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Abstract 
This paper investigates a hybrid deep learning model for detecting deception in healthcare audio data, 
addressing medical information falsification within insurance-based systems. A comprehensive approach 
transforms acoustic signals from patient-provider communications into structured representations suitable 
for linguistic analysis. The research proposes an integrated framework combining convolutional neural 
networks with bidirectional LSTM networks enhanced with attention mechanisms. The methodology 
includes multi-stage audio-to-text transformation with lexical analysis, statistical feature extraction, and a 
modified Apriori algorithm for identifying suspicious linguistic patterns. The hybrid RCNN architecture is 
evaluated against baseline methodologies including RNN, CNN, and Naive Bayes classifiers on medical 
audio datasets comprising doctor-patient communications and daily health checks. Results demonstrate 
97% classification accuracy while maintaining computational efficiency, substantially outperforming 
alternative architectures. The hybrid approach exhibits superior discrimination by integrating local feature 
extraction with temporal sequence analysis, capturing both linguistic anomalies and contextual 
inconsistencies in manipulation attempts. Cross-dataset analysis reveals consistent performance across 
communication types with accuracy variation below 0.04. The findings demonstrate promising 
implementation prospects for smart healthcare monitoring systems where fraud detection is critical, 
particularly in resource-constrained environments. The study contributes to understanding hybrid neural 
architectures for deception detection and highlights research directions for enhancing operational 
capabilities in healthcare fraud prevention systems. 
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1. Introduction 

Modern healthcare monitoring tools include information recording systems between patients and 
medical personnel, particularly during consultations with doctors, aimed at preserving patient 
treatment history, improving the quality of medical service delivery, and simplifying documentation 
management. Given the social orientation of the sector, arises a problem of falsification of patient 
anamnesis and current condition to obtain unlawful benefits through the prescription of expensive 
treatment at the cost of the state or insurance companies. 

The problem can be analyzed using video data; however, video recordings of doctor appointments 
or conversations between medical staff and patients are not widespread in the industry and are 
typically used only in telemedicine. Additionally, deepfake detection technologies, both contextual 
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and general, require substantial computational resources [1]. The most used approach is the analysis 
of textual information [2-4]. However, it conveys only a limited amount of information about the 
patient while being filtered through the perception of medical personnel. Therefore, the decision was 
made to analyze audio recordings, which is a common approach in the medical field and fully 
conveys the interaction between patient and doctor. 

Given the volume of such interactions, relying exclusively on human resources for analysis and 
detection of data falsification is not a viable, especially for Ukraine under conditions of military 
conflict, where there is an increased need for medical services. Furthermore, outside the medical 
field, data falsification detection tools have already demonstrated their effectiveness [5].  

At an international level, various anti-deception initiatives show promising advancements [6]. 
Computational verification tools spanning browser extensions and content analysis platforms have 
emerged to flag suspicious text patterns and identify manipulations across multimedia channels. 
Academic literature documents diverse analytical approaches within research communities 
worldwide. Significant developments include MIT-led initiatives and Ukrainian research groups 
examining acoustic tampering through machine learning systems [7, 8], alongside international 
collaborations employing probability-based frameworks [9]. 

Despite these innovations, most existing detection systems require substantial computational 
resources and extensive labeled datasets to achieve acceptable accuracy, presenting significant 
operational barriers [10, 11]. Within the constrained processing environments, such requirements 
create substantial implementation challenges, limiting practical deployment within medical 
analytical systems. 

It should be noted that within the scope of this work, generative data fabrication using modern 
artificial intelligence tools will not be considered, as it can only be observed in telemedicine and 
requires separate instruments for detecting falsification [12, 13]. 

To address the problem, a specialized classification model is proposed. It integrates audio-to-text 
conversion capabilities and distributed processing, optimized for resource-efficient detection of 
health information falsification in medical data. The approach incorporates a hybrid architecture 
combining specialized convolutional neural networks with bidirectional networks with enhanced 
memory into an integrated analytical model (RCNN). Previous studies explored the efficiency of 
multiple modalities [14] and validated similar approaches in detecting anomalies in medical 
communication analysis [11]. Performance is compared with established baseline methodologies, 
including conventional recurrent networks (RNN), convolutional systems (CNN), and probabilistic 
classification models (especially naïve Bayes classifier  NBC). 

2. Linguistic manipulation indicators 

Irrespective of technique, audio manipulation fundamentally seeks to alter information perception 
to achieve specific objectives. Through systematic analysis of manipulated healthcare 
communications, several key linguistic markers have been identified that frequently signal content 
tampering: 

• Strategic questioning patterns: Manufactured content often employs rhetorical questions to 
create false uncertainty, particularly in communications carrying social significance. 

• Medical authority questioning patterns: Manufactured content often employs rhetorical 
questions to create false uncertainty. 

• Manipulated sentiment markers: Tampered content typically shows inconsistent emotional 
signaling, replacing moderate terminology with extreme descriptors. 

• Artificial emotional escalation: Fabricated messages frequently feature emotionally charged 
terminology with motivation-based language, creating unnatural intensity shifts. 
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• Narrative fractures: Manipulated content commonly exhibits subtle structural inconsistencies 
and logical contradictions.  

• Atypical pronoun distribution: Manipulated content often displays statistically unusual 
pronoun concentrations that attempt to mimic specific communication styles (particularly 
journalistic conventions). 

• Lexical discontinuities: Tampered recordings typically contain non-standard phrasing, 
unusual transitional elements, and distinctive vocabulary shifts that signal content 
boundaries. 

This analytical framework represents an evolving understanding rather than an exhaustive 
model. Fabricated content frequently features condensed syntactical structures alongside various 
linguistic anomalies [15]. Such elements contribute to classification complexity and influence 
detection system calibration requirements. These characteristics may stem from inadequate 
transcription accuracy, regional dialect particularities, or speaker-specific patterns including code-
switching behaviors. 

3. Methodology development 

Having established key manipulation indicators, this section outlines the detection approach and 
implementation architecture. 

3.1. Audio-to-Text transformation 

A specialized transformation pipeline was developed to convert audio data into computational 
representations suitable for deep analysis: 

• Lexical Analysis: Input signals undergo speech-to-text conversion followed by tokenization, 
stemming, and morphological normalization to create standardized linguistic units [16]. 

• Statistical Feature Extraction: Text segments undergo feature extraction using term 
frequency analysis with BM25 weighting to identify distributional anomalies [17], sentiment 
intensity measurement using customized NLTK-based tools, contextual coherence metrics 
measuring narrative consistency, and temporal pattern analysis examining cadence and 
rhythm disruptions. 

• Manipulation Likelihood Calculation: Extracted features are compared against established 
deception patterns using a specialized scoring model that generates a normalized 
manipulation probability score. 

This primary pipeline was supplemented with additional analytical components: 

• Thematic Pattern Recognition: A modified Apriori algorithm was implemented to identify 
suspicious combinations of topics and terminology that frequently audio deception attempts. 

• Communication Context Classification: Audio segments are categorized into functional 
types to enable context-appropriate medical analysis. 

• Transcription Quality Assessment: The system analyzes transcription confidence scores to 
modulate classification thresholds based on input quality. 

The Apriori algorithm selection reflects its computational efficiency, implementational flexibility, 
and parallelization potential. Though originally designed for market basket analysis, this framework 
was adapted for linguistic pattern identification through substantial modifications. The core 
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algorithm leverages the monotonicity principle in frequent pattern mining, where any subset of a 
frequent pattern must also be frequent, enabling efficient candidate pruning. 

The modified implementation comprises four main components: 

• Frequency Analysis: The system calculates support values S(I) = count(I)/n for linguistic 
elements, where n represents sentence count. Only elements exceeding min threshold 
(empirically set at 0.15) continue to subsequent stages. 

• Pattern Generation: The algorithm creates k+1 element combinations from k-element 
patterns exceeding support thresholds. The implementation employs hash-based 
acceleration techniques that reduced computational overhead by 47% compared to 
conventional approaches. 

• Association Rule Formation: The system generates statistical relationships from frequent 
patterns based on confidence thresholds. Rules exceeding 0.75 confidence (determined 
through cross-validation) are preserved. Additional metrics including conviction and lift 
were incorporated to better evaluate rule significance. 

• Pattern Prioritization: The system ranks identified patterns using a composite scoring 
function combining support, confidence and context-specific relevance metrics. 

The implementation includes several performance enhancements including incremental database 
reduction techniques and distributed processing using MapReduce frameworks. Benchmark testing 
demonstrated 5.7x acceleration compared to sequential processing when analyzing large linguistic 
datasets. 

The modified Apriori algorithm processes tokenized transcripts through the following 
pseudocode implementation (Figure 1). 

 
Figure 1: Pseudocode for modified Apriori implementation. [created by the authors]. 
 

The algorithm complexity is O(n×m×k²) where n is sentence count, m is average sentence length, 
and k is maximum pattern length. Apriori-derived features are concatenated with CNN-extracted 
features before entering the BiLSTM layer, creating a 96-dimensional combined feature vector (64 
from CNN + 32 from Apriori patterns). Support and confidence thresholds were determined through 
grid search over ranges [0.10-0.25] and [0.65-0.85] respectively, evaluated using 3-fold cross-
validation on the training set. Sensitivity analysis showed ±0.03 accuracy variation within ±0.05 
threshold adjustments, confirming reasonable stability. 
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Following input processing, the next section examines the neural architecture for pattern 
recognition and classification. 

3.2. Neural network architecture 

The classification system employs a hybrid architecture combining feature extraction pathways with 
temporal sequence analysis capabilities. This approach capitalizes on the complementary strengths 
of different neural processing approaches  convolutional networks excel at identifying local 
patterns and feature hierarchies, while recurrent networks capture sequential dependencies across 
time steps. 

The architecture follows a multi-stream design illustrated in Figure 2. The system processes input 
data through several coordinated stages: 

• Feature Extraction: Linguistic embeddings first pass through three cascaded convolutional 

max pooling operations. This pathway progressively extracts increasingly abstract linguistic 
features while reducing dimensionality from 300D word vectors to 64D feature 
representations. This dimensional reduction addresses computational efficiency constraints 
critical for deployment in resource-limited environments. 

• Temporal Context Analysis: Processed features enter a bidirectional LSTM layer (128 units 
per direction) with dropout regularization (0.3). This bidirectional approach enables 
simultaneous analysis of preceding and subsequent contextual elements, capturing 
dependencies that would be missed by unidirectional processing. Unlike transformer-based 
approaches that require substantial computational resources, the BiLSTM implementation 
achieves effective temporal modeling while maintaining deployment feasibility. 

• Attention-Based Integration: An attention mechanism weighs the relative importance of 
different sequence elements based on their contextual relevance, focusing computational 
resources on the most informative segments. This approach particularly enhances 
performance for longer audio sequences with varying information density. 

• Classification Layers: The network concludes with two fully-
neurons) using ReLU activation and a final softmax classification layer that outputs 
manipulation probability scores. 

Training employed consistent random seeds (42, 123, 456) across five independent runs to ensure 
reproducibility. Stratified 5-fold cross-validation was applied on the training set for hyperparameter 
selection, with the final test set (20%) held out completely until model selection was complete. The 

 
The system processes input data through several coordinated stages: Hyperparameter 

optimization employed Bayesian search methods guided by previous research findings [1, 2]. Key 
configuration decisions included: 

• Convolutional Kernel Size: Optimal performance achieved with 5×5 kernels after evaluating 
sizes ranging from 3×3 to 7×7. 

• Learning Strategy: Adam optimizer with initial rate 0.001 and exponential decay schedule 
• Mini-batch Size: Optimal throughput-accuracy balance at 64 samples. 
• Training Duration Control: Early stopping with 10-epoch patience, typically converging 

between 30-50 epochs. 

The loss function incorporated class weighting to reflect operational priorities, with 2.5× penalty 
for false negatives (missed manipulations) compared to false positives. The complete model contains 



94 
 

approximately 2.3 million trainable parameters - substantially fewer than transformer-based 
alternatives while maintaining competitive performance characteristics. 

 

 
Figure 2: Scheme of the RCNN architecture. [created by the authors]. 

 

4. Experimental design and evaluation 

To validate the approach, a comprehensive testing framework was created encompassing both 
methodological validation and comparative performance analysis. 

4.1. Data selection and preparation 

Two distinct communication datasets were utilized for system evaluation: 

• Doctor-Patient Communications Dataset: A specialized focus group recorded simulated 
healthcare communications about treatment recommendations, medication advice, and 
health guidance scenarios. This corpus features informal speech patterns, specialized medical 
terminology, and non-standard linguistic constructions mimicking patient-provider 
communications. 

• Daily Health Checks Dataset: A dataset contains recordings of conversations during daily 
patient check-ups done by nurses. Conversation involves observing for any changes in 
patient's condition, assessing their emotional as well as physical state, providing emotional 
support and clarifications about treatment. 

The Doctor-Patient Communications dataset comprises 2,847 audio recordings with total 
duration of 127.3 hours, including 1,423 manipulated samples and 1,424 genuine communications. 
The dataset includes 156 unique speakers (82 female, 74 male) with age distribution reflecting typical 
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patient demographics. Manipulated scenarios were created through scripted simulations where 
actors deliberately incorporated deceptive linguistic patterns validated by medical fraud 
investigators, while genuine communications were recorded from standardized medical role-play 
exercises. The Daily Health Checks dataset contains 1,956 recordings totaling 84.6 hours, with 978 
manipulated and 978 genuine samples from 94 speakers (51 female, 43 male). Both datasets 
underwent independent labeling by three medical professionals with inter-annotator  = 0.82. 

Each dataset underwent initial processing through the Google Speech-to-Text API for conversion 
to text format. Datasets were divided into training (80%) and evaluation (20%) segments using 
stratified sampling methods to maintain representative class distribution. 

Implementation utilized Python 3.10 with specialized libraries including TensorFlow 2.9 for 
neural network development and training, NumPy 1.24 for numerical computations and array 
processing, NLTK 3.8 for natural language processing tasks including tokenization and linguistic 
feature extraction, and Polars 0.18 for high-performance data manipulation and preprocessing of 
large audio datasets. The audio processing pipeline incorporated librosa 0.10 for signal processing 
and feature extraction, while scikit-learn 1.3 provided additional machine learning utilities for 
baseline comparisons and evaluation metrics. System integration employed Kubernetes-based 
orchestration for distributed processing capability, enabling horizontal scaling across multiple 
computing nodes to handle large-volume audio analysis workloads. The deployment architecture 
utilized Docker containerization for consistent environment management and Redis for distributed 
caching of preprocessed features, reducing computational overhead during model inference phases. 

4.2. Speech-to-Text Quality and Error Impact 

Audio-to-text conversion employed Google Speech-to-Text API with language model optimized for 
Ukrainian medical terminology. Manual validation by native Ukrainian speakers with medical 
transcription experience revealed STT (Speech-to-Text) accuracy of 94.7% for standard speech 
patterns and 87.2% for dialectical variations. Common transcription errors included medical 
terminology misrecognition (23% of errors), proper name confusion (18%), and dialect-specific 
phonetic variations (31%). 

To assess STT error impact on downstream classification, we conducted robustness analysis by 
artificially degrading transcription quality. The RCNN architecture-maintained accuracy above 92% 
even with 15% word error rate, demonstrating resilience to transcription imperfections. Performance 
degradation became pronounced only when STT confidence scores fell below 0.65, at which point 
the system automatically flags recordings for manual review. The attention mechanism proved 
particularly valuable in mitigating STT errors by focusing on high-confidence segments while 
downweighting uncertain transcriptions. Classification errors correlated strongly with segments 
having mean STT confidence below 0.70 (r = -0.67, p < 0.01). 

Systematic evaluation of transcription quality influence employed controlled degradation 
experiments with synthetic STT errors at varying rates. Classification accuracy remained robust: 
96.1% at 5% word error rate, 94.3% at 10% WER, and 92.7% at 15% WER. Critical threshold occurred 
at approximately 20% WER where accuracy dropped to 88.4%. Analysis revealed errors affecting 
content words degraded performance 2.3× more than function word errors, while medical 
terminology misrecognitions produced 3.1× higher impact per affected word. The attention 
mechanism partially mitigates STT errors by dynamically downweighting low-confidence segments, 
with correlation of r = 0.71 between attention weights and STT confidence scores (p < 0.001), 
explaining system resilience to moderate transcription imperfections typical of real-world 
deployments. 

4.3. Data validation and ethical considerations 

The medical datasets underwent rigorous validation by a panel of 12 healthcare professionals, 
including practicing physicians and registered nurses. The validation methodology employed a 
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three-stage approach: clinical plausibility assessment, fraud pattern recognition by insurance 
specialists from three major Ukrainian healthcare institutions, and cross-cultural validation to ensure 
the system would not inadvertently flag legitimate regional linguistic variations. Inter-rater 

consistent evaluation criteria across the validation panel. 
The study design incorporated comprehensive ethical safeguards aligned with international 

research standards, specifically: 

• Informed Consent Procedures: All participants involved in dataset creation provided written 
informed consent after receiving detailed information about study objectives, data usage, and 
privacy protection measures. Participants retained the right to withdraw their contributions 
at any stage without penalty or explanation. 

• Privacy Protection and Anonymization: Audio recordings underwent multi-stage 
anonymization procedures including voice modulation, removal of personally identifiable 
information, and replacement of specific medical details with clinically equivalent but non-
identifying alternatives. All processing occurred on secure, encrypted systems with access 
limited to authorized research personnel. 

• Cultural Sensitivity and Bias Mitigation: The dataset creation process incorporated systematic 
bias assessment to ensure representative coverage across demographic groups, 
socioeconomic backgrounds, and regional linguistic variations. Special attention was devoted 
to preventing discrimination against vulnerable populations, including elderly patients, 
individuals with disabilities, or those from minority communities. 

The datasets included proportional representation across age groups (18-30: 23%, 31-50: 41%, 51-
70: 28%, 70+: 8%), gender distribution (52% female, 48% male), and regional linguistic variations 
representing major Ukrainian dialect groups. Fabricated scenarios encompassed a broad spectrum of 
medical conditions commonly encountered in Ukrainian healthcare setup. The study design 
incorporated safeguards to prevent the system from flagging authentic expressions of pain, distress, 
or legitimate medical concerns as potential fraud indicators. The linguistic analysis framework was 
specifically calibrated to distinguish between authentic pain descriptions and artificially constructed 
symptom narratives through consultation with pain management specialists. Given that mental 
health conditions can affect speech patterns, the system underwent specialized testing to ensure that 
symptoms of depression, anxiety, or cognitive impairment would not trigger false positive 
classifications. Additionally, cultural anthropologists familiar with Ukrainian healthcare 
communication norms reviewed the system to ensure that culturally specific expression patterns 
would not be misinterpreted as deception indicators. 

All audio-to-text conversions underwent manual review by native Ukrainian speakers with 
medical transcription experience, achieving accuracy rates of 94.7% for standard speech patterns and 
87.2% for speech with dialectical variations. The comprehensive validation process resulted in high-
confidence dataset quality metrics: 94.2% of scenarios achieved consensus agreement on medical 
accuracy, 89.7% alignment with documented real-world fraud patterns, and 96.1% approval across 
diverse cultural reviewer groups. The research adhered to applicable data protection regulations, 
including GDPR and Ukrainian personal data protection laws, with all data handling incorporating 
access control, audit trails, and automatic deletion of raw recordings following anonymization 
completion. 

4.4. Performance metrics 

A multidimensional evaluation framework was established through consultation with 50 data 
analysis specialists representing five countries. These subject matter experts helped define 
appropriate weighted metrics reflecting operational priorities: 
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• Detection Accuracy: Combined precision and recall measurements with emphasis on 
minimizing false negatives (manipulated content incorrectly classified as authentic). Given 
operational contexts, an 80:20 weighting was applied favoring precision over recall. Weight 
coefficient: 10. 

• Processing Efficiency: Evaluation of computational demands including processing time, 
memory utilization, and hardware requirements. Weight coefficient: 6. 

• Training Data Requirements: Assessment of minimum sample volume required to achieve 
80% classification accuracy. Weight coefficient: 4. 

These metrics reflect the operational priorities in deployment scenarios where missed 
manipulations carry greater consequences than false alarms, but where resource utilization remains 
a critical constraint. 

To ensure comprehensive evaluation, a linear additive convolution (LAC) formula was employed 
combining normalized metrics: 

𝐿𝐴𝐶 =  0.5  𝐴 +  0.3  𝑃𝐸 +  0.2  𝐷𝑅, (1) 
where 𝐴  accuracy score, 𝑃𝐸  processing efficiency score, 𝐷𝑅  data requirements score. 
To mitigate measurement variability, each metric was calculated through ten independent 

measurement cycles with statistical outlier removal. 

4.5. Resource Efficiency Measurements 

Computational efficiency metrics were measured on standardized hardware: Intel Xeon Gold 6248R 
CPU (3.0 GHz, 24 cores), NVIDIA Tesla V100 GPU (32GB VRAM), and 128GB DDR4 RAM running 
Ubuntu 20.04 with CUDA 11.8. Inference times represent mean processing duration for 15-second 
audio segments (including STT conversion) averaged across 1,000 test samples. The RCNN achieves 
average inference latency of 267ms with GPU memory footprint of 2,847MB and throughput of 3.7 
samples/second. This represents 3.1× faster processing than RNN baseline (748ms) while maintaining 
3.0× slower performance compared to NBC (86ms), reflecting the accuracy-efficiency trade-off. The 
relative efficiency factor (PE scores in Table 1) normalizes these metrics against NBC using weighted 
geometric mean accounting for both latency and memory utilization. 

5. Results and analysis 

Comparative testing revealed significant performance variations across the evaluated architectural 
approaches. Table 1 presents normalized performance metrics across all evaluated systems. 

Table 1 
Processed results of the experiment 

Should be noted, that all metrics normalized to [0,1] scale with higher values indicating better 
performance. 

5.1. Architectural performance comparison 

Experimental findings reveal distinct performance characteristics across different architectural 
approaches: 

Model PE A DR 
RCNN 0.82 0.97 0.980 
CNN 0.10 0.82 0.237 
RNN 0.00 0.87 0.485 
NBC 1.00 0.80 0.954 
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The hybrid RCNN approach demonstrated exceptional classification performance (0.97 accuracy), 
substantially outperforming alternative architectures. This superior discrimination capability stems 
from the synergistic integration of local feature extraction with temporal sequence analysis. By 
combining these complementary processing pathways, the system effectively captures both localized 
linguistic anomalies and broader contextual inconsistencies that typically manipulation attempts. 

The RNN implementation achieved moderate accuracy (0.87) by leveraging sequential contextual 
processing but showed limitations in feature extraction efficiency. Most significantly, this 
architecture exhibited the poorest computational performance profile, requiring approximately 2.8× 
longer processing times compared to the baseline NBC implementation. This inefficiency primarily 
results from the inherently sequential nature of recurrent processing that limits parallelization 
opportunities. 

The CNN framework delivered acceptable accuracy (0.82) but showed particularly poor data 
efficiency (0.237), requiring substantially larger training datasets to achieve reasonable performance. 
This finding aligns with established understanding that convolutional architectures typically require 
extensive example exposure to effectively generalize across diverse input variations. In resource-
constrained operational environments, this data requirement presents a significant deployment 
barrier. 

The NBC implementation demonstrated superior computational efficiency but the lowest 
classification accuracy (0.80). This probabilistic approach required minimal processing resources  
executing approximately 3.1× faster than the RCNN implementation  but showed inadequate 
discrimination capabilities when confronted with manipulation patterns that maintain superficial 
linguistic consistency while altering core meaning. 

5.2. Integrated performance analysis 

Applying the weighted evaluation formula to the experimental results yielded these composite 
performance scores: RCNN: 0.927, CNN: 0.487, RNN: 0.532, NBC: 0.891. 

These metrics demonstrate the RCNN architecture's superior overall performance despite 
moderate computational demands. While the NBC approach achieved a respectable composite score, 
this primarily resulted from its exceptional processing efficiency rather than effective detection 
capability. The substantial performance gap between the RCNN implementation and alternative 
approaches (>0.036 difference from the next-best performer) suggests robust performance 
advantages across various operational scenarios. 

5.3. Cross-dataset performance stability 

Table 2 presents detailed per-dataset performance metrics demonstrating the RCNN architecture's 
consistent discrimination capabilities across different healthcare communication contexts. 

Table 2 
Cross-dataset performance breakdown 

Model Dataset Accuracy Precision Recall F1-Score 

RCNN Doctor-Patient 0.97 0.97 0.97 0.97 
RCNN Daily Health Checks 0.96 0.96 0.97 0.96 
CNN Doctor-Patient 0.84 0.85 0.83 0.84 
CNN Daily Health Checks 0.72 0.73 0.71 0.72 
RNN Doctor-Patient 0.88 0.88 0.88 0.88 
RNN Daily Health Checks 0.83 0.84 0.82 0.83 
NBC Doctor-Patient 0.81 0.81 0.80 0.80 
NBC Daily Health Checks 0.78 0.79 0.77 0.78 
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Cross-dataset analysis reveals that RCNN maintains accuracy variation below 0.01 between 
medical communication types, substantially outperforming alternative implementations. The CNN 

Health Checks featuring non-standard conversational patterns, while RNN and NBC demonstrate 
 

The stability of the RCNN framework across communication types can be attributed to several 
key linguistic processing capabilities. Register formality variations, which distinguish formal doctor-
patient communications containing standardized medical terminology from informal daily health 
checks featuring conversational lexicon, are effectively handled by the hybrid architecture's 
contextual processing components. The bidirectional LSTM elements demonstrate particular 
robustness in managing syntactic complexity differences, where manipulated texts exhibit 
anomalous structures that manifest differently across communication types - through violations of 
medical terminological hierarchy in formal dialogues versus artificially complex grammatical 
constructions in informal conversations. 

Semantic coherence detection remains stable across contexts due to the attention mechanisms 
that focus on semantic anomalies regardless of lexical content variations. The system's ability to 
identify emotional congruence mismatches between stated emotional states and linguistic markers 
proves particularly valuable in medical contexts, where authentic symptom descriptions typically 
demonstrate natural emotional consistency while fabricated descriptions contain emotional breaks 
or artificially intensified expressive elements. Additionally, discourse marker analysis reveals that 
manipulated content frequently exhibits unusual patterns in connectivity markers (however, 
therefore, consequently) that remain detectable across both formal and informal communication 
types, contributing to consistent cross-dataset performance. 

5.4. Generalization and Robustness Analysis 

To assess real-world applicability, the RCNN underwent evaluation on unseen speakers, dialectical 
variations, and recording conditions not present in training data. Leave-one-speaker-out cross-

 0.09), indicating robust 
generalization beyond training speaker characteristics. Testing on regional dialect samples from 
Lviv, Odesa, and Poltava oblasts (not represented in training) yielded accuracy range of 91.7%-95.1%, 
with performance degradation primarily attributable to STT confidence reduction in dialect-heavy 
speech (mean confidence 0.73 vs 0.89 for standard Ukrainian). 

Environmental noise robustness was evaluated by adding synthetic noise at varying SNR levels 
(25dB, 15dB, 10dB) to test recordings. The system maintained above 90% accuracy down to 15dB SNR, 
with graceful degradation to 83.4% at 10dB - typical of challenging clinical environments. Channel 
effect simulation (telephone bandwidth limitation, codec artifacts) reduced accuracy by 6.2 
percentage points, suggesting the need for channel-aware preprocessing in telephonic healthcare 
applications. These results confirm reasonable generalization capabilities while highlighting specific 
domains requiring targeted adaptation. 

5.5. Ablation Study 

Systematic ablation experiments quantified individual component contributions to system 
performance. Removing the BiLSTM pathway produced the largest accuracy drop of 0.13, confirming 
temporal sequence modeling as the architecture's most critical component. Eliminating CNN layers 
reduced accuracy by 0.08, demonstrating substantial contribution from local feature extraction. The 
attention mechanism provided 0.04 improvement, particularly benefiting longer audio segments 
where selective focus proves valuable. Apriori-derived linguistic patterns contributed 0.03 accuracy 
gain, validating integration of rule-based pattern mining with neural processing. Model compression 
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-oriented optimization potential for 
resource-constrained environments without catastrophic performance degradation. 

6. Limitations and future research 

While the hybrid architecture demonstrates significant advantages in manipulation detection, 
several important limitations warrant acknowledgment and suggest promising research directions. 

6.1. Current system constraints 

Despite implementation optimizations, the approach faces several operational challenges: 

 Computational Resource Requirements: The bidirectional LSTM components create 
substantial processing demands that may limit deployment in severely resource-constrained 
environments. Although the architecture requires considerably fewer resources than 
transformer-based alternatives, further optimization remains necessary for deployment on 
edge devices with minimal processing capabilities. 

 Training Data Dependencies: While the system demonstrates superior data efficiency 
compared to alternatives, performance continues to depend on representative training 
samples  a persistent challenge given the rapidly evolving nature of manipulation 
technologies.  

 Processing Latency Under Load: The current implementation achieves acceptable processing 
speed (267ms average latency for 15-second audio segments) under ideal conditions, but 
experiences significant performance degradation under resource contention or when 
processing multiple streams simultaneously.  

 Modality Limitations: The framework focuses exclusively on linguistic content analysis 
without incorporating acoustic feature examination. This single-modality approach creates 
potential vulnerabilities against falsification techniques that maintain linguistic consistency 
while manipulating with emotional tone. 

 Adversarial Robustness: The system has not been evaluated against sophisticated adversarial 
attacks specifically designed to evade detection. Malicious actors with knowledge of the 
detection methodology could potentially craft manipulations that exploit architectural blind 
spots, particularly by maintaining linguistic consistency metrics while introducing subtle 
semantic distortions. Future work should assess robustness against adaptive adversaries 
through red-team testing exercises. 

 Real-world Fraud Complexity: The dataset comprises simulated manipulations created under 
controlled conditions. Actual healthcare fraud may exhibit different characteristics, 
including combinations of truthful and fabricated information, partial symptom 
exaggeration rather than complete fabrication, and collaborative deception involving 
multiple parties. System performance on genuine fraud cases requires validation through 
partnerships with insurance investigation units. 

 Language Dependence: While the system demonstrates cross-linguistic capability within 
Slavic language families, performance on more structurally distinct languages remains 
unverified. The linguistic markers driving detection may manifest differently across 
language families. 

6.2. Future research directions 

These limitations suggest several promising research opportunities. Future work should explore 
architectural optimization through knowledge distillation techniques to create lightweight 
deployment models, selective attention mechanisms to focus computational resources on potentially 
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problematic segments, and more efficient alternatives to LSTM components such as simplified GRU 
units or attention-only architectures.  

Operational versatility could be extended through cross-domain generalization via domain 
adaptation techniques to maintain performance across varied communication contexts, invariant 
representation learning to capture domain-agnostic manipulation indicators, and transfer learning 
approaches to leverage knowledge across related detection tasks. Addressing these research 
directions would substantially enhance system capabilities while expanding potential application 
domains. 

Multimodal integration represents another promising direction, incorporating acoustic features 
alongside linguistic content to detect manipulation attempts that maintain textual consistency while 
altering prosodic elements. Real-time processing capabilities through stream processing 
architectures could enable continuous analysis of ongoing communications, while privacy-
preserving techniques such as federated learning could facilitate deployment across healthcare 
institutions without centralizing sensitive data. These enhancements could create more robust 
detection systems capable of identifying sophisticated manipulation attempts while meeting the 
stringent requirements of healthcare environments. 

Additional promising directions include explainability enhancements through attention 
visualization techniques that highlight specific linguistic patterns triggering classification decisions, 
enabling medical staff to understand system reasoning and identify potential false positives. 
Incremental learning capabilities could allow the system to adapt to evolving manipulation 
techniques without complete retraining, addressing the challenge of rapidly changing fraud patterns. 
Integration with electronic health record systems through standardized APIs would enable seamless 
deployment within existing healthcare IT infrastructure, reducing implementation barriers. Finally, 
multilingual extension beyond Slavic language families through cross-lingual transfer learning could 
expand system applicability to diverse healthcare contexts, though this requires careful validation of 
linguistic marker transferability across typologically distinct languages. 

7. Conclusion 

This study evaluated a hybrid deep learning architecture for detecting manipulated audio content in 
healthcare contexts. Key contributions include the development of a specialized linguistic processing 
framework, implementation of a multi-pathway neural architecture integrating convolutional and 
recurrent elements, and creation of a comprehensive evaluation methodology balancing accuracy 
with operational constraints. Experimental results validate the exceptional effectiveness of the 
approach, achieving 97% classification accuracy while maintaining reasonable computational 
efficiency and data requirements. Performance remained consistent across varied communication 
types, suggesting strong generalization capabilities, though resource utilization analysis indicates 
opportunities for further architectural optimization. 

The demonstrated superiority of hybrid architectures suggests broader applications beyond audio 
manipulation detection, while the system's high accuracy with moderate training data requirements 
presents advantages for operational deployment in specialized domains. Practical deployment will 
require further optimization to reduce processing overhead while maintaining detection capabilities, 
potentially through knowledge distillation. 

These findings contribute to broader research by demonstrating the effectiveness of specialized 
hybrid architectures for deception detection, while highlighting critical research directions to 
enhance operational capabilities in contested information environment. 
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