CEUR-WS.org/Vol-4158/Paperl2.pdf

CEUR
E Workshop
Proceedings

published 2026-02-07

Interpretable Machine Learning using Visibility Graph
and Random Forests

Andrii Bielinskyi*?**, Vladimir Soloviev*, Andriy Matviychuk®" and
Halyna Velykoivanenko®*

! Kyiv National Economic University named after Vadym Hetman, 54/1 Beresteysky Ave., Kyiv, 03057, Ukraine
2 State University of Economics and Technology, 16 Medychna Str., Kryvyi Rih, 50005, Ukraine
* Kryvyi Rih State Pedagogical University, 54 Gagarin Ave., Kryvyi Rih, 50086, Ukraine

Abstract

We examine whether network representations of financial series produce interpretable predictive signals.
Daily S&P 500 prices are mapped to Natural Visibility Graph (NVG), from which we extract multi-scale
topological and spectral descriptors using overlapping windows of 100, 250, and 500 trading days. These
features drive Random Forest (RF) models for two 7-day-ahead tasks: (i) directional classification (up/down)
and (ii) magnitude regression of standardized forward returns, with training and evaluation conducted in
temporal order. RFs are used for their robustness to heterogeneous inputs and their built-in mean decrease
in impurity (MDI), enabling direct ranking of NVG features by contribution to performance. Out-of-sample,
the classifier attains ROC-AUC = 0.62 and accuracy = 0.584 on balanced classes - statistically meaningful
yet economically modest. Beyond point accuracy, the approach yields transparent importance profiles that
identify which NVG attributes are most informative for short-horizon forecasts. Overall, the evidence
indicates that VG features provide complementary, structure-aware information for stock-index prediction
while preserving interpretability through RF-based importance analysis.
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1. Introduction

Financial indexes like the S&P 500 display rich, nonlinear behavior that challenges conventional
forecasting. A growing line of work uses complex network theory to represent time series as graphs,
enabling structural analysis across scales [1]. In particular, the visibility graph (VG) maps each time
point to a node and links pairs that have a direct line of sight in the time—value plane, translating
geometric relations into network topology [2]. This representation preserves key properties of the
signal and supports high-level descriptors - e.g., connectivity and clustering — that summarize
temporal dynamics [3, 4]. In short, network mappings let us study financial series with graph-
theoretic tools, yielding features that capture temporal complexity beyond standard statistics.

The rationale for network-based forecasting is to expose structural information that time-domain
methods can miss. Measures such as average degree, clustering, spectral radius, and path-length
statistics quantify the topology of a series’ VG and relate to phenomena like volatility clustering and
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cyclicity [1, 3]. Prior studies show that VGs retain essential dynamics and produce discriminative
features for prediction [3, 5]; for equity indices, VG-based analysis has delivered signals at both short
and longer horizons [5, 6]. This aligns with a broader trend of combining topological data analysis
with machine learning (ML), since network-derived features complement traditional predictors and
enrich the feature set [1, 9].

At the same time, interpretability has become central in ML - especially in finance, where
understanding model rationale is critical. Black-box models (e.g., deep networks) can obscure
decision drivers and raise risk concerns [7]. Random Forests (RFs) offer a middle ground: competitive
accuracy together with built-in feature importance that quantifies each predictor’s contribution to
error reduction across trees [8]. Such transparency is valuable for analysts and regulators who need
to know which inputs drive forecasts. RFs therefore bridge complex, data-driven analysis and the
need for explanation.

Motivated by these developments, we study RFs as interpretable rankers of VG-derived features
for financial forecasting. Using the S&P 500, we construct VGs on sliding windows of 100, 250, and
500 trading days to capture evolving structure [2, 3]. From each window we extract topological
descriptors (average degree, clustering, spectral radius, path-length metrics), then train RFs for two
tasks: (i) regression of the 7-day forward return and (ii) classification of 7-day direction. Our objective
is not to surpass forecasting benchmarks, but to use RFs to identify which VG features carry the
strongest predictive signal.

In summary, we integrate complex network representations with interpretable ML to advance
financial time-series modeling. Representing an index as a VG yields a spectrum of structural features
[2-4]; RF analysis then highlights the most informative among them for short-term forecasting [8].
The approach ties time-series network characteristics to later market movements and provides a
practical, feature-oriented guide for prioritizing the most impactful complex-network features.

2. Literature Review

2.1.  Network-Based Approaches in Financial Market Analysis and Forecasting

VGs map a time series into a network by linking samples that satisfy a line-of-sight criterion, pre-
serving salient geometric dynamics of the original signal [1, 2, 10]. For financial data, VGs uncover
scale-free degree distributions and long-range dependence (e.g., global indices with power-law scal-
ing), and VG-based metrics — degree statistics, entropy, clustering — capture nonlinear patterns that
traditional statistics may miss; they have also been used for characterization and prediction of price
movements [11-13].

Complementary to VGs, correlation-based market networks (and their minimum spanning trees,
MSTs) reveal hierarchical structures (e.g., sectoral clustering) and trace regime shifts: during crises
networks densify and lose modularity; in tranquil phases they are sparser and more fragmented [14-
18]. Such topology shifts support regime detection and systemic-risk analysis, while spillover and
co-movement graphs help model contagion across markets [19, 20].

Beyond description, forecasting the network itself (e.g., correlation-link addition/removal) via ML
with node/edge features improves predictive accuracy over raw correlations and enhances portfolio
rebalancing and risk control [21, 22]. Network centrality also informs allocation: favoring peripheral
(low-centrality) assets tends to improve diversification and stabilize performance in stress periods
[23].

Recent work leverages graph neural networks (GNNs) to jointly learn temporal and cross-sec-
tional dependencies. Spatio-temporal GAT variants (e.g., FSTGAT) have outperformed
LSTM/XGBoost baselines, particularly in volatile regimes, and can anticipate turning points by learn-
ing dynamic inter-asset relations — though interpretability remains a key concern prompting re-
search on explainable GNNs [24-29].
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Recent work integrates VG features ML models for time-series forecasting and classification, lev-
eraging network metrics — such as degree, path length, and centrality — as informative representa-
tions of temporal patterns [30, 31]. In finance, studies like these [32, 33] showed that VG-derived
topological indicators rise during market turbulence, enabling classifiers such as SVM and k-NN to
predict next-day volatility with over 70% accuracy. Yao similarly used VG metrics with logistic re-
gression to classify stock valuations, and Kutluana et al. applied weighted VGs to heartbeat data for
medical prediction tasks [34, 35]. These examples underscore VG features’ utility across domains,
particularly in interpretable ML settings [36, 37].

Among ML approaches, RFs are especially well-suited for VG-based forecasting due to their flex-
ibility and built-in feature importance metrics. Studies by Singh et al. and Bocaccio et al. have demon-
strated improved accuracy using RFs with VG inputs in contexts ranging from financial time series
to audio signal classification [38, 39]. In finance, RFs not only match or exceed traditional models in
forecasting tasks (e.g. S&P 500 direction) but also clarify which VG metrics - like clustering or degree
heterogeneity — most influence predictions [40, 41].

Network-based methods - from correlation graphs to GNNs — have proven effective in capturing
complex dependencies in financial data that traditional models often miss [26, 28, 30, 42]. This study
contributes to that paradigm by using VGs to transform individual stock time series into networks,
enabling the extraction of topological features (e.g., degree, clustering, motifs) that reveal volatility
and structural complexity [1-3, 33, 37, 41]. VG features thus offer intra-series analogs to inter-asset
correlation networks, encoding rich temporal dynamics.

We extend this framework by pairing VG-derived features with RF, emphasizing interpretability
alongside predictive performance. Unlike black-box models such as GNNs, RFs provide transparent
insights via feature importance scores, supporting explainable Al in finance. Our approach bridges
descriptive VG analysis and interpretable forecasting, showing how structural features of price series
can improve predictions while revealing which patterns matter most. By doing so, we advance struc-
ture-aware modeling with a method that is both rigorous and accessible for practical decision-mak-
ing.

3. Research Methodology

3.1.  Visibility Graph Representation

We generate VGs from time series data using the natural VG (NVG) algorithm, following the ap-
proach introduced in the original study [2]. In this method, each time point i becomes a node, and
two nodes i < j are connected if there is an unobstructed “line of sight” between them - i.e., if every
intermediate point k with i < k < j satisfies:

j—i

j=k

This condition ensures the straight line connecting points (i, x;) and (j, x;) lies above all inter-

X < X;j + (xl- —xj)

mediate points (k, x;,), establishing visibility. Applying this rule, we construct an undirected VG G =
(V,E), where |V| = N nodes correspond to the time series length. Due to the nature of the construc-
tion, each VG is fully connected across consecutive time steps. The resulting binary, symmetric ad-
jacency matrix A encodes the structural profile of the time series as a complex network. All further
network-based analysis is conducted on these graphs.

3.2.  Spectral and Topological Measures of Network Structure

Once the VGs are constructed, we compute a suite of topological and spectral metrics to quantify
their structural properties.

Clustering Metrics: Global Clustering Coefficient (C) captures the likelihood of triangle for-
mation by averaging local clustering over all nodes: C = N~* YN 2E;/k;(k; — 1) where E; is the

148



number of connections among node i’s neighbors. Transitivity (T ) measures the ratio of closed tri-
plets to all connected triplets, indicating overall triangle density. Square Clustering evaluates the fre-
quency of 4-node cycles, reflecting square-like substructures in the graph.

Efficiency and Path Length: Global Efficiency Eg,p, is the average inverse shortest-path length
across all node pairs, indicating network-wide navigability. Local Efficiency Ej,. captures the effi-
ciency within each node’s neighborhood subgraph, assessing fault tolerance. Small-world networks
typically exhibit high Ej,. and low average path length, combining local clustering with global con-
nectivity.

Assortativity (r): Measures the correlation of node attributes (e.g., degree) at both ends of an
edge. Positive r implies similar nodes connect; negative r implies dissimilarity.

Centrality and Hubs: Maximum Degree k,,,, indicates the most connected node, suggesting
dominant time points. Betweenness Centrality b, quantifies how often a node lies on shortest paths,
highlighting influential “bridges” in the time series that may correspond to market regime shifts.

Small-Worldness (S): Defined as (C/C,)/(L/L,), where C, and L, are clustering and path
length in a random graph. S > 1 indicates small-world structure — high local clustering with short
global paths.

Spectral Measures: Graph Index Complexity (GIC ) uses the spectral radius 4,,,4, of the adjacency
matrix to capture structural complexity: GIC = 1 — (2¢ — 1)2, where c is the normalized spectral
radius. GIC peaks for intermediate connectivity, distinguishing graphs that are neither too sparse
nor too dense. Algebraic Connectivity A, (second-smallest Laplacian eigenvalue) reflects overall net-
work cohesion and robustness. Adjacency Spectral Gap 6, = A, — A, assesses the dominance of the
leading eigenmode; a large gap suggests integration, while a small gap indicates community struc-
ture.

Together, these metrics characterize both local motifs and global architecture of the VG, offering
a multi-scale view of the time series’ underlying structure.

3.3. Random Forest for Regression and Classification

RF are ensemble models that combine multiple decision trees to enhance prediction accuracy and
reduce overfitting. In classification, each tree votes, and the majority class is chosen; in regression,
predictions are averaged [8]. By aggregating trees trained on bootstrapped data and using random
subsets of features at each split, RF reduces variance and improves generalization compared to single
decision trees.

Each tree is built using recursive binary splits, selecting the feature and threshold that maximize
impurity reduction (e.g., Gini index or variance). Splitting continues until a stopping criterion is met
(e.g., max depth or minimum node size). This results in diverse trees that capture complex patterns
while ensemble averaging controls overfitting.

Key RF hyperparameters include:

e n_estimators: Number of trees (e.g., 100-500). More trees generally reduce variance,
with diminishing returns beyond a point.

e max_features: Number of features considered at each split. Smaller values increase di-
versity but may raise bias. Defaults are Vp for classification and full feature sets for re-
gression.

e max_depth: Maximum tree depth. Fully grown trees (no limit) are common, but limiting
depth can reduce complexity and overfitting.

e min_samples_split/leaf: Minimum number of samples to split or form a leaf, used to
regularize overly deep trees.

e bootstrap: Whether to use bootstrapped samples. When enabled (default), it increases
diversity and allows for out-of-bag error estimation.
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Additional parameters like max_leaf nodes or n_jobs aid in controlling tree size or parallelizing
training. In this study, RF is implemented using Scikit-learn, and hyperparameters are tuned empir-
ically via validation or randomized search [43].

3.4.  Tree’s Feature Importance from Mean Decrease in Impurity (MDI)

RFs provide embedded feature importance via the MDI - often called Gini importance when using
the Gini index [8]. For feature X;, its importance is the average, over all M trees, of the impurity
reductions from splits on X;, weighted by the node sample fraction:

M
1 N
mp(X;) =+ Z Z —LAI(D).

m=1 tE€Ty:
v(se)=X;

Importances are non-negative and typically normalized to sum to 1. MDI is fast and useful for
ranking predictors and for feature selection; averaging across many randomized trees also stabilizes
estimates [44].

MDI is computed on training splits and can overstate importance; validate selections with cross-
validation. It also favors high-cardinality/continuous features [45]. As a check, use permutation im-
portance (mean decrease in accuracy) on held-out data, which is more computationally costly but
less biased [46]. In practice, combine MDI (quick heuristic) with permutation tests (robust verifica-
tion) for reliable, interpretable feature ranking.

3.5.  Time Series Preprocessing and Sliding Window Analysis

We address long-horizon nonstationarity with an overlapping sliding-window scheme. For daily S&P
500 prices S; and window lengths w € {100,250, 500}, each segment W;,, = {S¢_ 41, ..., S¢} for
t =w,...,T is mapped via the natural-visibility rule to a VG G¢,. From each G;,, we compute a

descriptor vector (p(Gt‘W) € RP; concatenating scales yields a multi-scale feature stream

T
X = [(P(Gt,loo)T;(P(Gt,zso)T'QU(Gt,soo)T] .

Overlapping windows smooth feature evolution and enable high-resolution tracking of structural
change. Crucially, features at time ¢ use only W, (no look-ahead). The sample spans 23 Dec 1981-
21 Aug 2025.

Targets use a 7-day horizon h = 7. The forward return is

Rep = (Sevn — S¢)/S¢.
standardized with a trailing 50-day window:

1 -1 1 _ 2
He =55 s=t-50 Rs,py 0¢ = \/4_9 gz%—SO(Rs,h —llt) yTen = (Rt,h - llt)/at-

We use 1), for regression and y., = Sign(rt,h) for classification. Standardization mitigates
drift/volatility shifts and helps balance Up/Down classes.

3.6. Hyperparameters Tuning

We tune hyperparameters 8 € 0 via randomized search, which explores high-impact ranges effi-
ciently without the combinatorial cost of grid search. Evaluation is time-aware: a 5-split purged,
expanding cross-validation with an embargo g = 500 days (equal to the maximum feature window
Wiax = 500 prevents leakage from overlapping windows.

Let 1 <1y <+ <7tk <T. For split k: train = [1, 7], embargo = (ty, T + g], test = (7 +
g, Tie+1]- For each candidate 8 and split k, we fit on the train set and score on the test set using
the task-appropriate metric. The cross-validated objective is
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K

R 1

Jj() = Ez Scorey (0),
k=1

and we select 8* = argmaxgeg /() (or argmin, depending on the metric).
This procedure emulates real-time deployment and strictly enforces temporal separation. We run
it independently per model class (e.g., RF with varied nggtimatorss max_depth, max_features, etc.).

3.7. Scoring Metrics and Evaluation Performance

We use time-ordered samples {(x;, rt,h)}{;g;, where x, € RP are VG descriptors and 1y is the h-
day standardized return (h = 7). For direction, labels are y, , = 1{rt,h > 0} € {+1,—-1}.

Modeling & tuning. Regression fits 7y, = fy(x¢); we tune hyperparameters A via purged, for-
ward-chaining CV by minimizing the median absolute error (MedAE) across splits, then refit on the
full training range. For classification, we maximize mean ROC-AUC across splits.

Error metrics (regression), with e; = y; — J;:

e MAE=N"1YN_|el;

e MSE=N"1YN_ e?

e RMSE = VMSE;

e R*=1- Zjiv=1(}’i - 37i)2/21iv=1(yi - 3_’)2-

Classification metrics (TP, TN, FP, FN):

e ACC = (TP + TN)/(TP + TN + FP + FN);
e Prec =TP/(TP + FP);

e Rec =TP/(TP + FN);

e F1 = (2 Prec-Rec)/(Prec + Rec).

Report per-class scores and summarize by macro average C~1 Y., Metric, or weighted average
Y.c(n./N)Metric,.

4. Empirical Results

This section evaluates the short-horizon predictive content of VG features for the S&P 500. We con-
sider two 7-day tasks: (i) directional classification (Up/Down) and (ii) magnitude regression of stand-
ardized forward returns. Models are trained and tested in temporal order using a rolling-origin setup
with non-overlapping test blocks; all results are out-of-sample. Unless noted, the classifier uses a 0.5
decision threshold, and regression is summarized by median/mean errors.

Table 1 summarizes performance metrics for the studied RF classifier.

Table 1
Performance metrics for RF classifier
Precision Recall F1-score

Up 0.5842 0.5857 0.5850
Down 0.5836 0.5822 0.5829
Accuracy 0.5839 0.5839 0.5839
Macro average 0.5839 0.5839 0.5839
Weighted average 0.5839 0.5839 0.5839
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The classifier shows moderate ranking ability: AUC = 0.62, i.e., a random Up case outranks a
Down case ~62% of the time. Class-wise scores are tightly aligned — Up: Precision = 0.5842,
Recall = 0.5857, F1-score = 0.5850; Down: Precision = 0.5836, Recall = 0.5822, F1-score =
0.5829 - indicating no material class bias at the default threshold and roughly symmetric type-I/II
errors. Because the test set is essentially balanced, Accuracy = 0.5839, Macro = 0.5839, and
Weighted = 0.5839 coincide. Interpreted probabilistically, the model is correct ~58.4% of the time
— better than chance (50%) but economically modest without further tuning.

Performance could likely improve with (i) threshold optimization, (ii) probability calibration, and
(iii) cost-sensitive training when false-positive/false-negative costs differ. Overall, the results reflect
a balanced, threshold-dependent signal: the model captures useful structure, but converting ranking
skill into higher decision accuracy requires careful operating-point selection and/or feature/model
refinements.

Figure 1 demonstrates top-20 impurity-based feature importances for RF classifier.

Top 20 Feature Importances - Random Forest (classification)

GlobalEfficiency 250
Transitivity 250
graph_complexity index 500 t-4
graph_complexity index 250 t-7
GlobalEfficiency 250_t-1
Transitivity 250 t-1
Transitivity 250 t-2
graph_complexity index 250
graph_complexity index 500
graph_complexity index 500 t-5
GlobalEfficiency 500
graph_complexity index 250 t-5
graph_complexity_index_250_t-4
graph_complexity_index_500_t-1
graph_complexity index 500 t-3
graph_complexity index 250 t-6
graph_complexity index 500 t-6
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Figure 1: Top-20 impurity-based feature importances for RF classifier (7-day direction). Bars show
MDI contributed by each VG-derived predictor; scores are averaged over trees and normalized.
Subscripts denote the construction window (e.g., “_250”, “_500").

Predictive weight is concentrated in meso-scale VG measures. Features from the 250-day window
lead, 500-day contribute secondarily, and 100-day add little for a 1-week horizon. Node-centric ex-
tremes (DegreeMax) and path brokerage (GlobalBetweennessCentrality) rank near the tail, indicat-
ing reliance on global/topological organization rather than local hubs.

High efficiency (short paths) and transitivity (triadic closure) signal globally navigable yet locally
cohesive structures that precede directional moves. Repeated GIC entries suggest that distance from
path-like or clique-like extremes is systematically informative (or that correlated proxies capture the
same regime).

MDI is relative and sensitive to feature correlation; importance can disperse across similar fea-
tures and provides no direction of effect.

Features summarizing global navigability, local cohesion, and intermediate connectivity are most
promising for week-ahead direction.
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Table 2 demonstrates summary performance metrics obtained from the regression approach.

Table 2
Performance metrics for regression models

R2 MAE MSE RMSE
Random Forest -0.0592 0.8758 1.2540 1.1198

Table 2 reports out-of-sample regression results: R? = —0.0592, MAE = 0.8758, MSE = 1.2540,
RMSE = 1.1198. The negative R? indicates the RandomForestRegressor underperforms a mean-only
baseline. Because targets are standardized, an RMSE clearly above 1 means the model does worse
than a naive zero forecast. Overall, the forest captures broad, low-frequency patterns while shrinking
predictions toward zero and underestimating extremes — consistent with VG features being more
useful for directional ranking than for accurate magnitude prediction at a 1-week horizon.

Figure 2 represents top-20 impurity-based feature importances for the RF regressor.

Top 20 Feature Importances - Random Forest (regression)

Transitivity 250 t-1 3
GlobalEfficiency 250 E
GlobalEfficiency 250 t-1 3
Transitivity 250 3

graph _complexity index 500 t-3 E
graph_complexity index 250 t-1 E
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GlobalEfficiency 250 t-2 3
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graph_complexity index 250 t-5 4
graph_complexity index 500 t-5 3
Transitivity 250 t-3 E

0.00 002 004

Feature Importance (Mean Decrease in Impurity)

Figure 2: Top-20 impurity-based feature importances for the RF regressor (7-day ahead standardized
returns). Bars report MDI for VG descriptors. Subscripts indicate the VG construction window; “t —

[” denotes the [-day lag.

Figure 2 shows that importance is heavily concentrated in meso-scale descriptors. The top con-
tributors are Transitivity_250 and GlobalEfficiency_250 (both current and t — 1), followed by a tight
cluster of GIC terms at short lags. Classic node-centric extremes (maximum degree, betweenness)
never enter the top-20, implying the regressor relies on distributed structure, not isolated hubs or
single bottlenecks, to forecast week-ahead magnitudes.

Features built on the 250-day window dominate; 500-day GICs add secondary signal, while 100-
day metrics are largely absent. This aligns with a one-year context offering the best bias—variance
trade-off for a 7-day horizon — short windows are noisy, very long ones dilute regime information.
The few 500-day entries suggest a slow background state still matters after medium-term structure
is captured.
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The mix of contemporaneous (t) and short-lag (t — 1 ...t — 7) versions of the same measures in-
dicates persistence over roughly a trading week and gives the forest multiple, near-collinear split
options around the forecast origin — helpful against small timing jitters.

Together, transitivity (clustering) and global efficiency (short average paths) emphasize regimes
that are locally cohesive yet globally navigable — VG configurations that empirically co-move with
next-week return magnitude more than node-local centralities do. Repeated GIC appearances (max-
imal at intermediate connectivity) further suggest that distance from trivial structures (path-like vs.
clique-like) is systematically tied to return scale; the breadth of GIC lags signals either a robust link
or correlated proxies of the same latent regime.

Overall, the figure indicates that medium-horizon, meso-scale organization - captured by clus-
tering, efficiency, and spectral complexity — carries the main explanatory power for week-ahead
return magnitudes, while purely local centralities are secondary. This is structurally consistent with
the VG framework and guides feature engineering and robustness checks.

5. Limitations and Future Directions

This study offers useful insights but has notable constraints. First, the mutual-information prefilter
may miss higher-order feature interactions, biasing selection. Second, we evaluated only one learner
(RF), so we cannot judge how alternative models would capture patterns or reorder feature im-
portance. Third, results may depend on the VG window length: we tested a few fixed sizes
(100/250/500 days) and found the strongest signal near ~250 days, while shorter windows were
noisier. Likewise, we fixed the forecast horizon at 7 trading days and targets to either a binary direc-
tion or a single 7-day return, leaving other horizons and targets unexplored.

Our evidence is also dataset-specific: we used daily S&P 500 closes only. Other indices, single
stocks, and non-equity assets (bonds, commodities, FX, crypto), as well as different sampling fre-
quencies (intraday or lower-frequency macro series), may exhibit different VG behavior; thus gen-
eralization remains an open question.

Future work should enrich the feature set with additional complexity and nonlinear descriptors
- e.g., non-extensive statistics [47], entropy measures (VG or permutation entropy) [48-50], recur-
rence metrics [51], and fractal/scaling indicators (Hurst, fractal dimensions) [52]. Beyond RF, com-
paring RNN/LSTM models [53-55], GNNs that operate directly on VGs, Transformers for long-range
dependence, and fuzzy or neuro-fuzzy hybrid systems [50, 56-58] would clarify accuracy—interpret-
ability trade-offs and whether other learners surface new signal.

MDI is only one importance metric and is known to be biased toward high-cardinality features.
Follow-up studies should pair it with permutation importance or SHAP, and consider wrapper or
regularization-based selection (e.g., LASSO, embedded tree-ensemble methods) to validate which fea-
tures are truly predictive.

Finally, broaden the task design: test multiple horizons (1-day to monthly, multi-horizon setups)
and alternative targets (magnitude buckets, volatility/drawdowns, multi-output objectives). Extend-
ing across assets, markets, and frequencies - including intraday data — will determine how robust
VG-based features are and where domain-specific adaptations are needed.

6. Conclusions

We pair complex network analysis with an interpretable ML approach to enhance financial time-
series forecasting. Converting the S&P 500 into VG and extracting diverse topological and spectral
descriptors lets us capture the market’s recent structural “signature.” Using RF both as predictor and
as an interpretability tool, we identify which network features most influence short-horizon out-
comes. Our goal is insight rather than state-of-the-art accuracy; RF’s built-in importance measures
make the drivers transparent. The evidence shows that combining network-based features with an
interpretable ensemble offers fresh perspective on market dynamics.
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The most informative predictors are meso-scale connectivity and clustering. In both classification
and regression, global efficiency and transitivity computed over roughly one year consistently dom-
inate, indicating that highly navigable, locally clustered VGs tend to precede sizable index moves. A
spectral complexity score (GIC) also ranks highly, suggesting that distance from trivial structures
(chains or cliques) carries signal. By contrast, node-local metrics (e.g., maximum degree, between-
ness) contribute little, implying that distributed structural patterns —not isolated extremes — primar-
ily guide forecasts.

Empirically, the RF achieves about 58% weekly direction accuracy (vs. a 50% baseline) and the

regression model tracks low-frequency drift while underestimating extremes — consistent with our
emphasis on understanding rather than optimizing raw performance. Crucially, the importance pro-
files clarify why the model forecasts as it does, a key requirement in finance.
Overall, we show that graph-derived measures of connectivity, clustering, and complexity can act as
leading indicators of short-term behavior and complement traditional signals. The framework is gen-
eral: it can be applied to other indices or non-financial series, or combined with more sophisticated
learners while retaining interpretability. Uniting complex network science with ML thus offers a
path to models that are both data-driven and structurally explainable.
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