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Abstract 
We examine whether network representations of financial series produce interpretable predictive signals. 
Daily S&P 500 prices are mapped to Natural Visibility Graph (NVG), from which we extract multi-scale 
topological and spectral descriptors using overlapping windows of 100, 250, and 500 trading days. These 
features drive Random Forest (RF) models for two 7-day-ahead tasks: (i) directional classification (up/down) 
and (ii) magnitude regression of standardized forward returns, with training and evaluation conducted in 
temporal order. RFs are used for their robustness to heterogeneous inputs and their built-in mean decrease 
in impurity (MDI), enabling direct ranking of NVG features by contribution to performance. Out-of-sample, 
the classifier attains ROC–AUC = 0.62 and accuracy ≈ 0.584 on balanced classes  statistically meaningful 
yet economically modest. Beyond point accuracy, the approach yields transparent importance profiles that 
identify which NVG attributes are most informative for short-horizon forecasts. Overall, the evidence 
indicates that VG features provide complementary, structure-aware information for stock-index prediction 
while preserving interpretability through RF-based importance analysis. 
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1. Introduction 

Financial indexes like the S&P 500 display rich, nonlinear behavior that challenges conventional 
forecasting. A growing line of work uses complex network theory to represent time series as graphs, 
enabling structural analysis across scales [1]. In particular, the visibility graph (VG) maps each time 
point to a node and links pairs that have a direct line of sight in the time value plane, translating 
geometric relations into network topology [2]. This representation preserves key properties of the 
signal and supports high-level descriptors  e.g., connectivity and clustering  that summarize 
temporal dynamics [3, 4]. In short, network mappings let us study financial series with graph-
theoretic tools, yielding features that capture temporal complexity beyond standard statistics. 

The rationale for network-based forecasting is to expose structural information that time-domain 
methods can miss. Measures such as average degree, clustering, spectral radius, and path-length 

phenomena like volatility clustering and 
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cyclicity [1, 3]. Prior studies show that VGs retain essential dynamics and produce discriminative 
features for prediction [3, 5]; for equity indices, VG-based analysis has delivered signals at both short 
and longer horizons [5, 6]. This aligns with a broader trend of combining topological data analysis 
with machine learning (ML), since network-derived features complement traditional predictors and 
enrich the feature set [1, 9]. 

At the same time, interpretability has become central in ML  especially in finance, where 
understanding model rationale is critical. Black-box models (e.g., deep networks) can obscure 
decision drivers and raise risk concerns [7]. Random Forests (RFs) offer a middle ground: competitive 
accuracy together with built-in feature importance 
error reduction across trees [8]. Such transparency is valuable for analysts and regulators who need 
to know which inputs drive forecasts. RFs therefore bridge complex, data-driven analysis and the 
need for explanation. 

Motivated by these developments, we study RFs as interpretable rankers of VG-derived features 
for financial forecasting. Using the S&P 500, we construct VGs on sliding windows of 100, 250, and 
500 trading days to capture evolving structure [2, 3]. From each window we extract topological 
descriptors (average degree, clustering, spectral radius, path-length metrics), then train RFs for two 
tasks: (i) regression of the 7-day forward return and (ii) classification of 7-day direction. Our objective 
is not to surpass forecasting benchmarks, but to use RFs to identify which VG features carry the 
strongest predictive signal. 

In summary, we integrate complex network representations with interpretable ML to advance 
financial time-series modeling. Representing an index as a VG yields a spectrum of structural features 
[2 4]; RF analysis then highlights the most informative among them for short-term forecasting [8]. 
The approach ties time-series network characteristics to later market movements and provides a 
practical, feature-oriented guide for prioritizing the most impactful complex-network features.  

2. Literature Review 

2.1. Network-Based Approaches in Financial Market Analysis and Forecasting 

VGs map a time series into a network by linking samples that satisfy a line-of-sight criterion, pre-
serving salient geometric dynamics of the original signal [1, 2, 10]. For financial data, VGs uncover 
scale-free degree distributions and long-range dependence (e.g., global indices with power-law scal-
ing), and VG-based metrics  degree statistics, entropy, clustering  capture nonlinear patterns that 
traditional statistics may miss; they have also been used for characterization and prediction of price 
movements [11 13].  

Complementary to VGs, correlation-based market networks (and their minimum spanning trees, 
MSTs) reveal hierarchical structures (e.g., sectoral clustering) and trace regime shifts: during crises 
networks densify and lose modularity; in tranquil phases they are sparser and more fragmented [14
18]. Such topology shifts support regime detection and systemic-risk analysis, while spillover and 
co-movement graphs help model contagion across markets [19, 20].  

Beyond description, forecasting the network itself (e.g., correlation-link addition/removal) via ML 
with node/edge features improves predictive accuracy over raw correlations and enhances portfolio 
rebalancing and risk control [21, 22]. Network centrality also informs allocation: favoring peripheral 
(low-centrality) assets tends to improve diversification and stabilize performance in stress periods 
[23].  

Recent work leverages graph neural networks (GNNs) to jointly learn temporal and cross-sec-
tional dependencies. Spatio-temporal GAT variants (e.g., FSTGAT) have outperformed 
LSTM/XGBoost baselines, particularly in volatile regimes, and can anticipate turning points by learn-
ing dynamic inter-asset relations  though interpretability remains a key concern prompting re-
search on explainable GNNs [24 29].  
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Recent work integrates VG features ML models for time-series forecasting and classification, lev-
eraging network metrics  such as degree, path length, and centrality  as informative representa-
tions of temporal patterns [30, 31]. In finance, studies like these [32, 33] showed that VG-derived 
topological indicators rise during market turbulence, enabling classifiers such as SVM and 𝑘-NN to 
predict next-day volatility with over 70% accuracy. Yao similarly used VG metrics with logistic re-
gression to classify stock valuations, and Kutluana et al. applied weighted VGs to heartbeat data for 
medical prediction tasks [34, 35
particularly in interpretable ML settings [36, 37]. 

Among ML approaches, RFs are especially well-suited for VG-based forecasting due to their flex-
ibility and built-in feature importance metrics. Studies by Singh et al. and Bocaccio et al. have demon-
strated improved accuracy using RFs with VG inputs in contexts ranging from financial time series 
to audio signal classification [38, 39]. In finance, RFs not only match or exceed traditional models in 
forecasting tasks (e.g. S&P 500 direction) but also clarify which VG metrics  like clustering or degree 
heterogeneity  most influence predictions [40, 41]. 

Network-based methods  from correlation graphs to GNNs  have proven effective in capturing 
complex dependencies in financial data that traditional models often miss [26, 28, 30, 42]. This study 
contributes to that paradigm by using VGs to transform individual stock time series into networks, 
enabling the extraction of topological features (e.g., degree, clustering, motifs) that reveal volatility 
and structural complexity [1 3, 33, 37, 41]. VG features thus offer intra-series analogs to inter-asset 
correlation networks, encoding rich temporal dynamics.  

We extend this framework by pairing VG-derived features with RF, emphasizing interpretability 
alongside predictive performance. Unlike black-box models such as GNNs, RFs provide transparent 
insights via feature importance scores, supporting explainable AI in finance. Our approach bridges 
descriptive VG analysis and interpretable forecasting, showing how structural features of price series 
can improve predictions while revealing which patterns matter most. By doing so, we advance struc-
ture-aware modeling with a method that is both rigorous and accessible for practical decision-mak-
ing. 

3. Research Methodology 

3.1. Visibility Graph Representation 

We generate VGs from time series data using the natural VG (NVG) algorithm, following the ap-
proach introduced in the original study [2]. In this method, each time point 𝑖 becomes a node, and 
two nodes 𝑖 < 𝑗  i.e., if every 
intermediate point 𝑘 with 𝑖 < 𝑘 < 𝑗 satisfies: 

𝑥𝑘 < 𝑥𝑗 + (𝑥𝑖 − 𝑥𝑗)
𝑗 − 𝑖

𝑗 − 𝑘
.  

This condition ensures the straight line connecting points (𝑖, 𝑥𝑖) and (𝑗, 𝑥𝑗) lies above all inter-
mediate points (𝑘, 𝑥𝑘), establishing visibility. Applying this rule, we construct an undirected VG 𝐺 =

(𝑉, 𝐸), where |𝑉| = 𝑁 nodes correspond to the time series length. Due to the nature of the construc-
tion, each VG is fully connected across consecutive time steps. The resulting binary, symmetric ad-
jacency matrix 𝐴 encodes the structural profile of the time series as a complex network. All further 
network-based analysis is conducted on these graphs. 

3.2. Spectral and Topological Measures of Network Structure 

Once the VGs are constructed, we compute a suite of topological and spectral metrics to quantify 
their structural properties. 

Clustering Metrics: Global Clustering Coefficient (𝐶) captures the likelihood of triangle for-
mation by averaging local clustering over all nodes: 𝐶 = 𝑁−1 ∑ 2𝐸𝑖 𝑘𝑖(𝑘𝑖 − 1)⁄𝑁

𝑖=1  where 𝐸𝑖 is the 
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number of connections among node 𝑖 Transitivity (𝑇) measures the ratio of closed tri-
plets to all connected triplets, indicating overall triangle density. Square Clustering evaluates the fre-
quency of 4-node cycles, reflecting square-like substructures in the graph. 

Efficiency and Path Length: Global Efficiency 𝐸𝑔𝑙𝑜𝑏 is the average inverse shortest-path length 
across all node pairs, indicating network-wide navigability. Local Efficiency 𝐸𝑙𝑜𝑐 captures the effi-

-world networks 
typically exhibit high 𝐸𝑙𝑜𝑐 and low average path length, combining local clustering with global con-
nectivity. 

Assortativity (𝒓): Measures the correlation of node attributes (e.g., degree) at both ends of an 
edge. Positive 𝑟 implies similar nodes connect; negative 𝑟 implies dissimilarity. 

Centrality and Hubs: Maximum Degree 𝑘𝑚𝑎𝑥 indicates the most connected node, suggesting 
dominant time points. Betweenness Centrality 𝑏𝑘 quantifies how often a node lies on shortest paths, 

 
Small-Worldness (𝑺): Defined as (𝐶 𝐶𝑟⁄ ) (𝐿 𝐿𝑟⁄ )⁄ , where 𝐶𝑟 and 𝐿𝑟 are clustering and path 

length in a random graph. 𝑆 > 1 indicates small-world structure  high local clustering with short 
global paths. 

Spectral Measures: Graph Index Complexity (𝐺𝐼𝐶) uses the spectral radius 𝜆𝑚𝑎𝑥 of the adjacency 
matrix to capture structural complexity: 𝐺𝐼𝐶 = 1 − (2𝑐 − 1)2, where 𝑐 is the normalized spectral 
radius. 𝐺𝐼𝐶 peaks for intermediate connectivity, distinguishing graphs that are neither too sparse 
nor too dense. Algebraic Connectivity 𝜆2 (second-smallest Laplacian eigenvalue) reflects overall net-
work cohesion and robustness. Adjacency Spectral Gap 𝛿𝐴 = 𝜆1 − 𝜆2 assesses the dominance of the 
leading eigenmode; a large gap suggests integration, while a small gap indicates community struc-
ture. 

Together, these metrics characterize both local motifs and global architecture of the VG, offering 
a multi-  

3.3. Random Forest for Regression and Classification 

RF are ensemble models that combine multiple decision trees to enhance prediction accuracy and 
reduce overfitting. In classification, each tree votes, and the majority class is chosen; in regression, 
predictions are averaged [8]. By aggregating trees trained on bootstrapped data and using random 
subsets of features at each split, RF reduces variance and improves generalization compared to single 
decision trees. 

Each tree is built using recursive binary splits, selecting the feature and threshold that maximize 
impurity reduction (e.g., Gini index or variance). Splitting continues until a stopping criterion is met 
(e.g., max depth or minimum node size). This results in diverse trees that capture complex patterns 
while ensemble averaging controls overfitting. 

Key RF hyperparameters include: 

• n_estimators: Number of trees (e.g., 100 500). More trees generally reduce variance, 
with diminishing returns beyond a point. 

• max_features: Number of features considered at each split. Smaller values increase di-

gression. 
• max_depth: Maximum tree depth. Fully grown trees (no limit) are common, but limiting 

depth can reduce complexity and overfitting. 
• min_samples_split/leaf: Minimum number of samples to split or form a leaf, used to 

regularize overly deep trees. 
• bootstrap: Whether to use bootstrapped samples. When enabled (default), it increases 

diversity and allows for out-of-bag error estimation. 
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Additional parameters like max_leaf_nodes or n_jobs aid in controlling tree size or parallelizing 
training. In this study, RF is implemented using Scikit-learn, and hyperparameters are tuned empir-
ically via validation or randomized search [43]. 

3.4.  

RFs provide embedded feature importance via the MDI  often called Gini importance when using 
the Gini index [8]. For feature 𝑋𝑗, its importance is the average, over all 𝑀 trees, of the impurity 
reductions from splits on 𝑋𝑗, weighted by the node sample fraction:  

Imp(𝑋𝑗) =
1

𝑀
∑ ∑

𝑁𝑡

𝑁
Δ𝑖(𝑡)

𝑡∈𝑇𝑚:

𝑣(𝑠𝑡)=𝑋𝑗

𝑀

𝑚=1

 . 
 

Importances are non-negative and typically normalized to sum to 1. MDI is fast and useful for 
ranking predictors and for feature selection; averaging across many randomized trees also stabilizes 
estimates [44]. 

MDI is computed on training splits and can overstate importance; validate selections with cross-
validation. It also favors high-cardinality/continuous features [45]. As a check, use permutation im-
portance (mean decrease in accuracy) on held-out data, which is more computationally costly but 
less biased [46]. In practice, combine MDI (quick heuristic) with permutation tests (robust verifica-
tion) for reliable, interpretable feature ranking. 

3.5. Time Series Preprocessing and Sliding Window Analysis 

We address long-horizon nonstationarity with an overlapping sliding-window scheme. For daily S&P 
500 prices 𝑆𝑡 and window lengths 𝑤 ∈ {100, 250, 500}, each segment 𝒲𝑡,𝑤 = {𝑆𝑡−𝑤+1, … , 𝑆𝑡} for 
𝑡 = 𝑤, … , 𝑇 is mapped via the natural-visibility rule to a VG 𝐺𝑡,𝑤. From each 𝐺𝑡,𝑤 we compute a 
descriptor vector 𝜑(𝐺𝑡,𝑤) ∈ ℝ𝑝; concatenating scales yields a multi-scale feature stream  

𝑋𝑡 = [𝜑(𝐺𝑡,100)
Τ

, 𝜑(𝐺𝑡,250)
Τ

, 𝜑(𝐺𝑡,500)
Τ

 ]
Τ

. 
 

Overlapping windows smooth feature evolution and enable high-resolution tracking of structural 
change. Crucially, features at time 𝑡 use only 𝒲𝑡,𝑤 (no look-ahead). The sample spans 23 Dec 1981
21 Aug 2025. 

Targets use a 7-day horizon ℎ = 7. The forward return is 
𝑅𝑡,ℎ = (𝑆𝑡+ℎ − 𝑆𝑡) 𝑆𝑡⁄ .  

standardized with a trailing 50-day window:  

𝜇𝑡 =
1

50
∑ 𝑅𝑠,ℎ

𝑡−1
𝑠=𝑡−50 , 𝜎𝑡 = √

1

49
∑ (𝑅𝑠,ℎ − 𝜇𝑡)

2𝑡−1
𝑠=𝑡−50 , 𝑟𝑡,ℎ = (𝑅𝑡,ℎ − 𝜇𝑡) 𝜎𝑡⁄ . 

 

We use 𝑟𝑡,ℎ for regression and 𝑦𝑡,ℎ = sign(𝑟𝑡,ℎ) for classification. Standardization mitigates 
drift/volatility shifts and helps balance Up/Down classes. 

3.6. Hyperparameters Tuning  

We tune hyperparameters 𝜃 ∈ Θ via randomized search, which explores high-impact ranges effi-
ciently without the combinatorial cost of grid search. Evaluation is time-aware: a 5-split purged, 
expanding cross-validation with an embargo 𝑔 = 500 days (equal to the maximum feature window 
𝑤𝑚𝑎𝑥 = 500 prevents leakage from overlapping windows. 

Let 1 < 𝜏1 < ⋯ < 𝜏𝐾 < 𝑇. For split 𝑘: train = [1, 𝜏𝑘], embargo = (𝜏𝑘 , 𝜏𝑘 + 𝑔], test = (𝜏𝑘 +

𝑔, 𝜏𝑘+1]. For each candidate 𝜃(𝑏) and split 𝑘, we fit on the train set and score on the test set using 
the task-appropriate metric. The cross-validated objective is 
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𝐽(𝜃) =
1

𝐾
∑ Score𝑘(𝜃)

𝐾

𝑘=1

, 
 

and we select 𝜃∗ = argmax𝜃∈Θ 𝐽(𝜃) (or argmin, depending on the metric). 
This procedure emulates real-time deployment and strictly enforces temporal separation. We run 

it independently per model class (e.g., RF with varied 𝑛𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠, max_depth, max_features, etc.). 

3.7. Scoring Metrics and Evaluation Performance 

We use time-ordered samples {(𝑥𝑡, 𝑟𝑡,ℎ)}𝑡=𝑡0

𝑇−ℎ , where 𝑥𝑡 ∈ ℝ𝑝 are VG descriptors and  𝑟𝑡,ℎ is the ℎ-
day standardized return (ℎ = 7). For direction, labels are 𝑦𝑡,ℎ = 1{𝑟𝑡,ℎ > 0} ∈ {+1, −1}. 

Modeling & tuning. Regression fits 𝑟𝑡,ℎ ≈ 𝑓𝜃(𝑥𝑡); we tune hyperparameters 𝜆 via purged, for-
ward-chaining CV by minimizing the median absolute error (MedAE) across splits, then refit on the 
full training range. For classification, we maximize mean ROC AUC across splits. 

Error metrics (regression), with 𝑒𝑖 = 𝑦𝑖 − 𝑦̂𝑖: 

• MAE = 𝑁−1 ∑ |𝑒𝑖|𝑁
𝑖=1 ;  

• MSE = 𝑁−1 ∑ 𝑒𝑖
2𝑁

𝑖=1 ;  
• RMSE = √MSE;  
• 𝑅2 = 1 − ∑ (𝑦𝑖 − 𝑦̂𝑖)2𝑁

𝑖=1 ∑ (𝑦𝑖 − 𝑦̅)2𝑁
𝑖=1⁄ . 

Classification metrics (TP, TN, FP, FN): 

• ACC = (TP + TN) (TP + TN + FP + FN)⁄ ;  
• Prec = TP (TP + FP)⁄ ;  
• Rec = TP (TP + FN)⁄ ;  
• F1 = (2 Prec⋅Rec) (Prec + Rec)⁄ .  

Report per-class scores and summarize by macro average 𝐶−1 ∑ Metric𝑐𝑐  or weighted average 
∑ (𝑛𝑐 𝑁⁄ )Metric𝑐𝑐 . 

4. Empirical Results 

This section evaluates the short-horizon predictive content of VG features for the S&P 500. We con-
sider two 7-day tasks: (i) directional classification (Up/Down) and (ii) magnitude regression of stand-
ardized forward returns. Models are trained and tested in temporal order using a rolling-origin setup 
with non-overlapping test blocks; all results are out-of-sample. Unless noted, the classifier uses a 0.5 
decision threshold, and regression is summarized by median/mean errors. 

Table 1 summarizes performance metrics for the studied RF classifier.  

Table 1 
Performance metrics for RF classifier 

 Precision Recall F1-score 
Up 0.5842 0.5857 0.5850 
Down 0.5836 0.5822 0.5829 
Accuracy 0.5839 0.5839 0.5839 
Macro average 0.5839 0.5839 0.5839 
Weighted average 0.5839 0.5839 0.5839 
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The classifier shows moderate ranking ability: AUC = 0.62, i.e., a random Up case outranks a 
Down case ~62% of the time. Class-wise scores are tightly aligned  Up: Precision = 0.5842, 
Recall = 0.5857, F1-score = 0.5850; Down: Precision = 0.5836, Recall = 0.5822, F1-score =

0.5829  indicating no material class bias at the default threshold and roughly symmetric type-I/II 
errors. Because the test set is essentially balanced, Accuracy = 0.5839, Macro = 0.5839, and 
Weighted = 0.5839 coincide. Interpreted probabilistically, the model is correct ~58.4% of the time 

 better than chance (50%) but economically modest without further tuning. 
Performance could likely improve with (i) threshold optimization, (ii) probability calibration, and 

(iii) cost-sensitive training when false-positive/false-negative costs differ. Overall, the results reflect 
a balanced, threshold-dependent signal: the model captures useful structure, but converting ranking 
skill into higher decision accuracy requires careful operating-point selection and/or feature/model 
refinements. 

Figure 1 demonstrates top-20 impurity-based feature importances for RF classifier.  
 

 

Figure 1: Top-20 impurity-based feature importances for RF classifier (7-day direction). Bars show 
MDI contributed by each VG-derived predictor; scores are averaged over trees and normalized. 

 

Predictive weight is concentrated in meso-scale VG measures. Features from the 250-day window 
lead, 500-day contribute secondarily, and 100-day add little for a 1-week horizon. Node-centric ex-
tremes (DegreeMax) and path brokerage (GlobalBetweennessCentrality) rank near the tail, indicat-
ing reliance on global/topological organization rather than local hubs. 

High efficiency (short paths) and transitivity (triadic closure) signal globally navigable yet locally 
cohesive structures that precede directional moves. Repeated GIC entries suggest that distance from 
path-like or clique-like extremes is systematically informative (or that correlated proxies capture the 
same regime). 

MDI is relative and sensitive to feature correlation; importance can disperse across similar fea-
tures and provides no direction of effect. 

Features summarizing global navigability, local cohesion, and intermediate connectivity are most 
promising for week-ahead direction. 
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Table 2 demonstrates summary performance metrics obtained from the regression approach. 

Table 2 
Performance metrics for regression models 

 𝑅2 MAE MSE RMSE 
Random Forest -0.0592 0.8758 1.2540 1.1198 

 

 
Table 2 reports out-of-sample regression results: 𝑅2 = −0.0592, MAE = 0.8758, MSE = 1.2540, 

RMSE = 1.1198. The negative 𝑅2 indicates the RandomForestRegressor underperforms a mean-only 
baseline. Because targets are standardized, an RMSE clearly above 1 means the model does worse 
than a naive zero forecast. Overall, the forest captures broad, low-frequency patterns while shrinking 
predictions toward zero and underestimating extremes  consistent with VG features being more 
useful for directional ranking than for accurate magnitude prediction at a 1-week horizon. 

Figure 2 represents top-20 impurity-based feature importances for the RF regressor.  
 

 

Figure 2: Top-20 impurity-based feature importances for the RF regressor (7-day ahead standardized 
𝑡 −

𝑙 𝑙-day lag. 

Figure 2 shows that importance is heavily concentrated in meso-scale descriptors. The top con-
tributors are Transitivity_250 and GlobalEfficiency_250 (both current and 𝑡 − 1), followed by a tight 
cluster of GIC terms at short lags. Classic node-centric extremes (maximum degree, betweenness) 
never enter the top-20, implying the regressor relies on distributed structure, not isolated hubs or 
single bottlenecks, to forecast week-ahead magnitudes. 

Features built on the 250-day window dominate; 500-day GICs add secondary signal, while 100-
day metrics are largely absent. This aligns with a one-year context offering the best bias variance 
trade-off for a 7-day horizon  short windows are noisy, very long ones dilute regime information. 
The few 500-day entries suggest a slow background state still matters after medium-term structure 
is captured. 
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The mix of contemporaneous (𝑡) and short-lag (𝑡 − 1 … 𝑡 − 7) versions of the same measures in-
dicates persistence over roughly a trading week and gives the forest multiple, near-collinear split 
options around the forecast origin  helpful against small timing jitters. 

Together, transitivity (clustering) and global efficiency (short average paths) emphasize regimes 
that are locally cohesive yet globally navigable  VG configurations that empirically co-move with 
next-week return magnitude more than node-local centralities do. Repeated GIC appearances (max-
imal at intermediate connectivity) further suggest that distance from trivial structures (path-like vs. 
clique-like) is systematically tied to return scale; the breadth of GIC lags signals either a robust link 
or correlated proxies of the same latent regime. 

Overall, the figure indicates that medium-horizon, meso-scale organization  captured by clus-
tering, efficiency, and spectral complexity  carries the main explanatory power for week-ahead 
return magnitudes, while purely local centralities are secondary. This is structurally consistent with 
the VG framework and guides feature engineering and robustness checks. 

5. Limitations and Future Directions  

This study offers useful insights but has notable constraints. First, the mutual-information prefilter 
may miss higher-order feature interactions, biasing selection. Second, we evaluated only one learner 
(RF), so we cannot judge how alternative models would capture patterns or reorder feature im-
portance. Third, results may depend on the VG window length: we tested a few fixed sizes 
(100/250/500 days) and found the strongest signal near ~250 days, while shorter windows were 
noisier. Likewise, we fixed the forecast horizon at 7 trading days and targets to either a binary direc-
tion or a single 7-day return, leaving other horizons and targets unexplored. 

Our evidence is also dataset-specific: we used daily S&P 500 closes only. Other indices, single 
stocks, and non-equity assets (bonds, commodities, FX, crypto), as well as different sampling fre-
quencies (intraday or lower-frequency macro series), may exhibit different VG behavior; thus gen-
eralization remains an open question. 

Future work should enrich the feature set with additional complexity and nonlinear descriptors 
 e.g., non-extensive statistics [47], entropy measures (VG or permutation entropy) [48 50], recur-

rence metrics [51], and fractal/scaling indicators (Hurst, fractal dimensions) [52]. Beyond RF, com-
paring RNN/LSTM models [53 55], GNNs that operate directly on VGs, Transformers for long-range 
dependence, and fuzzy or neuro-fuzzy hybrid systems [50, 56 58] would clarify accuracy interpret-
ability trade-offs and whether other learners surface new signal. 

MDI is only one importance metric and is known to be biased toward high-cardinality features. 
Follow-up studies should pair it with permutation importance or SHAP, and consider wrapper or 
regularization-based selection (e.g., LASSO, embedded tree-ensemble methods) to validate which fea-
tures are truly predictive. 

Finally, broaden the task design: test multiple horizons (1-day to monthly, multi-horizon setups) 
and alternative targets (magnitude buckets, volatility/drawdowns, multi-output objectives). Extend-
ing across assets, markets, and frequencies  including intraday data  will determine how robust 
VG-based features are and where domain-specific adaptations are needed. 

6. Conclusions 

We pair complex network analysis with an interpretable ML approach to enhance financial time-
series forecasting. Converting the S&P 500 into VG and extracting diverse topological and spectral 

as an interpretability tool, we identify which network features most influence short-horizon out-
comes. Our goal is insight rather than state-of-the- -in importance measures 
make the drivers transparent. The evidence shows that combining network-based features with an 
interpretable ensemble offers fresh perspective on market dynamics. 
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The most informative predictors are meso-scale connectivity and clustering. In both classification 
and regression, global efficiency and transitivity computed over roughly one year consistently dom-
inate, indicating that highly navigable, locally clustered VGs tend to precede sizable index moves. A 
spectral complexity score (𝐺𝐼𝐶) also ranks highly, suggesting that distance from trivial structures 
(chains or cliques) carries signal. By contrast, node-local metrics (e.g., maximum degree, between-
ness) contribute little, implying that distributed structural patterns not isolated extremes  primar-
ily guide forecasts. 

Empirically, the RF achieves about 58% weekly direction accuracy (vs. a 50% baseline) and the 
regression model tracks low-frequency drift while underestimating extremes  consistent with our 
emphasis on understanding rather than optimizing raw performance. Crucially, the importance pro-
files clarify why the model forecasts as it does, a key requirement in finance. 
Overall, we show that graph-derived measures of connectivity, clustering, and complexity can act as 
leading indicators of short-term behavior and complement traditional signals. The framework is gen-
eral: it can be applied to other indices or non-financial series, or combined with more sophisticated 
learners while retaining interpretability. Uniting complex network science with ML thus offers a 
path to models that are both data-driven and structurally explainable. 
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