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Abstract

In this paper, a hybrid approach for coordinating autonomous agents is proposed, combining swarm
intelligence based on the GBestPSO (Global Best Particle Swarm Optimization) algorithm and behavior trees
(BTs). This approach aims to solve the problem of balancing global coordination of actions and local
autonomy of each agent in dynamic and uncertain environments. The proposed two-level control system
architecture consists of a planning level (GBestPSO-Level) for global optimization and a behavior level (BT-
Level) for tactical behavior. The results were partially supported by the National Research Foundation of
Ukraine, grant No. 2025.06/0022 "Al platform with cognitive services for coordinated autonomous
navigation of distributed systems consisting of a large number of objects".
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1. Introduction

Modern systems with collective interaction of autonomous agents are attracting increasing attention
from researchers due to their ability to solve complex tasks in environments with a high level of
uncertainty [1]. In such systems, agents function in a decentralized manner, exchange information,
and jointly achieve goals, which makes them suitable for use in reconnaissance, monitoring, search
and rescue, logistics, facility security, and other fields [2]. The key challenge in this context is to
develop coordination methods that can ensure a balance between global coordination of actions and
local autonomy of each agent.

Traditional centralized approaches, which assume the existence of a single controller, often prove
ineffective in dynamic environments where there is a possibility of communication loss, system
failure, or the emergence of new obstacles. In contrast, decentralized methods inspired by natural
models of collective behavior, such as swarms of insects or flocks of birds, demonstrate significantly
greater resilience and flexibility. One of the most common tools in this class is the Particle Swarm
Optimization (PSO) algorithm, which allows agents to collectively find effective solutions by
exchanging local and global information [3].

However, PSO alone does not provide a high level of cognition for an individual agent. It allows
determining the direction and trajectory of movement, but does not provide a flexible mechanism
for decision-making in situations where environmental conditions, unforeseen events, or complex

Information Technology and Implementation (IT&I-2025), November 20-21, 2025, Kyiv, Ukraine

* Corresponding author.

" These authors contributed equally.

@) zgurovsm@hotmail.com (M. Zgurovsky); zaychenkoyuri@ukr.net (Yu. Zaychenko); zaichenko.helen@Ill.kpi.ua
(He. Zaichenko); oleksii.kuzmenko@ukr.net (O. Kuzmenko)

@ 0000-0001-5896-7466 (M. Zgurovsky); 0000-0001-9662-3269 (Yu. Zaychenko); 0000-0002-4630-5155 (He. Zaichenko);
0000-0003-1581-6224 (O. Kuzmenko)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
By

127


mailto:zgurovsm@hotmail.com
mailto:zaychenkoyuri@ukr.net
mailto:zaichenko.helen@lll.kpi.ua
mailto:oleksii.kuzmenko@ukr.net
https://orcid.org/0000-0001-5896-7466
https://orcid.org/0000-0001-9662-3269
https://orcid.org/0000-0002-4630-5155
https://orcid.org/0000-0003-1581-6224

interaction scenarios must be considered. In this context, the use of behavior trees (BT) [4] is of
considerable interest. This approach, widely used in robotics and the gaming industry, provides
modularity, hierarchy, and simplicity in describing agent behavior [5]. Using the BT structure, it is
easy to integrate conditions, sequences of actions, and parallel processes, which allows for the
creation of flexible and adaptive control algorithms.

The combination of PSO and BT forms the basis of a hybrid approach in which swarm
optimization is responsible for global coordination and trajectory optimization, while behavior trees
are responsible for local decision-making and tactical responses of agents [6]. This approach provides
a double level of stability: on the one hand, the system's ability to achieve common goals is preserved
even with the loss of individual agents or communication channels; on the other hand, each agent
has a sufficient level of autonomy to act in complex and dynamic conditions.

This work pays particular attention to the application of a modified GBestPSO algorithm, which
is supplemented by mechanisms of self-organization and adaptation to the influence of external
factors that disrupt coordination [7]. In combination with behavior trees, this approach allows the
creation of an architecture capable of solving both strategic tasks at the group level and tactical tasks
at the individual agent level.

To verify the effectiveness of the proposed approach, two application scenarios are considered.
The first is a swarm attack using the “death ring” pattern, which demonstrates the hybrid system's
ability to coordinate a collective attack, ensuring synchronization of actions and achievement of the
goal. The second is reconnaissance of enemy territory, illustrating the effectiveness of the method in
space allocation tasks and avoiding duplication of actions while maintaining global coordination.
Both scenarios confirm that the integration of PSO with behavior trees creates the basis for a more
robust and flexible control architecture in multi-agent systems.

Thus, the research aims to substantiate and demonstrate the capabilities of a hybrid approach
combining swarm intelligence and behavior trees as a promising direction for the development of
technologies for coordinating autonomous agents in complex and dynamic environments.

2. Related works

Research into the collective behavior of autonomous agents combines biological inspiration,
optimization methods, and engineering approaches. Many models are based on the idea of self-
organization, borrowed from observations of animal-flocks of birds, colonies of ants, or swarms of
insects [8]. These principles were subsequently formalized in the form of optimization algorithms
and coordination models, which are now actively used in robotics, multi-agent systems, and
distributed control systems.

One of the most popular paradigms is Particle Swarm Optimization (PSO), proposed by Kennedy
and Eberhart in 1995 [3]. It models the process of finding the optimal solution through the dynamics
of a swarm of particles moving in the search space, guided by their own experience and the successes
of their neighbors. The GBestPSO modification focuses on the global leader — the most successful
particle that determines the direction of development of the entire group [7]. This increases the
convergence speed but makes the system more vulnerable to local minimum and dependent on a
single center of influence.

Other swarm algorithms, such as Ant Colony Optimization (ACO) [9] and Bee Colony
Optimization (BCO) [10], offer different mechanisms for collective decision-making. ACO is widely
used in routing and logistics problems due to its efficiency in discrete spaces. Its key advantage is
the use of the phenomenon of stigmergy — indirect interaction through changes in the environment
(e.g., pheromone trails) [11]. However, the algorithm requires numerous iterations and significant
resources to maintain global consistency, which reduces its suitability in real-time scenarios.

Further modifications of swarm algorithms, such as Firefly Algorithm [12], Cuckoo Search [13],
or Glowworm Swarm Optimization [14], have been proposed to better balance global and local search
capabilities. They demonstrate high efficiency in theoretical tests but are rarely used in practical
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robotic systems due to the complexity of parameterization and the lack of proven on-board
implementations.

In the early stages of multi-agent system development, simpler approaches were actively used.
The Boids model, proposed by Reynolds in 1987, was the first simulation of bird flock behavior based
on three simple rules: alignment, collision avoidance, and attraction to the center of the group [15].
Despite its simplicity, this approach is still used in simulations and computer graphics, but its
limitation lies in the absence of a cognitive level — agents cannot make complex decisions or adapt
to mission changes.

Another direction of development is consensus algorithms, which focus on achieving a
coordinated state among all agents through iterative information exchange. They scale well and have
proven effective in synchronization tasks but have limited functionality in dynamic environments
where not only coordination, but also adaptive strategy change is required.

The leader-follower model, which places responsibility on a key agent, has similar problems [16,
17]. The loss of a leader or their temporary unavailability leads to a breakdown in coordination,
making the architecture vulnerable.

Recent years have been marked by the active introduction of deep reinforcement learning (DRL)
methods into multi-agent systems [18]. DRL allows agents to learn optimal strategies through trial
and error, forming policies capable of generalizing new scenarios. Examples include Deep Q-
Network (DQN) [19], Proximal Policy Optimization (PPO) [20], and Multi-Agent Deep Deterministic
Policy Gradient (MADDPG) [21] algorithms.

Despite its high potential effectiveness, DRL faces a few limitations. First, training requires
millions of episodes, making it unsuitable for rapid deployment in the field. Second, the models are
“black boxes,” which complicates the verification and certification of autonomous systems. Third,
high computational costs make them unsuitable for implementation on resource-constrained robots
without powerful GPUs or TPUs [22].

Behavior trees (BTs) have become one of the most promising methods for building control
architectures in robotics [4]. They successfully combine modularity, hierarchy, and flexibility,
making them a natural development of finite state machines [23] and HTN (Hierarchical Task
Networks) planners [24].

BTs allow you to describe behavior through a combination of control nodes and actions that form
a tree with a clearly defined execution logic. Their key advantages are:

e case of reusing individual subtrees in different tasks

ability to easily extend the structure with new nodes without complete redesign
e absence of a single critical element, even with the loss of individual agents

ability to rebuild behavior logic during mission execution.

In decentralized architectures, BTs allow each agent to make local decisions, coordinating with
neighbors only at the level of exchanging minimal information. This makes them suitable for large-
scale systems where centralized control is impossible.

A review of the literature shows that none of the approaches is universal. Swarm optimization
algorithms are good at global planning and search, but do not provide flexible reactive behavior.
Conversely, BTs make it easy to model local adaptability and cognitive autonomy but lack
mechanisms for global optimization.

That is why modern research shows a tendency toward integrating different methods. For
example, PSO or GBestPSO can determine the optimal location or distribution of tasks among agents,
after which local execution is coordinated through BTs [6, 25]. This combination provides both global
coordination and local autonomy, which is especially important in scenarios with a high level of
uncertainty or when working in dynamic environments.

Thus, the current state of research in the field of collective behavior of autonomous agents can
be characterized as a gradual transition from monolithic approaches to composite architectures that
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combine the strengths of different methods. Among them, the integration of GBestPSO for global
search and BTs for local autonomy attracts particular attention. This approach not only solves the
problems inherent in each of the methods separately but also forms a new level of stability and
adaptability necessary for building multi-agent systems capable of functioning in real, unpredictable
conditions.

3. Hybrid system architecture

Effective coordination of autonomous agents in a dynamic and resource-constrained environment
requires a multi-level control system capable of combining global planning with local reactive
behavior. The proposed architecture is based on the integration of two approaches: Behavior Trees
(BTs), which provide modularity and flexibility at the tactical level, and the GBest Particle Swarm
Optimization (GBestPSO) algorithm, which is responsible for the strategic coordination of the entire
system.

The architecture has a two-level structure (Fig. 1): the planning level (GBestPSO-Level) and the
behavior level (BT-Level).

Planning (GBestPS0) Level

Global Configuration Optimization
Task and Role Allocation
Scanario Plannig

Replaning

«—~— Messaging —

7

Behavior (BT) Level

..

Communication Module

Perception Module Behavior Manager

Local Planner Adaptation Madule

Figure 1: Two-Level Architecture of the Hybrid System

The planning level (GBestPSO-Level) acts as a global optimizer that forms the strategic basis of
the mission. Its main functions are:

e  Optimization of the global configuration of the swarm. The GBestPSO algorithm periodically
calculates the best location of agents in space, considering goals and constraints.

e Distribution of tasks and roles. Each agent is assigned a subtask that corresponds to its
capabilities and the strategic goals of the system.

e  Scenario planning. In complex missions, it is possible to form several scenarios of events with
the subsequent selection of the optimal one.
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e Replanning. In the event of significant changes in the environment (for example, the
emergence of new threats or obstacles), GBestPSO is restarted to correct the strategic plan.

This level can be viewed as the strategic “gravity center” of the system, which defines the goal of
the group of agents and coordinates their actions. Unlike centralized approaches, the architecture
allows GBestPSO to operate as “advice” that is periodically sent to agents, rather than as a real-time
directive. This allows the system to remain stable even during temporary communication failures.

The behavior level (BT-Level) determines the individual tactical behavior of each agent, which is
equipped with a behavior tree. This level includes the following modules:

e Behavior Manager. Performs real-time interpretation of the behavior tree, activates local
actions, and rebuilds logic when conditions change.

e Perception Module. Provides sensor data processing, object recognition, and local
environment mapping.

e Local Planner. Responsible for low-level navigation - obstacle avoidance, local SLAM,
trajectory correction.

e Adaptation Module. Allows dynamic restructuring of the behavior tree in case of agent loss,
role change, or communication interruption.

¢ Communication Module. Implements information exchange with other agents, including the
transmission of states, positions, and parts of the behavior tree.

BT-level provides instant responsiveness to environmental events and allows agents to remain
operational even when communication with the planning level is lost.

Thus, GBestPSO provides global coordination, while BTs ensure local autonomy. Their
interaction is organized through standardized messaging protocols, allowing the system to remain
functional even in the event of partial communication loss.

The connection between the planning and behavior levels is organized in such a way as to avoid
agents' dependence on a single source of information. The algorithm can be described as follows:
Swarm Optimizer (at the GBestPSO level) calculates the globally best strategy (gBest) and transmits
it as a message, and BT-level perceives this information as external mission conditions, which are
reflected in the tree branches.

In the event of a change in global strategy, the local behavior of agents is automatically adjusted.
If communication with the planning level is lost, agents act based on the last received reference point,
maintaining the ability to complete the mission. To distinguish between critical and auxiliary data,
channels with different priority levels are used: messages about strategy changes have a higher
weight than diagnostic telemetry. The interaction between levels is based on the principle of “weak
coupling”: agents remain autonomous but can quickly integrate new information when it becomes
available.

The proposed two-level architecture has some key advantages:

e FEach agent can work without being constantly connected to the global planner.

e Behavior trees are easy to modify and scale for different missions.

e The system remains operational even if individual agents are lost or communications are
temporarily disrupted.

e  The architecture allows new algorithms to be integrated without the need for a complete
system overhaul.

e It is suitable for a wide range of applications, from reconnaissance and escort to attack
scenarios or search and rescue operations.
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Thus, the architecture based on the combination of GBestPSO and BTs provides a balance
between global optimization and local adaptability. It demonstrates the ability to work effectively in
conditions of uncertainty, high environmental dynamics, and limited resources. The use of a
hierarchical approach makes the system fault-tolerant, modular, and suitable for a variety of
collective interaction scenarios.

4. Description of simulation scenarios and settings

Unmanned Aerial Vehicles (UAVs) were selected as autonomous agents for the study. The simulation
model is based on a hybrid architecture that combines swarm optimization methods (GBestPSO) for
dynamic modelling of drone trajectories and the Behavior Trees (BT) framework for implementing
adaptive and fault-tolerant control logic. Each UAV functions as an autonomous agent controlled by
its own behavior tree, which cyclically processes the current mission status and external influences.

4.1. Scenario 1. Swarm attack using the “death ring” pattern

This scenario simulates a coordinated attack by a swarm of drones on a stationary target, consisting
of two consecutive phases: approach and formation of a ring of fire.

4.1.1. Phase 1: approach to the target

In the initial stage, the drones move toward the target using a modified swarm optimization
algorithm (GBestPSO). The main difference between this algorithm and others is that the
acceleration coefficients that regulate the influence of the leader (C;) and the target (C;) are not
constants but are linearly dependent on the current distance of the drone from the corresponding
object.

The equation for updating the speed of drone i in direction j is as follows:

vij(t +1) = vy (0) + €1 (A( (0, X:(0))) - 12 (6) - [ ¥, (8) — Xy (B)] +

(1)
+C, (A(Y* (O, X)) - m2(0) - [¥7(6) = X5 (0],
where coefficients C; and C, are calculated using the following formulas:
Cimax = Cimin (2)
Y (t), X; = (Vi) — X ;
Cl (d( L(t)J l(t))) ”YL(O) _ Xl(0)|| ( Lj (t) ij (t)) + Clmm
(3)

C max ~ C min *
¢ (d(r* . x.®)) = TEOESAOTE (% (®) = X5(©) + Comin

The UAVs follow these routes until the leader of the swarm (the UAV closest to the target) reaches
the specified attack radius 7.

4.1.2. Phase 2: firing by the ring

Once the leader reaches the target's vicinity with a radius of 75 (100-200 m), the swarm enters the
phase of rotation around it. Movement in this phase is described in a polar coordinate system relative
to the target, which is considered the center.

The coordinates of the leader Y; in the Cartesian system can be calculated based on its angular
position ¢; (t) and radius 7y:

{yf(t) = 1y~ cos(p, (1)) W
vz () =10 sin(gL ()
The angular position is updated at each step of the simulation using the following formula:
pL(t+1) =@, (t) + w (DAL (5)
where w; (t) is the angular velocity of rotation.
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The synchronization stage of the attack is critically important and is provided through the
Decorator~ node in the Behavior Tree. This node allows the final attack to begin only after a certain
minimum number of UAVs (My+) reach orbit, ensuring a simultaneous and effective strike.

The simulation settings for this scenario are shown in Table 1.

Table 1
Simulation Settings for Scenario 1
Parameter Value Description
Number of UAVs (N) 10-15 Total number of agents in the swarm.
Ring radius (1) 100-200 m  Radius of rotation of agents around the target.
Strike synchronisation < 2 sec Maximum permissible delay between attacks by
individual UAVs.
Communication ROS2 + DDS Technologies that enable distributed and
autonomous interaction.
Time step (At) 1-10 sec Adjusted for simulation accuracy.

UAV velocity vector (17}) 10-50 m/s  Depends on the motion model and constraints.

Scale 1:100 One unit (tick) on the axis corresponds to 100 meters
in the simulation.

4.2. Scenario 2. Reconnaissance of enemy territory

This scenario demonstrates the capabilities of a swarm for autonomous reconnaissance, where UAVs
effectively divide the search area among themselves. The simulation scenario involves coordinating
a swarm of autonomous agents to conduct reconnaissance of enemy territory. Each UAV is assigned
a specific area for reconnaissance. The results from all areas are combined into a common map of
the terrain, which significantly speeds up the process. The main goal is to ensure complete coverage
of the designated area and localization of reconnaissance targets, considering possible UAV losses
and route replanning.

4.2.1. Problem statement

Let the surveyed area be defined as a rectangular region with coordinates:

(xstart' ystart)' (xend’ Yend) (6)
The swarm consists of N agents, each of which receives an individual area for exploration. Each
area is defined by a strip along the X-axis:
Xend — Xstart
Ax = —M— (7)
N
Coordinates of the i-th zone:
X1i = Xstart + (i - 1)Ax
Xri = Xstare T 10X (®)
Ystart,i = Ystart)Yend,i — Yend»
This data is transmitted to agents via a communication system.

4.2.2. Routes to reconnaissance areas
A hybrid GBestPSO+BTs algorithm is used to plan trajectories, where:
{Xl(k + 1) = Xl(k) + vil(k)Ati (9)
Yi(k +1) = Yi(k) + via (k) At
where V,(k) = (vj1(k),vi2(k)) is the velocity vector of UAV i at iteration k, and At; is the time
step.
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The swarm supervisor evaluates the coordinates of the target areas and optimizes the routes to
avoid collisions and ensure minimum arrival time.

4.2.3. Movement in the reconnaissance zone

UAVs move along strips with a width of d = 27y, where 1y is the observation radius of the UAV.
Movement along the Y axis is defined by the equation:

yilk +1) = y; (k) + v;(k)At (10)
After reaching the upper limit of the survey area, the UAV shifts along X by % and returns in the

opposite direction to survey the adjacent strip.
Conditions for completing the survey of the area:

d
xl-(k + 1) + E = Xr,i (11)
If some UAVs are lost or an area remains unexplored, the hybrid algorithm determines which
UAVs should perform a re-survey. To do this, the position update rule is used:
vi(k +1) = vi(k) + C (k) (Xseare,; — xi(k)) (12)
where C; (k) is the cognitive influence coefficient, and r; ~U(0,1) is a random variable.

After completing the survey, the UAVs return to their initial coordinates (X;q, Yig)-
The simulation is configured using the parameters described in Table 2.

Table 2
Simulation Settings for Scenario 2
Parameter Value Description
Number of UAVs (N) 6-12 The selection depends on the scale of the area.
Reconnaissance strip width 21, Observation radius.
(d)
Time step (At) 1-10 sec Adjusted for simulation accuracy.
Initial zone coordinates - Calculated using equation (7).
(Xstarts Ystart)
Final zone coordinates - Calculated using equation (7).
(xend' Y end)
UAV velocity vector (‘71') 10-30 m/s Depends on the motion model and
constraints.
Cognitive influence 0.5-2 Affects the PSO trajectory update.
coefficient (C; (k))
Communication ROS2 + DDS Technologies that enable distributed and

autonomous interaction.
Scale 1:100 One unit (tick) on the axis corresponds to 100
meters in the simulation.

5. Experimental investigations

The first series of experiments was conducted for the scenario “Swarm attack using the ‘death ring’
pattern” using only behavior trees (BT). The number of UAVs and movement parameter settings
were varied. The main performance metrics were:

e time to attack initiation (number of iterations until the minimum number of UAVs entered
orbit)
e total attack completion time (number of iterations until all UAVs targeted the object)

e UAV loss during approach and attack
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e uniformity of UAV placement in orbit (average distance between UAVs in orbit).

During each experiment, the launch of UAV from a certain area of the arena was simulated (Fig.
2).

Iteration 0 | Active: 15 | Approaching: 15 | On orbit: 0 | Attacking: 0

50
T3 Orbit (r0)
@ Drones (Approaching)
X Target '
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Figure 2: Launching UAVs from the Starting Position for Scenario 1 with only BT-based simulation

After launch, the UAVs were controlled by the internal BTs mechanism and moved to the target
coordinates along the shortest trajectory (Fig. 3).

Iteration 27 | Active: 15 | Approaching: 15 | On orbit: 0 | Attacking: 0

50

25 Orbit (r0)
@ Drones (Approaching)
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Figure 3: Movement of UAVs toward a target under the control of a BTs mechanism

Table 3
Main Simulation Results for the Scenario “Swarm Attack using the ‘Death Ring’ Pattern” using only

Behavior Trees (BT)

Number of Iterations Total UAV losses Average distance
UAVs before the attack between UAVs in orbit
start of the iterations
attack
10 45 112 1 9.2
15 32 97 2 8.7
20 28 85 3 8.5
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The data shows that increasing the number of UAVs speeds up the start of the attack and reduces
the time it takes to complete it due to faster formation of the orbit around the target. UAV losses
remain low, indicating the stability of the behavior tree algorithm.

Table 4
UAV losses by iterations (example for 15 UAVs)
Iteration Number of active Number of Number of attacking UAVs
UAVs UAVs in
orbit

0 15 0 0

20 15 4 0

32 15 10 5

50 14 7 7

97 13 0 13

The dynamics can be seen graphically in Figure 4, which shows the change in UAV states
(approach, orbit, attack) over iterations.

144

121

—
(=)
f

Number of Drones

(]
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=&~ On Orbit
—d— Attacking

Iteration

100

Figure 4: Dynamics of UAV State Changes (Approaching, On Orbit, Attacking) by iterations

The graph shows three stages of UAV behavior:

e  Approaching - UAVs move toward orbit

e On Orbit — UAVs form a circle around the target
e  Attacking - UAVs attack the target.

The next series of experiments was conducted to evaluate the effectiveness of the proposed hybrid
method (GBestPSO+BTs) for a swarm attack scenario based on the “death ring” pattern. The swarm
consisted of 15 UAVs that took off from an area located on the right side of the arena and had to
coordinate and gather around the target at a specified point.

The purpose of the experiment was to measure the swarm's ability to:

e form a stable orbit around the target
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e achieve a uniform angular distribution of UAVs in orbit

e initiate a coordinated attack when the appropriate conditions are met

e minimize UAV losses.

After the launch of the UAVs, the swarm leader was immediately determined (Fig. 5), which was
at the shortest distance to the target's orbit.

Iteration O | Active: 15 | Approaching: 15 | On orbit: 0 | Attacking: 0

50
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Figure 5: Selecting a Leader among UAVs at the Start of a Mission in a Simulation using the

GBestPSO+BTs Hybrid Algorithm

During the movement to the target orbit, the UAVs approached the leader, forming a swarm (Fig.

6).

Iteration 35 | Active: 12 | Approaching: 12 | On orbit: 0 | Attacking: 0
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Figure 6: Movement of the UAV Swarm to the Target Orbit in a Simulation using the GBestPSO+BTs

Hybrid Algorithm

Upon reaching the target orbit, the swarm distributed itself along the orbit (Fig. 7).
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Iteration 48 | Active: 8 | Approaching: 1 | On orbit: 7 | Attacking: 0
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Figure 7: Distribution of the UAV Swarm along the Target Orbit

The swarm dispersed in orbit until the minimum number of UAVs required for the attack had
gathered in orbit. After that, a simultaneous attack from different directions began (Fig. 8).

Iteration 50 | Active: 6 | Approaching: 0 | On orbit: 0 | Attacking: 6
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Figure 8: Simultaneous Attack on the Target with the Minimum Number of UAVs required for the
Attack

The key metrics obtained during the experiments are shown in Table 5.

Table 5
Key Metrics for Simulating Scenario 1 using the GBestPSO+BTs Hybrid Algorithm
Metric Value (average for 10 launches)
Average orbit formation time 58.7
(iterations)
Average number of UAVs in orbit 9
during attack
Average attack initiation time 121
(iterations)
Successful attacks (UAVs that hit the 11
target)
Average number of UAVs lost before 2.1
attack
Overall percentage of successful 100%
simulations
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Figure 9 shows the evolution of the number of UAVs in different states (Approaching, Orbiting,
Attacking) depending on iterations.
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Figure 9: Dynamics of UAV states depending on iterations
Three distinct phases were observed:

e Phase I (0-50 iterations), during which most UAVs approach the target, with a few devices
beginning to enter orbit.

e  Phase II (50-120 iterations), when the number of UAVs in orbit steadily increases, reaching
a uniform angular distribution.

o  Phase III (after ~120 iterations), when a coordinated attack begins, leading to a sharp decrease
in the number of UAVs in orbit and an increase in attackers.

The final series of experiments was conducted to simulate a swarm of UAVs for the
“Reconnaissance of enemy territory” scenario. The swarm took off from the launch zone (Fig. 10)
and was tasked with completely surveying a rectangular reconnaissance area located on the left side

of the arena.

Iteration 0 | Active Drones: 10

Launch Zone
@ Approaching Zone
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Figure 10: Start of the Mission for the “Reconnaissance of Enemy Territory” Scenario when

simulated using the GBestPSO+BTs Hybrid Algorithm
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The UAVs were assigned individual reconnaissance zones and coordinated their actions using
behavior trees (BTs), while their movement and collision avoidance were controlled by the GBestPSO
mechanism (Fig. 11).
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Figure 11: Movement of a Swarm of UAVs to a Reconnaissance Zone

Upon reaching the reconnaissance zone, each UAV began surveying a separate area (Fig. 12).

Figure 12: Surveying Separate Areas of the Reconnaissance Zone
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After successfully surveying the entire reconnaissance area, the UAVs returned to their
permanent deployment location (Fig. 13).
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Figure 13: Return of UAVs to Their Permanent Deployment Location
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For each simulation run, metrics were recorded that characterized the speed and quality of task

execution, as well as the system's resistance to UAV losses.
Based on the research conducted, the following key metric values were obtained (Table 6).

Table 6
Key Metrics for Simulating Scenario 2 using the GBestPSO+BTs Hybrid Algorithm
Metric Value (average for 10 runs)
Average time to reach the 42
reconnaissance zone (iterations)
Average number of completed zones 9.6 out of 10
Average time to complete full 187
coverage (iterations)
Average number of UAV losses 1.2
Percentage of completed missions 100%

The chart (Fig. 14) shows the dynamics of changes in the number of UAVs in different states over

time.
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Figure 14: Dynamics of Changes in UAV States during Simulation

The dynamics of changes in the number of UAVs depended on the corresponding phase of the
mission:

o  Phase I (0-50 iterations) — most UAVs move to the areas; the first reconnaissance routes are
gradually activated.

o Phase II (50-180 iterations) — the number of UAVs in Reconnaissance mode increases,
gradually covering the entire area.

e  Phase III (after ~180 iterations) — most UAVs complete their survey of the areas and switch
to Returning or Awaiting mode.

6. Analysis and discussion

Experimental investigations confirm the effectiveness of the proposed hybrid approach, which
combines swarm optimization (GBestPSO) and behavior trees (BTs). Analysis of the results for two
key scenarios — “Swarm attack using the ‘death ring’ pattern” and “Reconnaissance of enemy

territory” — allows us to draw reasonable conclusions about the advantages of this architecture.
A comparison of the results for the attack scenario demonstrates the clear advantage of the hybrid
method over a system that uses only behavior trees. Although the BT-based approach provides a
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faster start to the attack (28-45 iterations versus 121 in the hybrid), it is inferior in terms of
coordination quality. Agents controlled only by BTs move toward the target along the shortest
trajectory, resulting in a less organized formation in orbit. In contrast, the hybrid system uses
GBestPSO to pre-cluster the swarm around the leader, which, although it takes more time in the
initial stage, provides significantly better synchronization and uniform angular distribution in orbit.
This, in turn, leads to a more effective and simultaneous attack from different directions, minimizing
the target's chances of countering.

In the reconnaissance scenario, the hybrid algorithm demonstrated high efficiency in solving
space allocation and fault tolerance problems. The system successfully distributed the
reconnaissance area between UAVs and ensured complete coverage of the territory, even under
conditions of simulated agent losses. The two-level architecture plays a key role here: GBestPSO is
responsible for strategic zone allocation and replanning in case of losses, while BTs control the
tactical behavior of each UAV within its zone. This confirms that the proposed approach not only
solves the problem of global optimization but also provides the local autonomy necessary to adapt
to unpredictable circumstances.

Thus, the experiments prove the central thesis of the work: the integration of swarm intelligence
for global planning and behavior trees for local execution creates a synergistic effect. GBestPSO
provides the system with strategic coordination, while BTs provide tactical flexibility and
responsiveness. This allows for a balance between global coordination and individual autonomy of
agents, making hybrid architecture a promising solution for complex missions in dynamic
environments.

7. Practical aspects and implementation

The proposed hybrid architecture is not only theoretically sound, but also practically implementable
thanks to the use of modern technologies and modularity principles. The implementation is based
on a two-level structure that includes planning (GBestPSO) and behavior (BT) levels, which interact
through standardized messaging protocols.

The key advantages of the architecture in terms of implementation are modularity and scalability.
Behavior trees are modular by nature, which makes it easy to reuse, extend, and modify the behavior
logic of agents without having to redesign the entire system. Adding new UAVs to the swarm does
not require changing the architecture, as GBestPSO works effectively with different numbers of
agents, and each new agent functions as an independent unit with its own BT.

An important practical aspect is fault tolerance. The system is designed according to the principle
of “weak connection” between levels. Even if communication with the global planner is lost, the
agent can continue to perform tasks based on the last instructions received. The loss of individual
UAVs also does not lead to mission failure, as the system is capable of redistributing tasks among
active agents.

Finally, unlike resource-intensive methods such as deep reinforcement learning (DRL), the
proposed approach is computationally efficient. This makes it suitable for implementation on UAV

onboard computers with limited hardware resources, which is critical for practical application in the
field.

8. Conclusions

The paper investigated and substantiated the effectiveness of a hybrid approach to coordinating
autonomous agents, integrating swarm intelligence based on the GBestPSO algorithm and a control
architecture based on behavior trees (BTs). The main problem addressed by the study is the need to
ensure a balance between global coordination of group actions and local autonomy of each agent in
dynamic and unpredictable environments.
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The proposed two-level architecture, where GBestPSO is responsible for strategic planning and
BTs for tactical reactive behavior, demonstrated high efficiency in simulation experiments. Two
application scenarios were analyzed: coordinated swarm attack and territory reconnaissance.

Key results of the work:

e  The hybrid approach was confirmed to be superior. In the attack scenario, the hybrid system,
although requiring more time to prepare, provided a significantly higher level of coordination
and synchronization of the strike compared to the approach based solely on BTs.

e Fault tolerance and adaptability were demonstrated. In the reconnaissance scenario, the
system effectively distributed tasks among agents, adapted to UAV losses, and successfully
completed the mission, confirming its reliability.

e The synergy of the two methods was substantiated. It was proven that the combination of
global optimization using GBestPSO and local flexibility of BTs allows creating a system that
is both purposeful and adaptive.

Thus, the main contribution of this work is to demonstrate that the integration of swarm
intelligence and behavior trees is a promising direction for creating a new generation of multi-agent
systems. Such systems are capable of functioning effectively in complex real-world conditions,
making them suitable for a wide range of applications, from military operations to search and rescue
missions.

9. Future research and applications

Despite the successful results, there are several promising areas for further development and
improvement of the proposed hybrid approach. Future research may focus on the following aspects:

e Expanding the behavior tree library. Creating more complex and versatile sub-trees to
implement a wider range of tactical actions, such as evading electronic warfare systems,
dynamically changing roles (e.g., from reconnaissance to strike UAV), or cooperative
interaction to perform complex tasks.

e Intellectualization of GBestPSO. Improving the swarm optimization algorithm by integrating
mechanisms for adapting to dynamic changes in the environment in real time. For example,
the algorithm parameters could be automatically adjusted depending on the threat level,
obstacle density, or communication channel availability.

e Heterogeneous swarms. Adapting the architecture to manage heterogeneous swarms
consisting of agents with different capabilities (e.g., UAVs for reconnaissance, electronic
warfare, and strikes). This will require the development of more complex mechanisms for
distributing tasks and roles at the GBestPSO level.

e Combination with learning methods. Investigation of the possibilities for synergy between
the proposed approach and elements of machine learning. For example, reinforcement
learning methods can be used for offline optimization of behavior tree parameters or
GBestPSO, which will combine the advantages of transparency and verifiability of classical
methods with the high efficiency of data-based models.

e Transition to physical testing. Conducting experiments using the “hardware-in-the-loop”
model, followed by a transition to full-scale field tests on real UAVs. This will allow verifying
the effectiveness of algorithms in conditions of real communication delays, sensor noise, and
other physical limitations.
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