CEUR-WS.org/Vol-4158/Short02.pdf

CEUR
E Workshop
Proceedings

published 2026-02-07

Dynamic User-Guided Evolutionary System for
Generative Music

levgen Fedorchenko’ ', Andrii Oliinyk®*, Tetiana Fedoronchak’" and
Maksym Chornobuk®*

! National University Zaporizhzhia Polytechnic, Zaporizhzhia 69011, Ukraine

Abstract

This article presents a music generation system based on a modified interactive genetic algorithm (IGA)
with dynamic user engagement tracking. The developed approach allows the creation of monophonic MIDI
compositions based on user feedback. The proposed model automatically adjusts the probabilities of
mutations and injections in the population depending on user engagement level, there-by reducing user
fatigue and accelerating convergence toward acceptable results. Conducted experiments with five
volunteers showed that the system is able to generate compositions rated by users as attractive in an average
of 4.6 iterations, while the generation time of a new generation is less than 1 ms. The system has a simple
interface based on .NET MAUI and allows exporting results in MIDI format. The proposed solution
combines high speed with the possibility of fine-tuning the generation parameters, which makes it
promising for creating interactive music products in real time.

Keywords

genetic algorithm, music generation, MIDI

1. Introduction

Dynamic music generation has been known and used in various digital products since the end of the
20th century. Typical examples of such use are computer games Spore, No Man's Sky, Mini Metro.
The use of generated music reduces costs otherwise spent on hiring a composer. Such music also
enhances the user experience by introducing novelty during product use [1].

In recent years, music generation technologies based on artificial neural networks have gained
particularly great popularity. Dozens of models allow users to generate high-quality instrumental
and vocal music based on the user's description. For example, MuseNet from OpenAl [2] is widely
used, MusicLM from Google [3]. Such tracks are almost indistinguishable from professional
recordings made in the studio. However, such technologies still require significant amounts of
computing resources, including RAM and CPU time. They are usually provided on a paid basis or
require large computing resources and cannot run in real time on end-user computers. The use of
such technologies is currently limited to generating music in advance, and real-time generation
requires other solutions [4].

One solution that does not require significant amounts of computation is genetic algorithms, in
particular interactive genetic algorithms (IGAs). Such methods are a modification of the standard
genetic algorithm in cases where the fitness function cannot be defined formally. User input is then
used instead of a formally defined fitness function, driving the evolutionary process. These methods

Information Technology and Implementation (IT&I-2025), November 20-21, 2025, Kyiv, Ukraine
* Corresponding author.
T These authors contributed equally.

evg.fedorchenko@gmail.com (I. Fedorchenko); olejnikaa@gmail.com (A. Oliinyk); t.fedoronchak@gmail.com

(T. Fedoronchak); chornobuk.maksym@gmail.com (M. Chornobuk)

@ 0000-0003-1605-8066 (I. Fedorchenko); 0000-0002-6740-6078 (A. Oliinyk); 0000-0001-6238-1177 (T. Fedoronchak); 0000-
0003-3200-7306 (M. Chornobuk)

2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

202

https://orcid.org/0000-0003-1605-8066
https://orcid.org/0000-0002-6740-6078
https://orcid.org/0000-0001-6238-1177
https://orcid.org/0000-0003-3200-7306
https://orcid.org/0000-0003-3200-7306

are widely used in the field of music generation, where the subjective attractiveness of the same track
depends on the aesthetic preferences of a particular user or group of users [5].

Several existing systems demonstrate the potential of IGAs for music generation. For example,
GenJam [6] uses user evaluation for generating jazz solos; Darwin-Tunes [7] uses similar
evolutionary approaches for music generation. These systems typically encode musical properties
(e.g. pitch, rhythm, harmony) as genomes, apply selection and mutation, and rely on user feedback
to evolve increasingly attractive compositions. However, such models often suffer from limitations
such as high user fatigue, slow convergence, or fixed mutation strategies that do not adapt to listener
engagement.

This paper examines an improved adaptive interactive genetic algorithm designed to generate
music in the MIDI format. The developed model is characterized by simplicity and high speed but
differs from a number of other models. In particular, the developed system monitors user feedback
in different generations and evaluates user engagement based on statistical indicators calculated
from the flow of user ratings. The calculated indicator dynamically adjusts the probability of
mutations and injections in the population in order to reduce user fatigue, accelerate convergence,
and maintain interest throughout the entire process of using the system.

2. Overview of existing systems

The article [6] describes GenJam, one of the early systems for generating music using an interactive
genetic algorithm. GenJam was created for generating jazz solos. The system can work in one of
three modes:

e Learning mode. Random compositions are generated; the user evaluates them. The
evolutionary process has not started.

e Demo mode. The best of the previously generated compositions is played.

e Evolution mode. Genetic operations are used for the dynamic generation of a new population
of musical compositions.

GenJam uses a two-level genetic coding scheme to represent compositions. Musical content is
hierarchically structured into phrases and measures, each encoded as binary chromosomes of fixed
length. This presentation combines rhythm and pitch. Each bar corresponds to a 32-bit chromosome
representing eight consecutive eighth-note positions in a 4/4-time signature. Each position is
encoded by a 4-bit event: Rest, Hold, New Note.

The system is quite limited: the compositions do not differ in speed (BPM value), they use
predetermined sequences of chords.

The GP-Music system described in the article [8] is more modern. This system has several
distinctive features. The leaves of the trees represent individual musical notes, pseudo-chords or
pauses. Internal nodes represent musical transformations or operations applied to sequences. Thus,
each node of the tree returns a sequence of notes, and the final composition is returned by the root
of the tree. Such a structure has its advantages: it is possible to carry out mutation and crossover
operations conveniently. Another important feature is the use of a simple neural network that learns
during the phase of feedback from the user and then is able to give its own evaluations to
compositions, reducing the burden on the user. This method is called the Surrogate Fitness Function
and has great potential, although in real conditions it faces the problem of not having enough
resources for a complex model capable of qualitatively simulating user evaluations. Nevertheless, the
system is quite limited and allows the creation of only compact, monophonic musical compositions.
A big drawback is the fact that all the notes in the generated compositions are of the same length:
this limits the system significantly, preventing the creation of complex compositions similar to real
music.

203

Another approach is described in the article [7]. The authors developed the DarwinTunes system
based on an interactive genetic algorithm that did not use a surrogate fitness function, but aggregated
feedback from more than 6,000 users, using their aggregated ratings as a fitness function for small
pieces of music. The proposed system used a population of tree-like digital genomes, each of which
described a program that generated a small, looping piece of music 8 seconds long.

3. Problem statement

Musical Digital Interface (MIDI) is a standard developed in 1983 as a result of a collaboration between
leading manufacturers of electronic instruments. The standard provides interoperability between
equipment from different manufacturers and pro-vides a digital abstraction layer over analog and
digital sound generation processes.

The Standard MIDI File (SMF) format allows compact storage of data about musical compositions.
Unlike classic audio files that store the data about sound directly, MIDI files store sequences of
discrete musical events that are then converted into music using software or hardware solutions.
Each MIDI file consists of a header and one or more tracks. The header defines global parameters
such as file type, number of tracks, and tempo. Each track consists of a sequence of time-ordered
events, each of which has a timestamp relative to the previous event. This allows for precise
placement of notes and other musical events throughout the track.

The most common are the Note On and Note Off event types, which together determine when a
note starts and ends. Each note playback event is characterized by a MIDI channel (0-15), note pitch
(0-127), note velocity (0-127). These parameters describe both the horizontal (time-based) and
vertical (pitch-based) structure of a musical composition [9].

The simplicity and widespread nature of the MIDI format justify its choice as the basis for the
system under development. Considering the need to create simple monophonic compositions, as well
as the absence of the need to change the velocity of notes, it is possible to formally describe a musical
composition as follows:

s = (BPM,{eq,e5,...,ex}), (1)
e; = (pi,d;) ore; = (0,d,),)
piEP,diED, (3)

where P is the set of allowed pitch values; D is the set of allowed values of the length of the note.
Then, formally, the task of developing a music generation system is reduced to finding such a
function M:

5(n+1) = M(Sp, Yn), (4)
Yo ={nye oyl ()
Sn = {S1,52,..,Sx}, (6)

seT, (7)

where T is the set of all possible musical compositions, considering the limitations of the system.
The most difficult challenge during system development is finding such a function M, which is
able to quickly generate compositions that will receive a high rating from the user.

4. Development of a modified interactive genetic algorithm

A system was developed based on a modified interactive genetic algorithm capable of generating and
playing small musical compositions using the MIDI technology described above. After the generation
of the next generation S, the system offers the user to rate each of the compositions on a 10-point
scale. Obtained values Y, are used as a fitness function of compositions.

204

4.1. Compositions encoding

The system encodes each composition using a genome consisting of discrete, quantitative, and
sequential genes. Discrete genes encode the scale and root note. Quantitative genes encode the
number of beats per minute. Sequential genes encode harmonic and rhythmic sequences and
arpeggio types in bars. Such data is enough to encode compositions that are not limited to one genre
of music, as in the GenJam system. The system is flexible and customizable, because it allows the
configuration of limit values for quantitative genes and possible values for discrete genes.

4.2, Workflow

The system has the following operating cycle:

1. Generate the initial population S; random musical compositions (individuals). Value x
(generation size) is established in 5 empirically.

2. Show the user the current population. Get the rating value y; for each individual s; from the
user.

3. Assess user engagement d.

4. Generate a new population of x individuals. Each individual in the population S, will be the
offspring of two individuals from the previous population S¢.1) with probability 1-a or the
result of injection with probability .

5. Carry out mutations in the new population S,. The probability of mutation of each gene is f.
Return to step 2.

During reproduction, the offspring receives a random combination of the genes of its parents.
Each of the genes is independently generated on the basis of parental genes. Genes encoding
quantitative parameters are chosen randomly between parental values. Genes encoding discrete
parameters randomly take one of the parental values. Genes encoding sequence parameters are
generated based on the random combination of the sequences of the parameters of the parents.
Parents are chosen randomly as follows:

P(i) = 22—, 8)

n—-1. .
j=0Yj

where P(i) — the probability of choosing the i-th individual as a parent, and y; is the i-th rating
received from the user, y; € [0,1].

A feature of the developed modified system is a change in the probability of injections and
mutations based on the parameter user interest. This technique is important for a system performing
a task such as music generation, where formal evaluation of the quality of the generated population
is not possible. Using this parameter allows dynamic change of the rate of mutations and injections
in the population of music compositions, decreasing the diversity proportionally to user interest.

Parameter § takes a value from 0 to 1 and is calculated as follows:

)

6= E * Tmax»
Tmax = max (1,12, .. Ty), (10)
where 1; - the i-th rating received from the user, in the range 0-1, ¢ is the mean square deviation

of the values r.
Probability of injection « is calculated as follows:

a = Apin + (@max — Tmin) * (1 = 6), (11)
where omax — the maximum, omin — the minimum injection probabilities specified as system
parameters.

Probability of mutation f is calculated as follows:
205

B = Bmin + (Bmax — Bmin) * (1 —96), (12)
where Pma — the maximum, Pmn — the minimum injection probabilities specified as system
parameters.
Crossover is implemented as follows. For discrete genes:

t1
(child) _ g,(f""e”) (13)
k - gl(cparentz)
For quantitative genes:
glgchild) — gl((parentl) + (gliparentz) _ gl({parentl)) " U(O,l) (14)
For sequential genes:
Lenig = U(min(Ly, L), max(Ly, L)), (15)
cniiay (9T if i< L (U(0,1) <05 0ri > L, (16)
fol gFaem D if i < 1,1 (U(0,1) <050ri> Ly
gk — value of gene k for generated individual. gg’iarentl) and gg’iarentz) - values of gene k for

the first and second parent individuals respectively, U(x,y) is a random variable with a uniform
distribution on the interval [x, y]. L — is the length of the generated sequenced gene, L;, L, -
lengths of this gene for the first and second parent, respectively. gkl is the i-th element of the k-th
sequential gene.

This crossover implementation correctly handles different genes according to their nature. For
example, the BPM (speed of composition) value for the generated individual will lie between the
values of this gene in the parent individuals. And the chord sequence will be a combination of the
chords used in the parent individuals.

5. Developed software

A simple and concise user interface based on the popular cross-platform NET MAUI library was
developed for the system. This allows using the developed system on Windows and MacOS platforms
[10].

The system allows users to listen and evaluate each of the compositions generated in the current
generation many times in an arbitrary order. Each of the compositions can be exported as a file in
the “.mid” file format. The system displays the current calculated value of the user's interest in the
form of a graphic indicator at the bottom of the window. Additional functionality is also provided in
the form of statistics ex-port containing user ratings for each of the compositions in each generation.

6. Experiments

The developed system was tested using the help of five volunteers. The volunteers were instructed
to use the system until one of the generated short compositions was subjectively pleasing to the
volunteer.

Figure 1 shows an example of a composition generated by the system in the first generation,
which the user rated with the minimum possible rating. The composition sounds like a random set
of sounds and is musically unappealing. Fig. 2 shows the composition that was generated by the
system at generation 5 and evaluated for the maximum number of points. The first composition is
characterized by a sharp transition to the use of short sixteenth notes and pauses, multiple repetition
of individual notes in the middle of the composition, lack of harmonic movement, but the second
composition does not have such problems. In the second composition, there is a harmonious

206

movement that alternates ups and downs several times, there is no sharp and unnatural use of short
notes and pauses. There is no repetition of the same notes several times in a row, instead simple but
effective techniques of creating tension for the listener and relieving it are used. In general, the
second composition is perceived as more aesthetically pleasing due to greater musicality and
structural coherence.

Figure 2: An example of a subjectively more attractive composition.

The results of the interaction of 5 volunteers with the system are shown in the graph in Figure 3.
The graph shows the value of the maximum rating for compositions from each generation. The test
results indicate the following properties of the system. Its disadvantages are the unpredictability of
the results of the system. But the system also demonstrated the ability to generate an acceptable
result quite quickly: the highest speed of achieving an acceptable result demonstrated by 5 volunteers
is 9 iterations of the system. The average value is 4.6 iterations.

10 { — subject 1
subject 2
subject 3
subject 4
subject 5

Max Point Value
-]

0 1 2 3 4 5 6 7 8 9
Generation

Figure 3: Results of interaction of 5 users with the system.

Testing of the developed software system was carried out on a computer with the Windows 11
operating system equipped with an Intel I17-12650H central processor. Table 1 and Figure 4 show the
results of testing over 10 generations. Based on the results of the tests, it was established that the
average time for the computing of the next generation on this hardware is less than 1 millisecond,

207

which indicates the system’s high speed and low resource consumption. The time spent on
generating the next generation is imperceptible to real users of the system.

Table 1
System performance test results
Generation Time spent, milliseconds
1 2,3868
2 0,3068
3 0,1194
4 0,119
5 0,0923
6 0,0747
7 0,0646
8 0,1081
9 0,0931
10 0,1471

S5 Time Spent per Generation

2.0+

=
w
|

Time spent (ms)

=
[=]
L

0.5

0.0 4

T T T T T T T T T T
1 2 3 4 5 6 7 8 9 10
Generation

Figure 4: System performance test results.

7. Discussion of results

Table 2 shows a comparison of the developed system with the analogues discussed above.

208

Table 2
Comparison of the developed system with analogues

System Type of Compositions encoding Surrogate User Monophonic
music fitness engagement only
function tracking
The Arbitrary ~ Complex genome, genes of No Yes Yes
proposed short three types
system
GenJam [6] Jazz solos Two-level hierarchy, limited No No Yes
number of 4-bit events per
clock
GP-Music [8] Short, same Tree-like multi-level Yes No Yes
note lengths structure
DarwinTune Short looped Tree-like multi-level No No Yes
s [7] structure

While the developed system, like most models based on genetic encoding, is still restricted to
generating only monophonic compositions, this limitation should be viewed in the broader context
of its performance characteristics. For many practical applications: background music for games,
simple generative soundscapes, educational tools, or interactive art installations, monophonic sound
can be sufficient. More importantly, the system demonstrates several notable advantages that
distinguish it from analogues.

First, its dynamic tracking of user engagement directly addresses one of the key drawbacks of
interactive genetic algorithms: user fatigue. By continuously adapting mutation and injection
probabilities, the system reduces repetitive or unproductive iterations, enabling users to reach
satisfying results in fewer cycles. This approach can be seen as a lightweight alternative to surrogate
fitness functions, which are computationally demanding and often difficult to generalize across
users.

Second, the computational efficiency of the model makes it practical for real-time applications.
Tests confirm that new generations can be produced in less than one millisecond, even on low-end
hardware. Thus, the system can be used with software where performance is critical without
requiring cloud-based processing or expensive hardware. For example, video games or live
interactive performances.

Third, the system allows users to configure stylistic parameters such as tempo, scale, and chord
sets, thereby ensuring that the generated music aligns more closely with the intended genre or style.
This adaptability makes the system more adaptive than solutions like GenJam or DarwinTunes,
which are narrowly specialized in genre or structural constraints.

In summary, while the lack of polyphonic capability represents a structural limitation of the
chosen genome structure, the system’s high performance, adaptability, and innovative approach to
reducing user fatigue make it a promising and practical tool. These strengths collectively suggest
that the proposed solution may serve not only as a research prototype but also as a basis for a real-
world interactive music generation system.

8. Conclusions

Methods and existing systems of music generation based on genetic methods were reviewed. In
particular, systems that use interactive genetic algorithms and also use surrogate fitness functions
in the process of evolution are considered.

209

A system is proposed that generates music using a modified interactive genetic algorithm and
also uses dynamic user engagement tracking. The proposed system also differs from analogues in
the ability to generate music in different styles, as well as more subtle settings available to users.

In the future, it is possible to improve the system by integrating a surrogate fitness function similar
to the one used in the GP-Music system [8].

Acknowledgements

The article was prepared as part of the research work “Information Technologies of Intelligent
Computing”.

Declaration on Generative Al

The authors have not employed any Generative Al tools.

References

[1] K. Collins, An introduction to procedural music in video games, Contemp. Music Rev. 28.1 (2009)
5-15. doi:10.1080/07494460802663983.

[2] MuseNet, 2019. URL: https://openai.com/index/musenet/.

[3] MusicLM - Al model for music generation, 2023. URL: https://musiclm.com.

] S. Ji, J. Luo, X. Yang, A comprehensive survey on deep music generation: multi-level
representations, algorithms, evaluations, and future directions, Preprint, 2020. arxiv.
doi:10.48550/arXiv.2011.06801.

[5] H. Takagi, Interactive evolutionary computation: fusion of the capabilities of EC optimization
and human evaluation, Proc. IEEE 89.9 (2001) 1275-1296. d0i:10.1109/5.949485.

[6] J. A. Biles, Life with GenJam: interacting with a musical IGA, in: IEEE SMC'99 conference
proceedings. 1999 IEEE international conference on systems, man, and cybernetics, IEEE.
doi:10.1109/icsmc.1999.823290.

[7]1 R. M. MacCallum, M. Mauch, A. Burt, A. M. Leroi, Evolution of music by public choice, Proc.
Natl. Acad. Sci. 109.30 (2012) 12081-12086. doi:10.1073/pnas.1203182109.

[8] GP-Music: an interactive genetic programming system for music generation with automated
fitness raters, in: Genetic programming 1998: proceedings of the third annual conference, 1998,
pp- 181-186. doi:10.1109/TEVC.1999.771172.

[9] Midi. URL: https://midi.org.

[10] .NET Multi-platform App Ul documentation - NET MAUI URL: https://learn.microsoft.com/en-
us/dotnet/maui.

[11] I. Fedorchenko, A. Oliinyk, A. Stepanenko, T. Zaiko, S. Shylo, A. Svyrydenko, Development of
the modified methods to train a neural network to solve the task on recognition of road users,
Eastern-European J. Enterp. Technol. 2.9 (98) (2019) 46-55. d0i:10.15587/1729-4061.2019.164789.

[12] N. A. Afifie, A. W. Y. Khang, A. S. Bin Ja'afar, A. F. B. M. Amin, J. A.J. Alsayaydehahmad, W. A.
Indra, S. G. Herawan, A. B. Ramli, Evaluation Method of Mesh Protocol over ESP32 and ESP8266,
Baghdad Sci. J. 18.4(Suppl.) (2021) 1397. d0i:10.21123/bsj.2021.18.4(suppl.).1397.

210

	1. Introduction
	2. Overview of existing systems
	3. Problem statement
	4. Development of a modified interactive genetic algorithm
	4.1. Compositions encoding
	4.2. Workflow

	5. Developed software
	6. Experiments
	7. Discussion of results
	8. Conclusions
	Acknowledgements
	Declaration on Generative AI
	References

