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Abstract 
 
This paper presents a method for secure real-time image transmission from the onboard computer of an 
unmanned aerial vehicle (UAV) or robotic system using LoRa (Long Range) wireless communication 
technology. A software architecture is proposed that ensures the acquisition, processing, encryption, and 
transmission of graphical data under limited hardware resources. The developed system is optimized for 
execution on low-power single-board computers, particularly the Raspberry Pi 4. Experimental studies 
confirm the effectiveness of the proposed approach for secure image transmission under constrained 
communication channel bandwidth. The solution is oriented toward applications in reconnaissance, 
monitoring, and other UAV missions, especially in environments without access to GPS or the Internet. 
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1. Introduction 

Unmanned aerial vehicles (UAVs) are playing an increasingly important role across various 
domains from environmental monitoring and agriculture to military and rescue operations. In real-
time scenarios, the transmission of visual information from a UAV to a ground control station is 
often critical for making operational decisions. However, in most deployment cases, particularly in 
isolated or radio-constrained environments, traditional high-bandwidth communication channels 
such as LTE, Wi-Fi, or Starlink are unavailable, unstable, or excessively power-consuming. 

In such cases, an energy-efficient solution is the use of LoRa (Long Range) wireless technology, 
which enables long-
extremely limited bandwidth poses significant challenges for image transmission, especially in real 
time. Furthermore, when UAVs are employed in security-sensitive applications such as defense or 
critical infrastructure protection, the confidentiality and integrity of transmitted visual data become 
crucial. 

In response to these challenges, this work focuses on developing a method for secure image 
transmission from UAVs using LoRa, aiming to balance channel limitations, energy efficiency, and 
information security requirements. The proposed approach incorporates efficient image 
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preprocessing algorithms, fragmentation, compression, and symmetric encryption, all of which can 
be executed on resource-constrained onboard computers. 

The objective of this study is to design a method for secure real-time image transmission from a 

resources and energy-efficiency requirements. 
The proposed technology ensures image transmission even under ultra-low channel rates (down 

to several kilobits per second), making it applicable in remote or hostile environments without 
sacrificing basic functionality. The research findings can be applied in the development of adaptive 
distributed surveillance systems, as well as in autonomous navigation and real-time response 
projects. 

Due to its energy efficiency and long transmission range, LoRa technology is widely adopted in 
Internet of Things (IoT) systems for data transfer in resource-constrained environments. However, 
transmitting images under such conditions remains a challenging task because of narrow bandwidth, 
which restricts the amount of data transferred and complicates integrity assurance. 

In [1], image transmission in agricultural monitoring systems using LoRa is discussed, 
emphasizing the need for preprocessing such as resolution reduction, grayscale conversion, and JPEG 
compression. The authors also highlight the importance of adapting the transmission rate to network 
conditions. 

Another approach is presented in [2], where a multi-layer communication framework is proposed 
for efficient image transmission. This method allows image transfer via LPWAN by adapting 
compression to the available bandwidth. The authors stress that even with simple compression 
methods (e.g., JPEG), performance heavily depends on segmentation strategy. 

In [3], experiments confirmed the feasibility of transmitting training samples (images) over LoRa 
for edge learning systems using simple compression and prior scaling. Despite delays, the 
experiments demonstrated effective preservation of model classification quality. 

The study [4] analyzed the reliability of image transmission over LoRa in urban environments. 
The authors implemented a simple Automatic Repeat reQuest (ARQ) mechanism to compensate for 
data losses, improving image reconstruction completeness at low error rates. 

From a network architecture perspective, [5] proposed a hybrid architecture based on drones 
deploying LoRaWAN nodes in real time. This approach enables network deployment in hard-to-
reach areas, including image transmission, but does not address optimization of onboard UAV data 
processing. 

The survey [6] provides a detailed analysis of LoRa in Flying Ad Hoc Networks (FANETs). The 
authors discussed challenges such as high transmission latency and small packet size, which critically 
affect UAV image transmission. 

In [7], attention is drawn to image compression methods in LoRa-enabled sensor nodes. The 
authors highlight the relevance of adaptive methods depending on context (lighting, scene dynamics, 
etc.), which significantly influence data quality. However, these methods do not consider the 
constraints of UAV onboard computational resources. 

Finally, [8] demonstrated the advantages of combining compression with cryptographic 
approaches optimized for LPWAN. This combination reduces data volume while enhancing security, 
but does not explore symmetric encryption under limited onboard processing power. 

The analysis of the reviewed works highlights the growing interest in using LoRa technology for 
visual data transmission under limited bandwidth and energy constraints. A significant portion of 
existing solutions focuses on agriculture, environmental monitoring, or industrial IoT scenarios. 
However, the specific requirements of autonomous UAVs [10] such as real-time operation, data 
security, and execution on constrained computing platforms remain insufficiently addressed. 
Current studies lack comprehensive solutions that integrate adaptive image compression, symmetric 
encryption, and optimization for ARM-based architectures. This gap motivates further research and 
justifies the relevance of the proposed approach. 
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2. Materials and Methods 

LoRa is a proprietary physical-layer technology that employs chirp spread spectrum (CSS) 
modulation to ensure reliable communication under low signal-to-noise ratio (SNR) conditions. Due 
to pseudorandom encoding, the signal gains a significant processing gain, which enables its recovery 
even in the presence of interference. These properties make LoRa suitable for deployment on 
unmanned aerial vehicles, where energy efficiency, resistance to interference, and long-distance 
transmission capabilities are of critical importance. In this study, LoRa is applied to secure real-time 
image transmission under computational and energy constraints. 

LoRa supports three different bandwidth options: 125 kHz, 250 kHz, and 500 kHz. One of its key 
parameters is the Spreading Factor (SF), which defines the number of distinct symbols that can be 
transmitted. For instance, when SF = 7, the total number of pos
following formula [12] describes the generation of a LoRa signal: 

𝑐(𝑛𝑇𝑠 + 𝑘𝑇) =
1

√2𝑆𝐹
𝑒
(𝑗2𝜋(𝑠(𝑛𝑇𝑠)+𝑘)𝑚𝑜𝑑2

𝑆𝐹)
𝑘

2𝑆𝐹 , 
(1) 

where nTS  is the discrete time index, TS is the duration of a single sample. The variable n is used 
for time increments. The function s(nTS) defines the chirp frequency as a function of time and encodes 
the transmitted information through frequency shifts. The term kT represents an additional time 
offset. The operation mod 2SF is forming the basis of chirp signal generation. The factor 1

√2𝑆𝐹
1is a 

normalization coefficient that maintains signal energy stability. Since the function is exponential in 
nature, it represents a complex base function. In this context, the variable k is incremented for each 
symbol/chirp. Each symbol S value generates a distinct waveform. 

The next task of the receiver is to interpret the symbols and perform de-chirping. From a 
mathematical perspective, correlation is a key mechanism for de-chirping the received signal. 
Essentially, the method evaluates the similarity of each symbol and determines the coefficient with 
the highest correlation. This process may be computationally intensive, as the receiver must first 
successfully capture the symbol and then verify its similarity. However, mathematical optimizations 
significantly simplify this procedure. Another advantage of using correlation is that it enables 
demodulation of signals even when they are below the noise floor. 

𝐶(𝑚) = ∑ 𝑟(𝑛𝑇𝑠)𝑐𝑚(𝑛𝑇𝑠)
2𝑆𝐹−1
𝑛=0 , (2) 

where 𝑟(𝑛𝑇𝑠) is received signal, 𝑐𝑚(𝑛𝑇𝑠) is complex-conjugate reference symbols, 𝐶(𝑚) is 
correlation coefficient for the hypothesis "symbol=m". Then 𝑚 is chosen for which |𝐶(𝑚)| is 
maximal. 

The summation over k, ranging from 0 to 2SF , allows for calculating the correlation coefficient 
for each symbol within the value space defined by the spreading factor (SF). This makes it possible 
to identify the symbol most similar to the received signal, even under low signal-to-noise ratio 
condit
decoding. 

The physical layer of LoRa consists of the following components [12]: 8 preamble symbols, 2 
synchronization symbols, the payload, and an optional cyclic redundancy check (CRC). This 
structure enables efficient data transmission and proper synchronization between transmitter and 
receiver. The preamble symbols form the initial part of the signal, consisting of 8 consecutive up-
chirps. Their primary function is to ensure LoRa signal detection by the receiver and initiate data 
processing. They are followed by 2 down-chirps (chirps with decreasing frequency), which serve as 
synchronization symbols. Their role is to align the receiver precisely in time and frequency for 
accurate payload decoding. The payload is transmitted as modulated symbols encoded by chirps. The 
frequency shifts of these chirps represent the encoded symbols that carry the transmitted data. When 
CRC is included, the receiver can verify the integrity of the received data and detect errors caused 
by interference. 
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The relationship between the symbol rate (Rs), bandwidth (BW), and spreading factor (SF) is 
expressed by the equation [12]: 

𝑅𝑠 =
𝐵𝑊

2𝑆𝐹
. (3) 

A higher spreading factor (SF) results in a longer time-on-air, which increases transmission range 
and resistance to noise but reduces the data rate. In contrast, a lower SF provides a higher data rate 
at the expense of reduced robustness and shorter transmission distance. 

The proposed UAV image transmission system consists of two main components: the transmitting 
unit (onboard UAV) and the receiving unit (ground station). The transmitting unit, installed on the 
UAV, includes an image acquisition module (camera), a Raspberry Pi 4 single-board computer, a LoRa 
wireless transceiver (SX1278), and a microSD storage device for local data saving. The receiving unit, 
located at the ground station, can be implemented on a personal computer or another compatible 
device equipped with an SX1278 module. It provides data reception, verification, decryption, and 
storage of the received information. 

Image transmission is implemented using scripts that handle preprocessing, encryption, 
modulation, and signal transfer via a Wi-Fi connection established through a mobile device. The 
transmitter is represented by the Raspberry Pi 4, while the receiver is a computer. 

The transmission process consists of several stages. First, the image is divided into an appropriate 
number of channels, after which the transmitted information is encrypted using AES-CTR [13] to 
ensure security. Next, chirps are generated for each image pixel or text symbol. Noise is then modeled 
in the channel to create more realistic transmission conditions. This not only allows optimization of 
the transmission process but also enables verification of algorithm robustness under near-real-world 
conditions. Finally, the program decodes the received chirps and reconstructs the original image or 
text. 

The reception process is organized to ensure accurate recovery of transmitted data. Through the 
generation of inverse chirps and analysis of the frequency spectrum of the received signals, chirps 
are demodulated into symbols, which are subsequently decrypted to restore the original texts or 
images. To handle different data types color images, grayscale images, or text specialized modules 
are employed, providing adaptability of the system. 

The experimental study consisted of three stages (Fig. 1). Five image resolutions were selected for 
testing: 64×64, 128×128, 256×256, 512×512, and 1920×1080 pixels [11]. The statistical sample size was 
set to 1000 transmission reception iterations, except for the largest resolution (1920×1080), where a 
reduced number of iterations was applied due to data volume. 

The experiment begins with the configuration of an access point, which serves as the initial step 
for establishing a connection between the transmitting device (computer) and the Raspberry Pi 4. 
Both devices were connected to the same local network. 

The second stage involves data preparation on the transmitter side. At this stage, transmission 
parameters are initialized, including the selection of system settings, such as the scaling factor. Next, 
the image to be transmitted and a text message are selected. 

In the following stage, a transmission script is launched, which generates chirps encoding the 
selected image and message. Simultaneously, a reception script is activated on the receiving device 
to ensure data acquisition, decoding, and storage of the received image along with statistical 
information. 

After the data transmission process is completed, the obtained results are analyzed. This stage 
includes executing scripts for constructing histograms of relative transmission and reception times, 
as well as calculating key performance metrics such as Peak Signal-to-Noise Ratio (PSNR) and 
Structural Similarity Index (SSIM), along with computing the median, mean, and standard deviation. 
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Figure 1: Scheme of the experiment 

3. Result and Discussion 

Two transmission modes were tested: a high-accuracy mode, which provides maximum image 
quality, and a high-speed mode, where images are pre-scaled. In the high-accuracy mode, the image 
scaling factor is set to 1, meaning that the image size remains unchanged. Statistical data for this 
mode were collected for four image resolutions: 64×64, 128×128, 256×256, and 512×512, with 1000 
transmission reception iterations for each. For the 1920×1080 resolution, 50 iterations were 
conducted due to the large data size. 
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An example histogram of the relative frequency distribution of transmission/reception times for 
the 128×128 resolution is shown in the Fig. 2, 3. 

 
Figure 2: Relative frequencies of transmission time for a 128×128 color image. 

 
Figure 3: Relative frequencies of reception time for a 128×128 color image. 

For all images in the experiment, the PSNR value was equal to 361, and the SSIM value was 1. The 
deviations in both cases were 0. This indicates that all images were transmitted without distortion, 
regardless of their size, which corresponds to the conditions of lossless transmission. 

According to the experimental results (Tables 1 3), a significant difference in transmission 
duration was observed for images with a resolution of 512×512. On average, transmission required 
3.25 seconds, while reception took 5.14 seconds with a deviation of 0.12. This jump can be considered 
a threshold, which represents the main distinction between high-accuracy and high-speed 
transmission modes. 

For testing the high-speed transmission mode, images with a resolution of 1920×1080 pixels were 
used. The high-speed mode implies the transmission of downscaled images [9]. In this way, even 
large-resolution images can be transmitted relatively quickly. The main drawback of this mode, 
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however, is the reduction in image quality. Thus, the primary task is to identify scaling values that 
enable faster transmission while minimizing the loss of details. 

Based on the data obtained from high-accuracy transmission experiments, a noticeable jump 
occurs after reaching the 512×512 resolution. Therefore, the most suitable options are scaling by a 
factor of 4 since a 480×270 image contains approximately half as many pixels as 512×512 and 
scaling by a factor of 10. 

 
Figure 4: Relative frequencies of transmission time for a 1920×1080 color image (a 4-fold decrease). 

 
Figure 5: Relative frequencies of reception time for a 920×1080 color image (a 4-fold decrease). 

The values of 3.07 seconds for transmission and 2.63 seconds for decoding of color images also 
fall within the expected range. The corresponding metrics are as follows: PSNR = 25.71 dB, SSIM = 
0.72. This indicates a relatively fast transmission method that still provides good image quality. 

Experimental results further demonstrated that downscaling images by a factor of 10 does not 
yield a time advantage; instead, it significantly reduces image quality. The average transmission time 
in this case was 2.94 seconds, with a reception time of 0.43 seconds. The corresponding metrics were: 
PSNR = 22.67 dB, SSIM = 0.57. In fact, transmitting a 256×256 color image without downscaling 
proves to be more efficient. 

The summary of all experimental results for the tested image sizes is presented in the tables below. 
As noted earlier, transmission was performed using a Raspberry Pi 4 as the sender, with a computer 
serving as the receiver. 
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Table 1 
Median times for images of different sizes 

Image size Transmission 
time (color), s 

Reception 
time (color), s 

PSNR SSIM 

64×64 2.89 0.09 361.2 1.0 
128×128 2.94 0.32 361.2 1.0 
256×256 2.98 1.33 361.2 1.0 
512×512 3.26 5.16 361.2 1.0 
1920×1080  
(without reduction) 

5.65 41.05 361.2 1.0 

1920×1080  
(4x reduction) 

3.07 2.64 25.71 0.72 

1920×1080  
(10x reduction) 

2.94 0.43 22.67 0.57 

Table 2 
Average time values for images of different sizes 

Image size Transmission 
time (color), s 

Reception time 
(color), s PSNR SSIM 

64×64 2.90 0.09 361.2 1.0 
128×128 2.94 0.33 361.2 1.0 
256×256 2.98 1.36 361.2 1.0 
512×512 3.26 5.26 361.2 1.0 
1920×1080  
(without reduction) 5.65 41.14 361.2 1.0 

1920×1080  
(4x reduction) 3.07 2.67 25.71 0.72 

1920×1080  
(10x reduction) 2.95 0.44 22.67 0.57 

Table 3 
Root mean square deviations of time for images of different sizes 

Image size Transmission 
time (color), s 

Reception time 
(color), s PSNR SSIM 

64×64 0.02 0.01 361.2 1.0 
128×128 0.01 0.014 361.2 1.0 
256×256 0.007 0.098 361.2 1.0 
512×512 0.008 0.23 361.2 1.0 
1920×1080  
(without reduction) 0.046 0.43 361.2 1.0 

1920×1080  
(4x reduction) 0.022 0.18 25.713 0.717 

1920×1080  
(10x reduction) 0.027 0.04 22.665 0.569 
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4. Conclusions 

Based on the analysis of the results, the following conclusions can be drawn. Computational 
processes on both the transmitter and receiver sides significantly influence transmission time, 
leading to observable fluctuations and deviations from the median and mean values. For example, 
the overhead associated with encryption, chirp encoding, and data preparation may be uneven due 
to the specifics of processor operation. 

It can also be concluded that the optimal downscaling factor is 4. This provides a balance between 
image quality and transmission speed. For large images such as 1920×1080, scaling down by a factor 
of 4 reduces the reception time of grayscale images to 0.89 seconds (compared to 13.40 seconds 
without downscaling) and color images to 2.64 seconds (instead of 41.05 seconds). At the same time, 

reducing transmission time, results in a significant deterioration in quality: PSNR drops to 22.67, and 
SSIM to 0.57. Such values are insufficient for tasks requiring high levels of detail. 

Another noteworthy observation is that transmission time increases very slowly. Specifically, the 
time required to transmit 64×64 images is nearly the same as for 512×512 images. This behavior is 
related to the mechanism of chirp preparation. For all images, chirps are precomputed for every 
unique pixel intensity value. Once a chirp is generated for a given value, it is stored in a dictionary 
and reused, rather than recalculated. Consequently, the increase in transmission time depends not 
so much on image resolution, but on the number of unique intensity values present. 

In the context of implementing LoRa technology for transmitting video frame fragments from the 
onboard or target camera of an unmanned aerial vehicle (UAV), it is necessary to consider the 
influence of various environmental factors, including extreme weather conditions, electromagnetic 
interference, and the specific characteristics of urban and rural environments, which are critically 
important for UAV operation in isolated areas. Within the scope of this study, the LoRa transmission 
channel is considered as a logical extension of the existing UAV control channel operating on 
standard frequencies, rather than as an independent task of integrating LoRa technology into the 
drone. The main focus is placed on evaluating the temporal characteristics of transmission and 
reception processes, as well as the quality of the transmitted images, while the specific hardware 
implementation depends on the configuration of the particular UAV platform and the characteristics 
of its communication equipment. Such experiments are planned for subsequent research stages 
during the advancement of the technology to Technology Readiness Level (TRL) 6 and higher. 

It is well known that the communication range of LoRa significantly depends on environmental 
conditions. In urban environments with numerous obstacles, such as buildings, stable 
communication can typically be maintained over distances of 2 5 km, and, with optimal antenna 
placement and frequency selection, up to 10 km. In rural areas with fewer obstacles, the effective 
range may reach 5 15 km, while under ideal conditions it can extend to 20 km or more. In open 
areas, such as over water or in desert regions, the achievable range can exceed 30 km. At the same 
time, the quality and stability of signal transmission are affected by parameters such as transmitter 
power, receiver sensitivity, operating frequency, and antenna type. 

In the experimental part of this research, a Wi-Fi-based channel was used to ensure the stability 
and reproducibility of results. This approach made it possible to achieve Technology Readiness Level 
(TRL) 5, confirming the feasibility of the proposed method under controlled laboratory conditions. 
Further tests using LoRa technology are planned to be conducted at specialized testing grounds once 
restrictions on flight experiments imposed by the ongoing martial law in Ukraine are lifted. 

technology remains vulnerable to targeted actions by electronic warfare (EW) systems, particularly 
jamming. Therefore, future research directions include the development of combined methods aimed 
at enhancing interference immunity and resilience against active electronic countermeasures. 
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