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Abstract 
In this paper, a hybrid approach for coordinating autonomous agents is proposed, combining swarm 
intelligence based on the GBestPSO (Global Best Particle Swarm Optimization) algorithm and behavior trees 
(BTs). This approach aims to solve the problem of balancing global coordination of actions and local 
autonomy of each agent in dynamic and uncertain environments. The proposed two-level control system 
architecture consists of a planning level (GBestPSO-Level) for global optimization and a behavior level (BT-
Level) for tactical behavior. The results were partially supported by the National Research Foundation of 
Ukraine, grant No. 2025.06/0022 "AI platform with cognitive services for coordinated autonomous 
navigation of distributed systems consisting of a large number of objects". 
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1. Introduction 

Modern systems with collective interaction of autonomous agents are attracting increasing attention 
from researchers due to their ability to solve complex tasks in environments with a high level of 
uncertainty [1]. In such systems, agents function in a decentralized manner, exchange information, 
and jointly achieve goals, which makes them suitable for use in reconnaissance, monitoring, search 
and rescue, logistics, facility security, and other fields [2]. The key challenge in this context is to 
develop coordination methods that can ensure a balance between global coordination of actions and 
local autonomy of each agent. 

Traditional centralized approaches, which assume the existence of a single controller, often prove 
ineffective in dynamic environments where there is a possibility of communication loss, system 
failure, or the emergence of new obstacles. In contrast, decentralized methods inspired by natural 
models of collective behavior, such as swarms of insects or flocks of birds, demonstrate significantly 
greater resilience and flexibility. One of the most common tools in this class is the Particle Swarm 
Optimization (PSO) algorithm, which allows agents to collectively find effective solutions by 
exchanging local and global information [3]. 

However, PSO alone does not provide a high level of cognition for an individual agent. It allows 
determining the direction and trajectory of movement, but does not provide a flexible mechanism 
for decision-making in situations where environmental conditions, unforeseen events, or complex 
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interaction scenarios must be considered. In this context, the use of behavior trees (BT) [4] is of 
considerable interest. This approach, widely used in robotics and the gaming industry, provides 
modularity, hierarchy, and simplicity in describing agent behavior [5]. Using the BT structure, it is 
easy to integrate conditions, sequences of actions, and parallel processes, which allows for the 
creation of flexible and adaptive control algorithms. 

The combination of PSO and BT forms the basis of a hybrid approach in which swarm 
optimization is responsible for global coordination and trajectory optimization, while behavior trees 
are responsible for local decision-making and tactical responses of agents [6]. This approach provides 
a double level of stability: on the one hand, the system's ability to achieve common goals is preserved 
even with the loss of individual agents or communication channels; on the other hand, each agent 
has a sufficient level of autonomy to act in complex and dynamic conditions. 

This work pays particular attention to the application of a modified GBestPSO algorithm, which 
is supplemented by mechanisms of self-organization and adaptation to the influence of external 
factors that disrupt coordination [7]. In combination with behavior trees, this approach allows the 
creation of an architecture capable of solving both strategic tasks at the group level and tactical tasks 
at the individual agent level. 

To verify the effectiveness of the proposed approach, two application scenarios are considered. 

ability to coordinate a collective attack, ensuring synchronization of actions and achievement of the 
goal. The second is reconnaissance of enemy territory, illustrating the effectiveness of the method in 
space allocation tasks and avoiding duplication of actions while maintaining global coordination. 
Both scenarios confirm that the integration of PSO with behavior trees creates the basis for a more 
robust and flexible control architecture in multi-agent systems. 

Thus, the research aims to substantiate and demonstrate the capabilities of a hybrid approach 
combining swarm intelligence and behavior trees as a promising direction for the development of 
technologies for coordinating autonomous agents in complex and dynamic environments. 

2. Related works 

Research into the collective behavior of autonomous agents combines biological inspiration, 
optimization methods, and engineering approaches. Many models are based on the idea of self-
organization, borrowed from observations of animal-flocks of birds, colonies of ants, or swarms of 
insects [8]. These principles were subsequently formalized in the form of optimization algorithms 
and coordination models, which are now actively used in robotics, multi-agent systems, and 
distributed control systems. 

One of the most popular paradigms is Particle Swarm Optimization (PSO), proposed by Kennedy 
and Eberhart in 1995 [3]. It models the process of finding the optimal solution through the dynamics 
of a swarm of particles moving in the search space, guided by their own experience and the successes 
of their neighbors. The GBestPSO modification focuses on the global leader  the most successful 
particle that determines the direction of development of the entire group [7]. This increases the 
convergence speed but makes the system more vulnerable to local minimum and dependent on a 
single center of influence. 

Other swarm algorithms, such as Ant Colony Optimization (ACO) [9] and Bee Colony 
Optimization (BCO) [10], offer different mechanisms for collective decision-making. ACO is widely 
used in routing and logistics problems due to its efficiency in discrete spaces. Its key advantage is 
the use of the phenomenon of stigmergy  indirect interaction through changes in the environment 
(e.g., pheromone trails) [11]. However, the algorithm requires numerous iterations and significant 
resources to maintain global consistency, which reduces its suitability in real-time scenarios. 

Further modifications of swarm algorithms, such as Firefly Algorithm [12], Cuckoo Search [13], 
or Glowworm Swarm Optimization [14], have been proposed to better balance global and local search 
capabilities. They demonstrate high efficiency in theoretical tests but are rarely used in practical 
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robotic systems due to the complexity of parameterization and the lack of proven on-board 
implementations. 

In the early stages of multi-agent system development, simpler approaches were actively used. 
The Boids model, proposed by Reynolds in 1987, was the first simulation of bird flock behavior based 
on three simple rules: alignment, collision avoidance, and attraction to the center of the group [15]. 
Despite its simplicity, this approach is still used in simulations and computer graphics, but its 
limitation lies in the absence of a cognitive level  agents cannot make complex decisions or adapt 
to mission changes. 

Another direction of development is consensus algorithms, which focus on achieving a 
coordinated state among all agents through iterative information exchange. They scale well and have 
proven effective in synchronization tasks but have limited functionality in dynamic environments 
where not only coordination, but also adaptive strategy change is required. 

The leader-follower model, which places responsibility on a key agent, has similar problems [16, 
17]. The loss of a leader or their temporary unavailability leads to a breakdown in coordination, 
making the architecture vulnerable. 

Recent years have been marked by the active introduction of deep reinforcement learning (DRL) 
methods into multi-agent systems [18]. DRL allows agents to learn optimal strategies through trial 
and error, forming policies capable of generalizing new scenarios. Examples include Deep Q-
Network (DQN) [19], Proximal Policy Optimization (PPO) [20], and Multi-Agent Deep Deterministic 
Policy Gradient (MADDPG) [21] algorithms. 

Despite its high potential effectiveness, DRL faces a few limitations. First, training requires 
millions of episodes, making it unsuitable for rapid deployment in the field. Second, the models are 

fication of autonomous systems. Third, 
high computational costs make them unsuitable for implementation on resource-constrained robots 
without powerful GPUs or TPUs [22]. 

Behavior trees (BTs) have become one of the most promising methods for building control 
architectures in robotics [4]. They successfully combine modularity, hierarchy, and flexibility, 
making them a natural development of finite state machines [23] and HTN (Hierarchical Task 
Networks) planners [24]. 

BTs allow you to describe behavior through a combination of control nodes and actions that form 
a tree with a clearly defined execution logic. Their key advantages are: 

• ease of reusing individual subtrees in different tasks 
• ability to easily extend the structure with new nodes without complete redesign 
• absence of a single critical element, even with the loss of individual agents 
• ability to rebuild behavior logic during mission execution. 

In decentralized architectures, BTs allow each agent to make local decisions, coordinating with 
neighbors only at the level of exchanging minimal information. This makes them suitable for large-
scale systems where centralized control is impossible. 

A review of the literature shows that none of the approaches is universal. Swarm optimization 
algorithms are good at global planning and search, but do not provide flexible reactive behavior. 
Conversely, BTs make it easy to model local adaptability and cognitive autonomy but lack 
mechanisms for global optimization. 

That is why modern research shows a tendency toward integrating different methods. For 
example, PSO or GBestPSO can determine the optimal location or distribution of tasks among agents, 
after which local execution is coordinated through BTs [6, 25]. This combination provides both global 
coordination and local autonomy, which is especially important in scenarios with a high level of 
uncertainty or when working in dynamic environments. 

Thus, the current state of research in the field of collective behavior of autonomous agents can 
be characterized as a gradual transition from monolithic approaches to composite architectures that 
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combine the strengths of different methods. Among them, the integration of GBestPSO for global 
search and BTs for local autonomy attracts particular attention. This approach not only solves the 
problems inherent in each of the methods separately but also forms a new level of stability and 
adaptability necessary for building multi-agent systems capable of functioning in real, unpredictable 
conditions. 

3. Hybrid system architecture 

Effective coordination of autonomous agents in a dynamic and resource-constrained environment 
requires a multi-level control system capable of combining global planning with local reactive 
behavior. The proposed architecture is based on the integration of two approaches: Behavior Trees 
(BTs), which provide modularity and flexibility at the tactical level, and the GBest Particle Swarm 
Optimization (GBestPSO) algorithm, which is responsible for the strategic coordination of the entire 
system. 

The architecture has a two-level structure (Fig. 1): the planning level (GBestPSO-Level) and the 
behavior level (BT-Level). 

 
Figure 1: Two-Level Architecture of the Hybrid System 

The planning level (GBestPSO-Level) acts as a global optimizer that forms the strategic basis of 
the mission. Its main functions are: 

• Optimization of the global configuration of the swarm. The GBestPSO algorithm periodically 
calculates the best location of agents in space, considering goals and constraints. 

• Distribution of tasks and roles. Each agent is assigned a subtask that corresponds to its 
capabilities and the strategic goals of the system. 

• Scenario planning. In complex missions, it is possible to form several scenarios of events with 
the subsequent selection of the optimal one. 
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• Replanning. In the event of significant changes in the environment (for example, the 
emergence of new threats or obstacles), GBestPSO is restarted to correct the strategic plan. 

the group of agents and coordinates their actions. Unlike centralized approaches, the architecture 
ly sent to agents, rather than as a real-time 

directive. This allows the system to remain stable even during temporary communication failures. 
The behavior level (BT-Level) determines the individual tactical behavior of each agent, which is 

equipped with a behavior tree. This level includes the following modules: 

• Behavior Manager. Performs real-time interpretation of the behavior tree, activates local 
actions, and rebuilds logic when conditions change. 

• Perception Module. Provides sensor data processing, object recognition, and local 
environment mapping. 

• Local Planner. Responsible for low-level navigation  obstacle avoidance, local SLAM, 
trajectory correction. 

• Adaptation Module. Allows dynamic restructuring of the behavior tree in case of agent loss, 
role change, or communication interruption. 

• Communication Module. Implements information exchange with other agents, including the 
transmission of states, positions, and parts of the behavior tree. 

BT-level provides instant responsiveness to environmental events and allows agents to remain 
operational even when communication with the planning level is lost. 

Thus, GBestPSO provides global coordination, while BTs ensure local autonomy. Their 
interaction is organized through standardized messaging protocols, allowing the system to remain 
functional even in the event of partial communication loss. 

The connection between the planning and behavior levels is organized in such a way as to avoid 
agents' dependence on a single source of information. The algorithm can be described as follows: 
Swarm Optimizer (at the GBestPSO level) calculates the globally best strategy (gBest) and transmits 
it as a message, and BT-level perceives this information as external mission conditions, which are 
reflected in the tree branches. 

In the event of a change in global strategy, the local behavior of agents is automatically adjusted. 
If communication with the planning level is lost, agents act based on the last received reference point, 
maintaining the ability to complete the mission. To distinguish between critical and auxiliary data, 
channels with different priority levels are used: messages about strategy changes have a higher 

: agents remain autonomous but can quickly integrate new information when it becomes 
available. 

The proposed two-level architecture has some key advantages: 

• Each agent can work without being constantly connected to the global planner. 
• Behavior trees are easy to modify and scale for different missions. 
• The system remains operational even if individual agents are lost or communications are 

temporarily disrupted. 
• The architecture allows new algorithms to be integrated without the need for a complete 

system overhaul. 
• It is suitable for a wide range of applications, from reconnaissance and escort to attack 

scenarios or search and rescue operations. 
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Thus, the architecture based on the combination of GBestPSO and BTs provides a balance 
between global optimization and local adaptability. It demonstrates the ability to work effectively in 
conditions of uncertainty, high environmental dynamics, and limited resources. The use of a 
hierarchical approach makes the system fault-tolerant, modular, and suitable for a variety of 
collective interaction scenarios. 

4. Description of simulation scenarios and settings 

Unmanned Aerial Vehicles (UAVs) were selected as autonomous agents for the study. The simulation 
model is based on a hybrid architecture that combines swarm optimization methods (GBestPSO) for 
dynamic modelling of drone trajectories and the Behavior Trees (BT) framework for implementing 
adaptive and fault-tolerant control logic. Each UAV functions as an autonomous agent controlled by 
its own behavior tree, which cyclically processes the current mission status and external influences. 

4.1.  

This scenario simulates a coordinated attack by a swarm of drones on a stationary target, consisting 
of two consecutive phases: approach and formation of a ring of fire. 

4.1.1. Phase 1: approach to the target 

In the initial stage, the drones move toward the target using a modified swarm optimization 
algorithm (GBestPSO). The main difference between this algorithm and others is that the 
acceleration coefficients that regulate the influence of the leader (𝐶1) and the target (𝐶2) are not 
constants but are linearly dependent on the current distance of the drone from the corresponding 
object. 

The equation for updating the speed of drone 𝑖 in direction 𝑗 is as follows: 
𝑣𝑖𝑗(𝑡 + 1) = 𝑣𝑖𝑗(𝑡) + 𝐶1 (𝑑(𝑌𝐿(𝑡), 𝑋𝑖(𝑡))) ∙ 𝑟1(𝑡) ∙ [𝑌𝐿𝑗

(𝑡) − 𝑋𝑖𝑗(𝑡)] + 

+𝐶2 (𝑑(𝑌∗(𝑡), 𝑋𝑖(𝑡))) ∙ 𝑟2(𝑡) ∙ [𝑌𝑗
∗(𝑡) − 𝑋𝑖𝑗(𝑡)], 

(1) 

where coefficients 𝐶1 and 𝐶2 are calculated using the following formulas: 

𝐶1 (𝑑(𝑌𝐿(𝑡), 𝑋𝑖(𝑡))) =
𝐶1𝑚𝑎𝑥 − 𝐶1𝑚𝑖𝑛

‖𝑌𝐿(0) − 𝑋𝑖(0)‖
∙ (𝑌𝐿𝑗(𝑡) − 𝑋𝑖𝑗(𝑡)) + 𝐶1𝑚𝑖𝑛 

 

(2) 

𝐶2 (𝑑(𝑌∗(𝑡), 𝑋𝑖(𝑡))) =
𝐶2𝑚𝑎𝑥 − 𝐶2𝑚𝑖𝑛

‖𝑌∗(0) − 𝑋𝑖(0)‖
∙ (𝑌𝑗

∗(𝑡) − 𝑋𝑖𝑗(𝑡)) + 𝐶2𝑚𝑖𝑛 

 

(3) 

The UAVs follow these routes until the leader of the swarm (the UAV closest to the target) reaches 
the specified attack radius 𝑟0. 

4.1.2. Phase 2: firing by the ring 

Once the leader reaches the target's vicinity with a radius of 𝑟0 (100 200 m), the swarm enters the 
phase of rotation around it. Movement in this phase is described in a polar coordinate system relative 
to the target, which is considered the center. 

The coordinates of the leader 𝑌𝐿 in the Cartesian system can be calculated based on its angular 
position 𝜑𝐿(𝑡) and radius 𝑟0: 

{
𝑦1

𝐿(𝑡) = 𝑟0 ∙ 𝑐𝑜𝑠(𝜑𝐿(𝑡))

𝑦2
𝐿(𝑡) = 𝑟0 ∙ 𝑠𝑖𝑛(𝜑𝐿(𝑡))

 (4) 

The angular position is updated at each step of the simulation using the following formula: 
𝜑𝐿(𝑡 + 1) = 𝜑𝐿(𝑡) + 𝜔𝐿(𝑡)∆𝑡 (5) 

where 𝜔𝐿(𝑡) is the angular velocity of rotation. 
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The synchronization stage of the attack is critically important and is provided through the 
Decorator~ node in the Behavior Tree. This node allows the final attack to begin only after a certain 
minimum number of UAVs (𝑀𝑌∗) reach orbit, ensuring a simultaneous and effective strike. 

The simulation settings for this scenario are shown in Table 1. 

Table 1 
Simulation Settings for Scenario 1 

Parameter Value Description 
Number of UAVs (𝑁) 10-15 Total number of agents in the swarm. 

Ring radius (𝑟0) 100-200 m Radius of rotation of agents around the target. 
Strike synchronisation < 2 sec Maximum permissible delay between attacks by 

individual UAVs. 
Communication ROS2 + DDS Technologies that enable distributed and 

autonomous interaction. 
Time step (∆𝑡) 1-10 sec Adjusted for simulation accuracy. 

UAV velocity vector (𝑉⃗ 𝑖) 10-50 m/s Depends on the motion model and constraints. 
Scale 1:100 One unit (tick) on the axis corresponds to 100 meters 

in the simulation. 

4.2. Scenario 2. Reconnaissance of enemy territory 

This scenario demonstrates the capabilities of a swarm for autonomous reconnaissance, where UAVs 
effectively divide the search area among themselves. The simulation scenario involves coordinating 
a swarm of autonomous agents to conduct reconnaissance of enemy territory. Each UAV is assigned 
a specific area for reconnaissance. The results from all areas are combined into a common map of 
the terrain, which significantly speeds up the process. The main goal is to ensure complete coverage 
of the designated area and localization of reconnaissance targets, considering possible UAV losses 
and route replanning. 

4.2.1. Problem statement 

Let the surveyed area be defined as a rectangular region with coordinates: 
(𝑥𝑠𝑡𝑎𝑟𝑡 , 𝑦𝑠𝑡𝑎𝑟𝑡), (𝑥𝑒𝑛𝑑 , 𝑦𝑒𝑛𝑑) (6) 

The swarm consists of 𝑁 agents, each of which receives an individual area for exploration. Each 
area is defined by a strip along the 𝑋-axis: 

∆𝑥 =
𝑥𝑒𝑛𝑑 − 𝑥𝑠𝑡𝑎𝑟𝑡

𝑁
 (7) 

Coordinates of the 𝑖-th zone: 

{

𝑥𝑙,𝑖 = 𝑥𝑠𝑡𝑎𝑟𝑡 + (𝑖 − 1)∆𝑥

𝑥𝑟,𝑖 = 𝑥𝑠𝑡𝑎𝑟𝑡 + 𝑖∆𝑥
𝑦𝑠𝑡𝑎𝑟𝑡,𝑖 = 𝑦𝑠𝑡𝑎𝑟𝑡 , 𝑦𝑒𝑛𝑑,𝑖 = 𝑦𝑒𝑛𝑑 ,

 (8) 

This data is transmitted to agents via a communication system. 

4.2.2. Routes to reconnaissance areas 

A hybrid GBestPSO+BTs algorithm is used to plan trajectories, where: 

{
𝑋𝑖(𝑘 + 1) = 𝑋𝑖(𝑘) + 𝑣𝑖1(𝑘)∆𝑡𝑖
𝑌𝑖(𝑘 + 1) = 𝑌𝑖(𝑘) + 𝑣𝑖2(𝑘)∆𝑡𝑖

 (9) 

where 𝑉𝑖(𝑘)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = (𝑣𝑖1(𝑘), 𝑣𝑖2(𝑘)) is the velocity vector of UAV 𝑖 at iteration 𝑘, and ∆𝑡𝑖 is the time 
step. 
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The swarm supervisor evaluates the coordinates of the target areas and optimizes the routes to 
avoid collisions and ensure minimum arrival time. 

4.2.3. Movement in the reconnaissance zone 

UAVs move along strips with a width of 𝑑 = 2𝑟0, where 𝑟0 is the observation radius of the UAV. 
Movement along the 𝑌 axis is defined by the equation: 

𝑦𝑖(𝑘 + 1) = 𝑦𝑖(𝑘) + 𝑣𝑖(𝑘)∆𝑡 (10) 

After reaching the upper limit of the survey area, the UAV shifts along 𝑋 by 𝑑
2
 and returns in the 

opposite direction to survey the adjacent strip. 
Conditions for completing the survey of the area: 

𝑥𝑖(𝑘 + 1) +
𝑑

2
≥ 𝑥𝑟,𝑖 (11) 

If some UAVs are lost or an area remains unexplored, the hybrid algorithm determines which 
UAVs should perform a re-survey. To do this, the position update rule is used: 

𝑣𝑖(𝑘 + 1) = 𝑣𝑖(𝑘) + 𝐶1(𝑘)𝑟1(𝑥𝑠𝑡𝑎𝑟𝑡,𝑖 − 𝑥𝑖(𝑘)) (12) 
where 𝐶1(𝑘) is the cognitive influence coefficient, and 𝑟1 ~𝑈(0,1) is a random variable. 
After completing the survey, the UAVs return to their initial coordinates (𝑋𝑖0, 𝑌𝑖0). 
The simulation is configured using the parameters described in Table 2. 

Table 2 
Simulation Settings for Scenario 2 

Parameter Value Description 
Number of UAVs (𝑁) 6-12 The selection depends on the scale of the area. 

Reconnaissance strip width 
(𝑑) 

2𝑟0 Observation radius. 

Time step (∆𝑡) 1-10 sec Adjusted for simulation accuracy. 
Initial zone coordinates 

(𝑥𝑠𝑡𝑎𝑟𝑡, 𝑦𝑠𝑡𝑎𝑟𝑡) 
- Calculated using equation (7). 

Final zone coordinates 
(𝑥𝑒𝑛𝑑 , 𝑦𝑒𝑛𝑑) 

- Calculated using equation (7). 

UAV velocity vector (𝑉⃗ 𝑖) 10-30 m/s Depends on the motion model and 
constraints. 

Cognitive influence 
coefficient (𝐶1(𝑘)) 

0.5-2 Affects the PSO trajectory update. 

Communication ROS2 + DDS Technologies that enable distributed and 
autonomous interaction. 

Scale 1:100 One unit (tick) on the axis corresponds to 100 
meters in the simulation. 

5. Experimental investigations 

were varied. The main performance metrics were: 

• time to attack initiation (number of iterations until the minimum number of UAVs entered 
orbit) 

• total attack completion time (number of iterations until all UAVs targeted the object) 
• UAV loss during approach and attack 
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• uniformity of UAV placement in orbit (average distance between UAVs in orbit). 

During each experiment, the launch of UAV from a certain area of the arena was simulated (Fig. 
2). 

 
Figure 2: Launching UAVs from the Starting Position for Scenario 1 with only BT-based simulation 

After launch, the UAVs were controlled by the internal BTs mechanism and moved to the target 
coordinates along the shortest trajectory (Fig. 3). 

 
Figure 3: Movement of UAVs toward a target under the control of a BTs mechanism 

Table 3 

Behavior Trees (BT) 

Number of 
UAVs 

Iterations 
before the 
start of the 

attack 

Total 
attack 

iterations 

UAV losses Average distance 
between UAVs in orbit 

10 45 112 1 9.2 
15 32 97 2 8.7 
20 28 85 3 8.5 
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The data shows that increasing the number of UAVs speeds up the start of the attack and reduces 
the time it takes to complete it due to faster formation of the orbit around the target. UAV losses 
remain low, indicating the stability of the behavior tree algorithm. 

Table 4 
UAV losses by iterations (example for 15 UAVs) 

Iteration Number of active 
UAVs 

Number of 
UAVs in 

orbit 

Number of attacking UAVs 

0 15 0 0 
20 15 4 0 
32 15 10 5 
50 14 7 7 
97 13 0 13 

The dynamics can be seen graphically in Figure 4, which shows the change in UAV states 
(approach, orbit, attack) over iterations. 

 
Figure 4: Dynamics of UAV State Changes (Approaching, On Orbit, Attacking) by iterations 

The graph shows three stages of UAV behavior: 

• Approaching  UAVs move toward orbit 
• On Orbit  UAVs form a circle around the target 
• Attacking  UAVs attack the target. 

The next series of experiments was conducted to evaluate the effectiveness of the proposed hybrid 

consisted of 15 UAVs that took off from an area located on the right side of the arena and had to 
coordinate and gather around the target at a specified point. 

The purpose of the experiment was to measure the swarm's ability to: 

• form a stable orbit around the target 
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• achieve a uniform angular distribution of UAVs in orbit 
• initiate a coordinated attack when the appropriate conditions are met 
• minimize UAV losses. 

After the launch of the UAVs, the swarm leader was immediately determined (Fig. 5), which was 
at the shortest distance to the target's orbit. 

 
Figure 5: Selecting a Leader among UAVs at the Start of a Mission in a Simulation using the 
GBestPSO+BTs Hybrid Algorithm 

During the movement to the target orbit, the UAVs approached the leader, forming a swarm (Fig. 
6). 

 
Figure 6: Movement of the UAV Swarm to the Target Orbit in a Simulation using the GBestPSO+BTs 
Hybrid Algorithm 

Upon reaching the target orbit, the swarm distributed itself along the orbit (Fig. 7). 
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Figure 7: Distribution of the UAV Swarm along the Target Orbit 

The swarm dispersed in orbit until the minimum number of UAVs required for the attack had 
gathered in orbit. After that, a simultaneous attack from different directions began (Fig. 8). 

 
Figure 8: Simultaneous Attack on the Target with the Minimum Number of UAVs required for the 
Attack 

The key metrics obtained during the experiments are shown in Table 5. 

Table 5 
Key Metrics for Simulating Scenario 1 using the GBestPSO+BTs Hybrid Algorithm 

Metric Value (average for 10 launches) 
Average orbit formation time 

(iterations) 
58.7 

Average number of UAVs in orbit 
during attack 

9 

Average attack initiation time 
(iterations) 

121 

Successful attacks (UAVs that hit the 
target) 

11 

Average number of UAVs lost before 
attack 

2.1 

Overall percentage of successful 
simulations 

100% 
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Figure 9 shows the evolution of the number of UAVs in different states (Approaching, Orbiting, 
Attacking) depending on iterations. 

 
Figure 9: Dynamics of UAV states depending on iterations 

Three distinct phases were observed: 

• Phase I (0 50 iterations), during which most UAVs approach the target, with a few devices 
beginning to enter orbit. 

• Phase II (50 120 iterations), when the number of UAVs in orbit steadily increases, reaching 
a uniform angular distribution. 

• Phase III (after ~120 iterations), when a coordinated attack begins, leading to a sharp decrease 
in the number of UAVs in orbit and an increase in attackers. 

The final series of experiments was conducted to simulate a swarm of UAVs for the 

and was tasked with completely surveying a rectangular reconnaissance area located on the left side 
of the arena. 

 
Figure 10: 
simulated using the GBestPSO+BTs Hybrid Algorithm 
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The UAVs were assigned individual reconnaissance zones and coordinated their actions using 
behavior trees (BTs), while their movement and collision avoidance were controlled by the GBestPSO 
mechanism (Fig. 11). 

 
Figure 11: Movement of a Swarm of UAVs to a Reconnaissance Zone 

Upon reaching the reconnaissance zone, each UAV began surveying a separate area (Fig. 12). 

 
Figure 12: Surveying Separate Areas of the Reconnaissance Zone 

After successfully surveying the entire reconnaissance area, the UAVs returned to their 
permanent deployment location (Fig. 13). 

 
Figure 13: Return of UAVs to Their Permanent Deployment Location 
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For each simulation run, metrics were recorded that characterized the speed and quality of task 
execution, as well as the system's resistance to UAV losses. 

Based on the research conducted, the following key metric values were obtained (Table 6). 

Table 6 
Key Metrics for Simulating Scenario 2 using the GBestPSO+BTs Hybrid Algorithm 

Metric Value (average for 10 runs) 
Average time to reach the 

reconnaissance zone (iterations) 
42 

Average number of completed zones 9.6 out of 10 
Average time to complete full 

coverage (iterations) 
187 

Average number of UAV losses 1.2 
Percentage of completed missions 100% 
The chart (Fig. 14) shows the dynamics of changes in the number of UAVs in different states over 

time. 

 
Figure 14: Dynamics of Changes in UAV States during Simulation 

The dynamics of changes in the number of UAVs depended on the corresponding phase of the 
mission: 

• Phase I (0 50 iterations)  most UAVs move to the areas; the first reconnaissance routes are 
gradually activated. 

• Phase II (50 180 iterations)  the number of UAVs in Reconnaissance mode increases, 
gradually covering the entire area. 

• Phase III (after ~180 iterations)  most UAVs complete their survey of the areas and switch 
to Returning or Awaiting mode. 

6. Analysis and discussion 

Experimental investigations confirm the effectiveness of the proposed hybrid approach, which 
combines swarm optimization (GBestPSO) and behavior trees (BTs). Analysis of the results for two 
key scenarios  

  allows us to draw reasonable conclusions about the advantages of this architecture. 
A comparison of the results for the attack scenario demonstrates the clear advantage of the hybrid 

method over a system that uses only behavior trees. Although the BT-based approach provides a 
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faster start to the attack (28 45 iterations versus 121 in the hybrid), it is inferior in terms of 
coordination quality. Agents controlled only by BTs move toward the target along the shortest 
trajectory, resulting in a less organized formation in orbit. In contrast, the hybrid system uses 
GBestPSO to pre-cluster the swarm around the leader, which, although it takes more time in the 
initial stage, provides significantly better synchronization and uniform angular distribution in orbit. 
This, in turn, leads to a more effective and simultaneous attack from different directions, minimizing 
the target's chances of countering. 

In the reconnaissance scenario, the hybrid algorithm demonstrated high efficiency in solving 
space allocation and fault tolerance problems. The system successfully distributed the 
reconnaissance area between UAVs and ensured complete coverage of the territory, even under 
conditions of simulated agent losses. The two-level architecture plays a key role here: GBestPSO is 
responsible for strategic zone allocation and replanning in case of losses, while BTs control the 
tactical behavior of each UAV within its zone. This confirms that the proposed approach not only 
solves the problem of global optimization but also provides the local autonomy necessary to adapt 
to unpredictable circumstances. 

Thus, the experiments prove the central thesis of the work: the integration of swarm intelligence 
for global planning and behavior trees for local execution creates a synergistic effect. GBestPSO 
provides the system with strategic coordination, while BTs provide tactical flexibility and 
responsiveness. This allows for a balance between global coordination and individual autonomy of 
agents, making hybrid architecture a promising solution for complex missions in dynamic 
environments. 

7. Practical aspects and implementation 

The proposed hybrid architecture is not only theoretically sound, but also practically implementable 
thanks to the use of modern technologies and modularity principles. The implementation is based 
on a two-level structure that includes planning (GBestPSO) and behavior (BT) levels, which interact 
through standardized messaging protocols. 

The key advantages of the architecture in terms of implementation are modularity and scalability. 
Behavior trees are modular by nature, which makes it easy to reuse, extend, and modify the behavior 
logic of agents without having to redesign the entire system. Adding new UAVs to the swarm does 
not require changing the architecture, as GBestPSO works effectively with different numbers of 
agents, and each new agent functions as an independent unit with its own BT. 

An important practical aspect is fault tolerance. The system is designed according to the principle 

agent can continue to perform tasks based on the last instructions received. The loss of individual 
UAVs also does not lead to mission failure, as the system is capable of redistributing tasks among 
active agents. 

Finally, unlike resource-intensive methods such as deep reinforcement learning (DRL), the 
proposed approach is computationally efficient. This makes it suitable for implementation on UAV 
onboard computers with limited hardware resources, which is critical for practical application in the 
field. 

8. Conclusions 

The paper investigated and substantiated the effectiveness of a hybrid approach to coordinating 
autonomous agents, integrating swarm intelligence based on the GBestPSO algorithm and a control 
architecture based on behavior trees (BTs). The main problem addressed by the study is the need to 
ensure a balance between global coordination of group actions and local autonomy of each agent in 
dynamic and unpredictable environments. 
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The proposed two-level architecture, where GBestPSO is responsible for strategic planning and 
BTs for tactical reactive behavior, demonstrated high efficiency in simulation experiments. Two 
application scenarios were analyzed: coordinated swarm attack and territory reconnaissance. 

Key results of the work: 

• The hybrid approach was confirmed to be superior. In the attack scenario, the hybrid system, 
although requiring more time to prepare, provided a significantly higher level of coordination 
and synchronization of the strike compared to the approach based solely on BTs. 

• Fault tolerance and adaptability were demonstrated. In the reconnaissance scenario, the 
system effectively distributed tasks among agents, adapted to UAV losses, and successfully 
completed the mission, confirming its reliability. 

• The synergy of the two methods was substantiated. It was proven that the combination of 
global optimization using GBestPSO and local flexibility of BTs allows creating a system that 
is both purposeful and adaptive. 

Thus, the main contribution of this work is to demonstrate that the integration of swarm 
intelligence and behavior trees is a promising direction for creating a new generation of multi-agent 
systems. Such systems are capable of functioning effectively in complex real-world conditions, 
making them suitable for a wide range of applications, from military operations to search and rescue 
missions. 

9. Future research and applications 

Despite the successful results, there are several promising areas for further development and 
improvement of the proposed hybrid approach. Future research may focus on the following aspects: 

• Expanding the behavior tree library. Creating more complex and versatile sub-trees to 
implement a wider range of tactical actions, such as evading electronic warfare systems, 
dynamically changing roles (e.g., from reconnaissance to strike UAV), or cooperative 
interaction to perform complex tasks. 

• Intellectualization of GBestPSO. Improving the swarm optimization algorithm by integrating 
mechanisms for adapting to dynamic changes in the environment in real time. For example, 
the algorithm parameters could be automatically adjusted depending on the threat level, 
obstacle density, or communication channel availability. 

• Heterogeneous swarms. Adapting the architecture to manage heterogeneous swarms 
consisting of agents with different capabilities (e.g., UAVs for reconnaissance, electronic 
warfare, and strikes). This will require the development of more complex mechanisms for 
distributing tasks and roles at the GBestPSO level. 

• Combination with learning methods. Investigation of the possibilities for synergy between 
the proposed approach and elements of machine learning. For example, reinforcement 
learning methods can be used for offline optimization of behavior tree parameters or 
GBestPSO, which will combine the advantages of transparency and verifiability of classical 
methods with the high efficiency of data-based models. 

• -in-the-
model, followed by a transition to full-scale field tests on real UAVs. This will allow verifying 
the effectiveness of algorithms in conditions of real communication delays, sensor noise, and 
other physical limitations. 

Declaration on Generative AI 
The authors have not employed any Generative AI tools. 
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