cases but increases the number of follow-ups, while a higher value

₂ lowers unnecessary escalations but risks overlooking cases that may require attention. Making
these thresholds configurable ensures that the workflow can adapt to different practices and adjust
the trade-off between recall and efficiency.

To keep the system safe and practical, basic quality checks and clear fallbacks are applied. If a

with simple tips (distance, focus, lighting) instead of g
-up to resolve it. Thresholds are

deployment settings and are tuned with clinician input to favor sensitivity. Table 1 summarizes these
guard rules - photo quality checks, score ranges with two thresholds, and red-flag answers - and the
matching actions (retake, ask one or two follow-ups, reassure with a reminder, or recommend an in-
person exam).

The image classifier gives a risk score between 0 and 1. Two thresholds are applied to turn this
₁) aims for high recall so the system

catches as many true melanomas as possible, even if it asks for more follow-ups. The upper threshold
₂) marks cases that are clearly high risk and should be reviewed by a clinician.

Data handling follows simple rules. The app stores only what is needed for the case: the answers,
the image score with confidence, and the final action, plus the most recent photos if the user agrees.
Identifiers are kept separate from clinical content, and sensitive fields can be hashed or redacted in
the audit log. Every step - questions asked, scores returned, thresholds crossed, and the reason for
the final action - is written to an append-only case thread so a clinician can review exactly how the
decision was made.

For the melanoma example, the ISIC 2016 dermoscopic image challenge dataset is used. The
official release has 900 training images and 379 test images with expert labels (benign vs. malignant).
To keep the focus on orchestration behavior rather than clinical claims, a separate 1,000-image
internal split is formed from the training pool (patient-disjoint, stratified by class). The two action

₁ ₂) are selected on a validation subset and frozen before applying to this 1,000-image
set.

This case shows how the policy makes decisions - ask for more info at low confidence, escalate
at high risk, and re-bind if a tool fails - in a realistic workflow. Reported numbers focus on: ROC-

₁ (share of melanomas correctly flagged at the lower
threshold), PPV (positive predictive value - also called precision - ₂ share

86

Table 1
Guard rules and actions for the melanoma workflow.

₁ ₂
(change threshold).

Condition Guard System action Notes

Photo quality poor
(blur, glare, crop, too

dark)
quality == fail

Ask for retake with
tips (distance, focus,
lighting).

ICA returns uncertain
instead of guessing.

Image score clearly
low red flags

Reassure; set reminder
to recheck later. sensitivity.

Image score
borderline

Ask 1 2 targeted
follow-ups or request a
clearer photo.

Prefer a small
clarification over a low-
confidence label.

Any QA red flag
present (e.g., bleeding,

rapid change)

Ask 1 2 targeted
follow-ups; consider
teledermatology
consult.

QA highlights which
flag triggered this.

Multiple QA red flags Recommend in-person
dermatology visit.

Escalate even if image
score is mid-range.

High image score Recommend in-person
dermatology visit. input.

Conflicting answers
Ask one short
clarifying question.

Log the conflict and the
resolution.

Low model confidence
(even with acceptable

photo)
confidence < c_min

Ask for one improved
photo; then re-
evaluate.

Avoids over-confident
errors.

Still borderline after
follow-ups info

Offer teledermatology
consult or in-person
visit.

Avoids looping too
long.

Multi-visit change
detected

Prioritize review;
suggest clinician
follow-up.

Uses simple
longitudinal cues when
available.

Table 2 aggregates the decision-level outcomes of the workflow brings the results together and

shows how the policy shifts decisions on the 1,000-image set.
This approach shows how adaptive execution can remain transparent and reviewable even in

sensitive domains. By combining structured questions, image-based scoring, and explicit guard rules,
the melanoma workflow demonstrates how the proposed architecture can be applied in practice
while maintaining clarity and accountability in decision making.

87

Table 2
Metrics for the melanoma example.

System ROC-AUC ₁) PPV ₂) Ask more (%) Escalate (%)

Image-only (no
questionnaire)

0.89 0.92 0.48 17%

₁ ₂
+ Q&A)

0.91 0.95 0.56 25% 11%

6. Conclusion

This paper presented an orchestrator-centered architecture for adaptive AI pipelines designed to
remain transparent and reliable when conditions are uncertain. The design separates three elements:
a plan represented as a guarded DAG, explicit reasoning policies over runtime signals, and a per-
case thread state. With this separation, the system can retry, re-bind, downgrade, request input, or
escalate without manual rewiring. A capability registry makes tools swappable behind stable
contracts, while observability through traces, metrics, and logs ensures that every action is
reproducible and reviewable. These features turn a rigid pipeline into a process that can adapt while
keeping a clear record of how each decision was made.

The melanoma screening workflow illustrates how this framework can be applied in practice.
Agents focused on structured questioning and image classification were combined under clear guard
rules to guide follow-ups and safe escalation. Every question, score, and action was written into a
case thread, showing how adaptive execution can remain auditable even in sensitive medical settings.
Although demonstrated in healthcare, the same pattern extends to other domains where safety,
latency, and accountability matter. Financial systems, scientific analysis pipelines, and safety-critical
industrial operations all face similar challenges with uncertain inputs, variable tool quality, and the
need for clear audit trails, which fixed, non-adaptive business rules cannot reliably address.

Future work includes extending the framework to multi-agent environments, where multiple
specialized agents interact within a unified orchestration. Policies for retries, fallbacks, and escalation
can be refined with learning-based controllers that optimize both latency and reliability. Further
evaluation under regulatory standards will also be important, as domains such as healthcare and
finance increasingly require systems that are not only effective but also verifiable and compliant.
Together, these directions point toward adaptive AI pipelines that are technically robust and
practically trustworthy across a wide range of applications.

Declaration on Generative AI
During the preparation of this work, the authors used Grammarly to check grammar and spelling,
paraphrase and reformulate. After using this tool/service, the authors checked and edited the content
as needed and take full responsibility for the content of the publication.

References

[1]

https://arxiv.org/abs/2210.03629. arXiv
[2] -gen LLM applications via multi-

88

[3]
50 (2003). doi:10.1109/MC.2003.1160055.

[4] -K control loops for adaptive
Information Systems 61, 607

636 (2023). doi:10.1007/s10844-022-00766-w.
[5]

process and simulation: A metamodel- -
PapersOnLine 56(2), 12171 12178 (2023). doi:10.1016/j.ifacol.2023.10.601.

[6] -based corporate

Management Journal 29(8), 1 24 (2023). doi:10.1108/BPMJ-08-2022-0362.
[7] -tolerance methods in the

(2021). doi:10.1016/j.cosrev.2021.100398.
[8] -in-the-loop for machine

381 (2022).
doi:10.1016/j.future.2022.05.014.

[9] -
in-the-

[10]

https://www.researchgate.net/publication/392595147.
[11]

3092 (2021).
doi:10.48550/arXiv.2108.13557.

[12]
-cs.2530. (Corrects earlier

mis-attribution to J. Pers. Med.) PubMed
[13] -facilitated early

[14]

Journal of Medical Imaging 10, 045501 (2023). doi:10.1016/j.ejca.2022.02.025.

	1. Introduction
	2. Related work
	3. Reference architecture
	4. Adaptive execution and re-planning
	5. Application example: melanoma diagnostic workflow
	6. Conclusion
	Declaration on Generative AI
	References

