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Abstract 
The paper describes the concept of interpretable artificial intelligence and machine learning based on the 
assessment of statistical homogeneity of classification objects described by features that are random 
variables. Objects are considered homogeneous if random values of their features have identical 
distributions. Mathematical theories of machine learning use two postulates: 1) the feature space is a 
vector space, i.e. the classified object can be represented as a vector of numbers (the vector space 
postulate), and 2) objects belonging to the same class form a compact set with a relatively simple 
boundary and the distance between them is less than to objects belonging to another class (the 
compactness postulate). However, in many practically essential situations, for example, in biomedical 
research, objects are associated not with feature vectors, but with samples of measured random variables. 
Therefore, we must suppose alternatives for the vector space and compactness postulates in such cases. 
The paper describes components of the suggested theory (measure of homogeneity, prediction set, and 
statistical depth).. Based on the proposed statistical postulates of machine learning, machine learning 
algorithms would be classified as interpretable if they comply with them. 
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1. Introduction 

Computer scientists are intensively researching the concepts of explainable and interpretable 
artificial intelligence. Although the black box model provides high classification accuracy, it no 
longer fully satisfies researchers or users regarding its interpretability [1]. The issues of trust in 
machine-human systems come to the fore. This fact is especially evident in medical applications 
with extremely high error costs. The problem of trust in the conclusions of artificial intelligence is 
closely related to understanding the logical mechanism. Four requirements are imposed on 
explainable and interpretable artificial intelligence: it should inspire trust, demonstrate logical 
functioning, have the property of generalization, and be able to discover new data [2]. In other 
words, interpretable artificial intelligence should not raise doubts about the correctness of its 
algorithms, should be able to identify logical cause-and-effect relationships between the original 
data and the final result, generalize them to new data, and generate new knowledge. Interestingly, 
in recent works, authors have begun to consider explainable and interpretable artificial intelligence 
as different entities, although previously they were considered interchangeable concepts. 
Interpretability is treated as the development and application of an understandable model, and 
explainability now means understanding the relationship between input data and the result. A 
typical example of an interpretable model is a decision tree, in which each step of logical inference 
is understandable, and, for example, a convolutional neural network is an example of an 
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explainable but not interpretable model, since we know that the neural network minimizes the loss 
function, but do not know what features it generates and includes in the model. 

The concepts of explainability and interpretability have a pronounced psychological and 
subjective nature [3]. For example, a mathematician considers a linear regression model 
interpretable because he knows how it is structured and how it works. Still, a physician does not 
know this information and, as a result, this model will remain a black box for him. This fact creates 
some difficulties in perceiving the results of such systems on the part of physicians, who, for 
natural reasons, mistrust the conclusions of such models. To eliminate such mistrust, proposing a 
concept of explainable and interpretable artificial intelligence that would be a priori 
understandable to both specialists and non-specialists in computer science is necessary. Such a 
concept should appeal not to mathematical competence, but to common sense, which all thinking 
beings have. We believe the statistical idea of machine learning in artificial intelligence satisfies 
this requirement best.  

Artificial intelligence models have found wide application in medicine [4 7]. Explainable 
artificial intelligence models that analyze medical images have proven particularly useful [8 10]. 
However, these models' utility results from a compromise between explainability and 
interpretability since physicians do not understand how the model is constructed and limit 
themselves to explaining the input and output data (explainability). In contrast, interpretability 
remains the prerogative of mathematicians [11]. 

The content of the explainability concept is disclosed in the work [12], in which the authors 
reduced it to three points: 1) explainability of input data; 2) explainability of output data; 3) 
explainability of the algorithm. Based on the above, we must recognize that this structure requires 
clarification, since the third point appeals to the user's competence. In the work [13], the authors 
classified the known models by the degree of their explainability, arguing that linear regression, 
logistic regression, decision trees, kNN method, rule-based inference algorithms, generalized 
additive models, and Bayesian models are self-evident. The authors consider the random forest 
method, SVM, and various neural networks less explainable. In this case, there is a typical 
aberration of the professional point of view. After all, the complexity of explaining each of these 
models depends on the degree of professionalism of the mathematician, and for a non-
mathematician, all of them are equally incomprehensible. In our view, this deficiency can be 
addressed by shifting the emphasis from explainability to interpretability, which is sometimes 
called model transparency. 

In this direction, it is worth highlighting the works of Cynthia Rudin [15, 16], devoted to 
studying the interpretability of machine learning. Rudin considers explainability and 
interpretability to be different properties of machine learning and suggests not to explain the work 
of black boxes, but to develop transparent, interpretable models. This approach is correct, but 
Rudin also does not go beyond traditional models, ignoring the subjectivity of interpretability 
assessments if they depend on the degree of competence of a specialist. This fact is especially 
evident in medical applications. For example, how can a mathematician explain the input data if he 
has no idea what condensed chromatin is in Feulgen-stained buccal epithelial nuclei? In turn, a 
doctor cannot say anything about a nonparametric criterion for assessing the homogeneity of 
samples containing measurements of the level of condensed chromatin in healthy people and 
patients with breast cancer. They do not have a common point of view. We propose such a point of 
view as the concept of results typicality expressed by the elliptical statistical depth. The 
explanation of typicality does not require mathematical knowledge, but it is based on common 
sense: the greater the statistical depth of a result, the more typical it is. For example, the more 
statistical depth of a patient's features, the more likely the patient is sick. This does not mean that 
she is more seriously ill. It means a higher probability (but not the subjective confidence of the 
doctor) that the patient is sick. 

An excellent analysis of the psychological foundations of explainability and interpretability was 
given by David Broniatowski [3]. Based on the analysis of the literature on experimental 
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psychology in the field of interpretation of numerical data, the author proves that the concepts of 
interpretability and explainability reflect different requirements for machine learning algorithms. 
From the author's point of view, interpretability is the ability to understand to what extent the 
output of a machine learning model corresponds to its intended purpose, as well as to the goals and 
preferences of its users. In turn, explainability means the ability to accurately understand the 
mechanism of obtaining the result in order to improve the algorithm. The author analyzes the 
psychological aspects of decision-making, in particular, distinguishing between users who prefer to 
make decisions based on detailed explanations and users who want to receive meaningful 
interpretations of the model's output. This aspect is clearly manifested in diagnostic systems used 
by doctors and patients. The doctor must be confident in the diagnosis, since he is legally 
responsible for it, so explainability and interpretability are equally important for him, and it is 
important for the patient to know the level of reliability of the diagnosis in order to make a 
decision on further treatment, so interpretability is more important for him than explainability. 

It is obvious that machine learning systems should have both explainability and interpretability. 
The only question is in what proportions. Currently, more attention is paid to explainability, and 
relatively little attention has been paid to the interpretability of machine learning models. As 
research in the field of experimental psychology of numerical stimuli shows, people understand the 
concept of interpretability by spacing and connecting the output of a model with its inference 
engine by spacing. According to Broniatowski, it is necessary to study to what extent this issue can 
be automated, since this problem is still poorly understood. Summarizing his analysis, 
Broniatowski argues that interpretable models should take into account the context of the user's 
knowledge and present the results in a simple form, justifying their reliability. 

According to Rudin, many machine learning models are too complex for humans to understand. 
For this reason, their explanation usually boils down to a theoretical description of the inference 
mechanism rather than a description of its actual implementation. Focusing on the explainability of 
machine learning models and ignoring issues related to their interpretability hinders the 
widespread use of machine learning models. Cynthia Rudin makes several points about 
interpretability: 1) accurate models do not have to be complex; 2) explanations of machine learning 
methods often do not match the computations of the original model; 3) explanations are often 
meaningless or unclear; 4) unexplainable systems should not be used in high-risk situations; 5) 
unexplainable systems complicate the human decision-making process. 

As noted above, reliable explanations are essential for machine learning models involving high-
risk decisions (particularly in medical applications). It is natural to use algorithms that reveal the 
decision-making mechanism for such models. At the same time, the commercial interests of 
corporations put the protection of decision-making mechanisms from copying to the forefront, 
preventing their explanation and interpretation. There is even a separate line of research devoted 
to finding a compromise between explainability and interpretability, on the one hand, and 
preserving commercial secrets, on the other [17]. 

Of course, many statistical methods are already widely used in machine learning (logistic 
regression, Bayesian methods, and many others), but each has limitations in its explainability and 
interpretability. For example, logistic regression allows you to find the probability of a particular 
event only if the probability distribution of this event obeys the Bernoulli distribution with a 
specific parameter. Bayesian classification methods are relative; they allow you to compare 
estimates of the probability of an event, but do not estimate these probabilities themselves. As a 
result, their explainability and interpretability are pretty weak. 

We propose 1) new postulates of statistical machine learning; 2) a new method for assessing the 
homogeneity of objects; 3) a new method for assessing the typicality of an object based on its 
statistical depth in the prediction set; 4) a new method for ranking random points in a 
multidimensional space; 5) a new concept of interpretability of machine learning algorithms; 
6) dimensionality reduction method. Consider them step by step. 
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2. Homogeneity measure 

Machine learning is based on two key principles, which we have previously alluded to: first, objects 
should be represented as feature vectors within a feature vector space; second, feature vectors 
representing items within the same class are closer together in the feature space than those from 
different classes. The first principle reflects the tendency of machine learning practitioners to 
utilize algebra, geometry, and optimization techniques. This allows us to frame machine learning 
challenges as optimization problems, explicitly focusing on minimizing or maximizing a function 
under certain constraints. The second principle suggests a relatively simple function can separate 
these vector sets. Techniques such as Fisher's linear discriminant, support vector machines, and the 
nearest neighbor approach are notable examples built on these foundations. 

However, despite the success of these methods, it is essential to recognize that the vector space 
and compactness postulates do not apply universally. In many medical and biological contexts, a 
patient is not represented by a single feature vector an ordered set of numerical characteristics
but rather by a random sample, an unordered collection of measurements (e.g., nuclear area, optical 
density). For instance, when analyzing samples from a patient, which may consist of dozens of 
cells, the patient is represented as a cloud of points rather than a single point in vector space. 
While averaging these sample values can simplify the process and allow for the application of the 
established postulates, it also results in a loss of significant information regarding the distribution 
of the measured parameters. 

We propose alternative statistical hypotheses: 1) sample parameter values can represent objects, 
and 2) parameters of objects within the same class exhibit similar distributions, while those from 
different classes show distinct distributions. This approach allows us to tackle the challenge of 
assessing similarity between objects by verifying whether two or more samples are homogeneous. 
The method we suggest for determining similarity is outlined below. It possesses statistical 
universality, meaning it performs consistently across samples with varying means and identical 
standard deviations, as well as samples with the same means but differing standard deviations
unlike traditional methods such as the Kolmogorov-Smirnov and Mann-Whitney-Wilcoxon tests. 

Consider a sample of size n composed of continuous random variables drawn from a 
exchangeable distribution. According to Hill's assumption, the probability that a random value 
from the same distribution falls between the i-th and j-th order statistics of the sample is given by 
(j-i)/(n+1) [18, 19]. Notably, the only factors influencing this probability are the sample size and the 
order numbers of the statistics. 

This insight enables us to test the hypothesis of homogeneity between two samples. To do this, 
we first arrange the elements of the first sample in ascending order to obtain its order statistics. 
Next, we calculate the relative frequency of occurrences from the second sample that fall between 
the i-th and j-th order statistics of the first sample. 

Using these relative frequencies, we can construct a confidence interval (for example, the 
Wilson interval) for the binomial proportion in the generalized Bernoulli framework we are 
examining. We then assess whether this confidence interval covers the value (j i)/(n+1). 

To quantify this, we compute the so-called p-statistics by measuring the relative frequency of 
the event in question. Finally, we establish a confidence interval for the p-statistics based on a 
predetermined significance level. If this confidence interval does not include  1  , were  is the 
given confidence level, we reject the null hypothesis of homogeneity [20]. 

3. Statistical depth 

For a comprehensive overview of the various concepts related to statistical depth, refer to [21]. The 
primary objective of these concepts is to establish an ordering of multidimensional random 
variables.. 
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Consider a distribution D. A depth function d is defined to order points from this distribution in 
a manner that monotonically decreases from the center outward. The depth of a point x is 
represented as d(x) [22]. The center of a distribution can be defined in various ways, such as the 
median, centroid, or geometric center. A depth function must satisfy the following properties [22]: 

1. Affine Invariance: The depth function should be independent of the coordinate system 
used and should remain unchanged under affine transformations. 

2. Maximum at the Center: The depth function attains its maximum value at the center of 
the distribution, which is the point of greatest depth. 

3. Monotonicity: The depth function must decrease monotonically from the deepest point to 
the least deep points. 

4. Limit Property: As the distance from a point x to the center of the distribution approaches 
infinity, the depth must approach zero. 

When we lack specific information about the distribution D but have a sample containing n 
points from it, we denote this sample as S. Below are examples of different depth functions. 

1. Tukey Depth [23]: To understand Tukey depth, we first need to define a center of a 
sample as a point such that every hyperplane passing through it divides the sample into 
two nearly equal subsets. When this point is part of the sample, it corresponds to the 
sample's median. The Tukey depth of a sample element x is defined as the minimum 
number of sample elements that lie on one side of a random hyperplane passing through x. 

2. Convex Hulls Peeling [24]: The convex hull of a set of points is the smallest polygon that 
encompasses all the given points. Convex hull peeling is a method that involves 
sequentially identifying and removing enclosed convex hulls. All vertices of the same 
convex hull share the same statistical depth. 

3. Oja Depth [25]: The Oja depth of a sample element x is calculated as the average volume of 
the simplex formed by d random sample points and the point x. 

4. Simplex Depth [26]: The simplex depth of a sample element x is defined as the number of 
simplexes formed by a random sample of points that include x. 

5. Zonoid depth [27]. The zonoid depth of a sample element x  is the number 
 1 1( | ,..., ) sup : ( ,..., ) ,n nd x x x y D x x=    where 

1
1 1

1( ,..., ) : 1, 0 , :
n n

n i i i i i
i i

D x x x i
n

= =

 
=   =      
 
   

6. Mahalanobis depth [22]. The Mahalanobis distance is a generalization of the Mahalanobis 
distance. It is defined by the formula 2 1( ) (1 ( , ( ))) ,FMHD x d x E F −= +  where 

2 1( , ) ( ) ( )T
Fd x y x y x y−= −  − , ( )E F  is the distribution expectation, and F  is the 

covariance matrix/ 
7. Elliptical statistical depth [28]. Elliptical statistical depth is a function that maps points 

of sample to increasing ranks using the confidence Petunin ellipsoids [29]. These ellipsoids 
are concentric and cover a sample. Thus, we have a sequence of ellipsoids 

1 2 ... nE E E   . Every sample point lies on a surface of only one ellipsoid, and the 

probability that a random point from F  lies in nE  is 1
1

n
n
−

+
. Thus, the elliptical statistical 

depth is a monotonous function that attains a maximum at the deepest point and decrease 
from the center to outward. 

8. Depth-ordered regions [30] is a set of points where the statistical depth is greater or 
equal to a given value ( ) ( ) :d FD F x R D x =    , where  ( )FD x  is a statistical depth of 
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the point x obeing F . Depth-ordered regions are affine equivariant, nested, monotonical, 
compact, and subaddituce. Obviously, the Petunin ellipsoids are depth-ordered regions. 

4. Petunin ellipsoids 

Consider is a set of random points  1,..., nX x x= , d
ix  . For simplicity and easy visualization, we 

shall descride the case d = 2 (Petunin ellipses). 
  

Find a convex hull of ( ) ( ) 1 1, ,..., ,n nX x y x y=  and a diameter of this convex hull with ends 

( ),k kx y  and ( ),l lx y .  Connect these point by a segment L . Find points ( ),r rx y  and ( ),q qx y  that are 

most distant from L . Find segments 1L  and 2L  passing through ( ),r rx y  and ( ),q qx y  parallel to L . 

Find segments 3L  and 4L  passing through ( ),k kx y  and ( ),l lx y  orthogonal to L  and. Segments 1L , 

2L , 3L  and 4L  are sides of a rectangle  . Let us denote by a  a short side and by b a long side).  

Translate, rotate and shrink   with a coefficient a
b

=  to obtain a square   with a center 

( )0 0,x y  . The random points ( ) ( ) 1 1, ,..., ,n nX x y x y=  are mapped to points ( )1 1,x y  , ( )2 2,x y  , ..., 

( ),n nx y   . Find distances 1 2, ,..., nr r r  between ( )0 0,x y   and ( )1 1,x y  , ( )2 2,x y  , ..., ( ),n nx y   . Find 

( )1 2max , ,..., nR r r r= . Consider a circle C  with the center ( )0 0,x y   and radius R  containing 

( )1 1,x y  , ( )2 2,x y  , ..., ( ),n nx y  . Perform inverse transformations of C . As a result, we obtain an 

ellipse E  containing points ( ) ( ) 1 1, ,..., ,n nX x y x y=  . 
We can generalize this algorithm to construct a Petunin ellipsoids. Construct a convex hull of 
 1,..., nX x x= , d

ix  . Find ends of a diameter of the convex hull ( ),k kx y  and ( ),l lx y . Align the 

diameter along to 1Ox . Project points ( )1 1,x y  , ( )2 2,x y  , ..., ( ),n nx y   to the orthogonal complement of 

1Ox . Construct a convex hull of projections, rotate and translate it up to a two-dimensional 
rectangle  . Construct an axis-aligned parallelogram of minimum volume in d-dimensional space 
containing the projections of input points. Shrink this parallelogram to hypercube. Find center 0x  
of the hypercube and the distances 1 2, ,..., nr r r  from 0x  to 1 ,..., nx x  . Compute ( )1 2max , ,..., nR r r r= . 
Construct a hypersphere with the center 0x  and radius R . Make the inverse transformations. The 
result of the operations is the Petunin ellipsoid covering  1,..., nX x x= .  

distribution is equal to 1.
1

n
n
−

+
 

We also note an essential property of Petunin ellipsoids: their concentricity. This property 
allows for automatic and unambiguous ranking of multidimensional points. Ellipses in this case are 
chosen for convenient visualization.  

Therefore, we can find most and least probable points of a sample. The deepest point has the 
highest statistical depth.  

5. Similarity space and Petunin ellipses 

Duin and Pekalska [31 34] and others in their works proposed the concept of relational 
discriminant analysis. They suggested replacing the feature vector of an object with an estimate of 
its proximity to some training set using a  metrics or a measure of proximity between random 
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samples. This approach is well suited to solving problems often encountered in biomedical 
research. Let's say a researcher studies the parameters of a set of cells. In this case, it gets samples 
of real numbers, not an ordered vector. In such cases, the metric is not applicable and the only 
useful tool is the uniformity measure.  

The homogeneity measure described above can be used to solve dimensionality reduction and 
feature selection. To do this, we calculate the measure of homogeneity between the samples from 
G1 and G2 for two features, i-th and j-th, and consider the matrices of features of the k-th object 
from G1 and the l-th object from G2, where is the number of features, and is the number of 
measured values of each feature. 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

11 12 1

21 22 2

1 2

k k k
n

k k k
n

k

k k k
m m mm

u u u

u u uU

u u u

 
 
 

=  
 
 
 

 , 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

11 12 1

21 22 2

1 2

l l l
n

l l l
n

l

l l l
m m mn

v v v

v v vV

v v v

 
 
 

=  
 
 
 

. 

Denote the ith columns corresponding to ith feature from uk and vl as ( ) ( ) ( ) ( )( )1 2, ,...,
Tk k k k

i i i miU u u u=  

and ( ) ( ) ( ) ( )( )1 2, ,...,
Tl l l l

i i i miV v v v= . Then, compute p-statistics for samples ( )k
iU  and ( )l

iV  and find the 

vector of p-statistics for uk and vl with respect to every feature: 
( ) ( ) ( )( )1

1 1, ,k l
kl U V=  ( ) ( ) ( )( )2

2 2, ,k l
kl U V=  ( ) ( ) ( )( )..., , .n k l

kl N NU V=   

Then, compute the average p-statistics. 
( ) ( )1 1

1

1 ,
N

k kt
tN =

=    ( ) ( )2 2

1

1 ,
N

k kt
tN =

=    ..., ( ) ( )

1

1 N
n n
k kt

tN =

=   . 

for Uk  and an object from G2 with respect to ith feature. This scheme allows estimating the 
proximity of Uk to other object from G1. 

Pairing p-statistics we form a proximity vector space corresponding to ith and jth features: 
( ) ( )( ),i j
t t   and ( ) ( )( ),i j

s s  , , 1,2,..., ; , 1,2,..., .i j m t s n= =  Thus, we have two sets of points consisting 

of average interclass homogeneity measure and average intraclass homogeneity measure in the 
proximity space but not feature space. This allow using any method of classification developed for 
metric spaces but in the proximity measure of less dimensions. The average intraclass homogeneity 
measure allows estimating intrinsic diversity of objects in the population, and the average 
intraclass homogeneity measure allows estimating the feature significance. 

6. Uncertainty and Petunin ellipses 

When using Petunin ellipses to classify an object, uncertainty may arise: the point corresponding 
to the object may not fall into any ellipses or into their intersection. In turn, the intersection may 
also be such that one ellipse completely covers the other. In this case, you can use the remarkable 
property of Petunin ellipses, namely, their concentricity. Since at the penultimate stage of 
constructing the Petunin ellipse, we obtain concentric circles containing only one point, we can 
automatically rank the points by statistical depth, simply by calculating the circle number relative 
to the center of gravity of the points. Next, we alternately include the point under study in one or 
another set of training samples and find its statistical depth in each of them. By comparing these 
statistical depths, we assign the point to the set with greater statistical depth.  

Knowing the number of the ellipse on which the test point lies, we can even estimate the 
probability with which it belongs to the class. We can decide with a given significance level by 
constructing a confidence interval for this probability.  This fact allows for a significant increase in 
classification sensitivity by eliminating uncertainty 
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7. Conclusion 

Based on the homogeneity of random variables, the paper proposes consider  that objects belong to 
the same class if the random values of their features have the same distribution. The paper 
describes the constituent parts of the proposed theory (homogeneity measure, prediction set as 
Petunin ellipse, statistical depth based on Petunin ellipsoids, and decreasing of dimensionality 
using the similarity space). Based on the statistical postulates of machine learning, it is shown that 
the proposed machine learning algorithms can be classified as interpretable and explainable. We 
proposed and justified new postulates of statistical machine learning; a new method for assessing 
the homogeneity of objects; a new method for assessing the typicality of an object based on its 
statistical depth in the prediction set; a new method for ranking random points in a 
multidimensional space; a new concept of interpretability of machine learning algorithms, and 
dimensionality reduction method. 

8. Declaration on Generative AI 

The author have not employed any Generative AI tools. 
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